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Abstract9

We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures10

equivalent to a Datalog program, in terms of an existential pebble game. We also show that for11

every class C of finite structures that can be expressed in MSO and is closed under homomorphisms,12

and for all ℓ, k ∈ N, there exists a canonical Datalog program Π of width (ℓ, k), that is, a Datalog13

program of width (ℓ, k) which is sound for C (i.e., Π only derives the goal predicate on a finite14

structure A if A ∈ C) and with the property that Π derives the goal predicate whenever some Datalog15

program of width (ℓ, k) which is sound for C derives the goal predicate. The same characterisations16

also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results,17

we show that every class C in GSO whose complement is closed under homomorphisms is a finite18

union of constraint satisfaction problems (CSPs) of ω-categorical structures.19
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1 Introduction30

Monadic Second-order Logic (MSO) is an important logic in theoretical computer science.31

By Büchi’s theorem, a formal language can be defined in MSO if and only if it is regular (see,32

e.g., [24]). MSO sentences can be evaluated in polynomial time on classes of structures whose33

treewidth is bounded by a constant; this is known as Courcelle’s theorem [16]. The latter34

result even holds for the more expressive logic of Guarded Second-order Logic (GSO) [21, 18],35

which extends First-order Logic by second-order quantifiers over guarded relations. Guarded36

Second-order Logic contains Guarded First-order Logic (which itself captures many description37

logics [20]).38

Another fundamental formalism in theoretical computer science, which is heavily studied39

in database theory, is Datalog (see, e.g., [24]). Every Datalog program can be evaluated on40

finite structures in polynomial time. Like MSO, Datalog strikes a good balance between41

expressivity and good mathematical and computational properties. Two important parameters42

of a Datalog program Π are the maximal arity ℓ of its auxiliary predicates (IDBs), and the43
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23:2 Datalog for Guarded Second-Order Logic

maximal number k of variables per rule in Π. We then say that Π has width (ℓ, k), following44

the terminology of Feder and Vardi [19]. These parameters are important both in theory45

and in practice: ℓ closely corresponds to the exponent of the size of the memory space and k46

to the exponent of the number of computation steps needed when evaluating Π on a given47

structure (see, e.g., [4]).48

In some scenarios we are interested in having the good computational properties of49

expressibility in Datalog and having the good computational properties of expressibility in50

MSO. A wide variety of popular query formalisms (among them (unions of) conjunctive queries,51

(2-way conjunctive) regular path queries, monadic Datalog, guarded Datalog, monadically52

defined queries, or nested monadically defined queries) are known to be both in Datalog53

and GSO [25]. Also, all these formalisms have favourable properties when it comes to static54

analysis, most notably decidable query containment [25]. Note that on the contrary, query55

containment in unrestricted Datalog is undecidable, as is query containment in unrestricted56

MSO / GSO. So it is really the interplay of the restrictions imposed by both formalisms that57

is required to ensure decidability of a central task in databases and that makes this fragment58

interesting and worthwhile investigating.59

In this paper we investigate two questions that (perhaps surprisingly) turn out to be60

closely related:61

1. Which classes of finite structures are simultaneously expressible in MSO and in Datalog?62

2. Which constraint satisfaction problems (CSPs) can be expressed in MSO, or, more63

generally, in GSO?64

For a structure B with a finite relational signature τ , the constraint satisfaction problem
for B is the class of all finite τ -structures that homomorphically map to B. Every finite-
domain constraint satisfaction problem can already be expressed in monotone monadic SNP
(MMSNP; [19]), which is a small fragment of MSO. On the other hand, the constraint
satisfaction problem for (Q;<), which is the class of all finite acyclic digraphs (V ;E), cannot
be expressed in MMSNP [6], but can be expressed in MSO by the sentence

∀X ̸= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x, y).

The class of CSPs of arbitrary infinite structures B is quite large; it is easy to see that a65

class D of finite structures with a finite relational signature τ is a CSP of a countably infinite66

structure if and only if67

it is closed under disjoint unions, and68

A ∈ D for any A that maps homomorphically to some A′ ∈ D.69

The second item can equivalently be rephrased as the complement of D (meant within the
class of all finite τ -structures; this comment applies throughout and will be omitted in the
following) being closed under homomorphisms: a class C is closed under homomorphisms if
for any structure A ∈ C that maps homomorphically to some C we have C ∈ C. Examples
of classes of structures that are closed under homomorphisms naturally arise from Datalog.
We say that a class C of finite τ -structures is definable in Datalog1 if there exists a Datalog
program Π with a distinguished predicate nullary goal such that Π derives goal on a finite
τ -structure if and only if the structure is in C; in this case, we write JΠK for C. Every class of
τ -structures in Datalog is closed under homomorphisms. However, not every class of finite
structures in Datalog describes the complement of a CSP: consider for example, for unary
predicates R and B, the class CR,B of finite {R,B}-structures A such that RA is empty or

1 Warning: Feder and Vardi [19] say that a CSP is in Datalog if its complement in the class of all finite
τ -structures is in Datalog.
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BA is empty. Clearly, CR,B is not closed under disjoint unions. However, a finite structure is
in CR,B if and only if the Datalog program that consists of just one rule

goal :− R(x), B(y)

does not derive goal on that structure.70

An important class of CSPs is the class of CSPs for structures B that are countably71

infinite and ω-categorical. A structure B is ω-categorical if all countable models of the72

first-order theory of B are isomorphic. A well-known example of an ω-categorical structure is73

(Q;<), which is a result due to Cantor [15]. Constraint satisfaction problems of ω-categorical74

structures can be evaluated in polynomial time on classes of treewidth bounded by some75

constant k ∈ N, by a result of Bodirsky and Dalmau [7]. The polynomial-time algorithm76

presented by Bodirsky and Dalmau is in fact a Datalog program of width (k − 1, k). A77

Datalog program Π is called sound for a class of τ -structures C if JΠK ⊆ C. Bodirsky and78

Dalmau showed that if C is the complement of the CSP of an ω-categorical τ -structure B79

then there exists for all ℓ, k ∈ N a canonical Datalog program of width (ℓ, k) for C, i.e., a80

Datalog program Π of width (ℓ, k) such that81

Π is sound for C, and82

JΠ′K ⊆ JΠK for every Datalog program Π′ of width (ℓ, k) which is sound for C.83

Moreover, whether the canonical Datalog program of width (ℓ, k) for C derives goal on a84

given τ -structure A can be characterised in terms of the existential pebble game from finite85

model theory, played on (A,B) [7]. The existential ℓ, k pebble game is played by two players,86

called Spoiler and Duplicator (see, e.g., [17, 19, 23]). Spoiler starts by placing k pebbles on87

elements a1, . . . , ak of A, and Duplicator responds by placing k pebbles b1, . . . , bk on B. If88

the map that sends a1, . . . , ak to b1, . . . , bk is not a partial homomorphism from A to B, then89

the game is over and Spoiler wins. Otherwise, Spoiler removes all but at most ℓ pebbles from90

A, and Duplicator has to respond by removing the corresponding pebbles from B. Then91

Spoiler can again place all his pebbles on A, and Duplicator must again respond by placing92

her pebbles on B. If the game continues forever, then Duplicator wins. If B is a finite, or93

more generally a countable ω-categorical structure then Spoiler has a winning strategy for94

the existential ℓ, k pebble game on (A,B) if and only if the canonical Datalog program for95

CSP(B) derives goal on A (Theorem 19). This connection played an essential role in proving96

Datalog inexpressibility results, for example for the class of finite-domain CSPs [2] (leading97

to a complete classification of those finite structures B such that the complement of CSP(B)98

can be expressed in Datalog [3]).99

Results and Consequences100

We present a characterisation of those GSO sentences Φ that are over finite structures101

equivalent to a Datalog program. Our characterisation involves a variant of the existential102

pebble game from finite model theory, which we call the (ℓ, k)-game. This game is defined103

for a homomorphism-closed class C of finite τ -structures, and it is played by the two players104

Spoiler and Duplicator on a finite τ -structure A as follows.105

Duplicator picks a countable τ -structure B such that CSP(B) ∩ C = ∅.106

The game then continues as the existential (ℓ, k) pebble game played by Spoiler and107

Duplicator on (A,B).108

In Section 4 we show that a GSO sentence Φ is over finite structures equivalent to a Datalog109

program of width (ℓ, k) if and only if110

JΦK is closed under homomorphisms, and111

CVIT 2016



23:4 Datalog for Guarded Second-Order Logic

Spoiler wins the existential (ℓ, k)-game for JΦK on A if and only if A |= Φ.112

We also show that for every GSO sentence Φ whose class of finite models C is closed under113

homomorphisms and for all ℓ, k ∈ N there exists a canonical Datalog program Π of width114

(ℓ, k) for C (Theorem 22). To prove these results, we first show that every class of finite115

structures in GSO whose complement is closed under homomorphisms is a finite union of116

CSPs that can also be expressed in GSO (Lemma 16; an analogous statement holds for MSO).117

Moreover, every CSP in GSO is the CSP of a countable ω-categorical structure (Corollary 10);118

this allows us to use results from [7] to make the link to existential pebble games. We also119

present an example of such a CSP which is even expressible in MSO and coNP-complete, and120

hence not the CSP of a reduct of a finitely bounded homogeneous structure, unless NP=coNP121

(Proposition 23). Note that our results imply that every class of finite structures that can be122

expressed both in in GSO and in Datalog is a finite intersection of the complements of CSPs123

for ω-categorical structures. In general, it is not true that a Datalog program describes a124

finite intersection of complements of CSPs (we present a counterexample in Example 18).125

2 Preliminaries126

In the entire text, τ denotes a finite signature containing relation symbols and sometimes127

also constant symbols. If R ∈ τ is a relation symbol, we write ar(R) for its arity. If A is a128

τ -structure we use the corresponding capital roman A letter to denote the domain of A; the129

domains of structures are assumed to be non-empty. If R ∈ τ , then RA ⊆ Aar(R) denotes130

the corresponding relation of A.131

A primitive positive τ -formula (in database theory also conjunctive query) is a first-
order τ -formula without disjunction, negation, and universal quantification. Every primitive
positive formula is equivalent to a formula of the form

∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic τ -formulas, i.e., formulas built from relation symbols in τ or
equality. An existential positive τ -formula is a first-order τ -formula without negation and
universal quantification. We write ψ(x1 . . . , xn) if the free variables of ψ are from x1, . . . , xn.
If A is a τ -structure and ψ(x1, . . . , xn) is a τ -formula, then the relation

R := {(a1, . . . , an) | A |= ψ(a1, . . . , an)}

is called the relation defined by ψ over A; if ψ can be chosen to be primitive positive (or132

existential positive) then R is called primitively positively definable (or existentially positively133

definable, respectively).134

For all logics over the signature τ considered in this text, we say that two formulas
Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are equivalent (over finite structures) if for all (finite) τ -
structures A and all a1, . . . , an ∈ A we have

A |= Φ(a1, . . . , an) ⇔ A |= Ψ(a1, . . . , an).

It is easy to see that every existential positive τ -formula is a disjunction of primitive positive135

τ -formulas (and hence referred to as a union of conjunctive queries in database theory).136

Formulas without free variables are called sentences; in database theory, formulas are often137

called queries and sentences are often called Boolean queries. If Φ is a sentence, we write138

JΦK for the class of all finite models of Φ.139

A reduct of a relational structure A is a structure A′ obtained from A by dropping some140

of the relations, and A is called an expansion of A′.141
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2.1 Datalog142

In this section we refer to the finite set of relation and constant symbols τ as EDBs (for
extensional database predicates). Let ρ be a finite set of new relation symbols, called the
IDBs (for intensional database predicates). A Datalog program is a set of rules of the form

ψ0 :− ψ1, . . . , ψn

where ψ0 is an atomic ρ-formula and ψ1, . . . , ψn are atomic (ρ ∪ τ)-formulas; we also assume
that every variable that appears in the head also appears in the body. If A is a τ -structure,
and Π is a Datalog program with EDBs τ and IDBs ρ, then a (τ ∪ ρ)-expansion A′ of A is
called a fixed point of Π on A if A′ satisfies the sentence

∀x̄(ψ0 ∨ ¬ψ1 ∨ · · · ∨ ¬ψn)

for each rule ψ0 :− ψ1, . . . , ψn. If A1 and A2 are two (ρ∪ τ)-structures with the same domain143

A, then A1 ∩A2 denotes the (ρ∪ τ)-structure with domain A such that RA1∩A2 := RA1 ∩RA2 .144

Note that if A1 and A2 are two fixed points of Π on A, then A1 ∩ A2 is a fixed point of Π on145

A, too. Hence, there exists a unique smallest (with respect to inclusion) fixed point of Π on146

A, which we denote by Π(A). It is well-known that if A is a finite structure then Π(A) can147

be computed in polynomial time in the size of A [24]. If R ∈ ρ, we also say that Π defines148

RΠ(A) on A. A Datalog program together with a distinguished predicate R ∈ ρ may also be149

viewed as a formula, which we also call a Datalog query, and which over a given τ -structure150

A denotes the relation RΠ(A). If the distinguished predicate has arity 0, we often call it151

the goal predicate; we say that Π derives goal on A if goalΠ(A) = {()}. The class C of finite152

τ -structures A such that Π derives goal on A is called the class of finite τ -structures defined153

by Π, and denoted by JΠK. Note that this class C is definable in universal second-order logic154

(we have to express that in every expansion of the input by relations for the IDBs that155

satisfies all the rules of the Datalog program the goal predicate is non-empty).156

2.2 Second-Order Logic157

Second-order logic is the extension of first-order logic which additionally allows existential158

and universal quantification over relations; that is, if R is a relation symbol and ϕ is a159

second-order τ ∪ {R}-formula, then ∃R : ϕ and ∀R : ϕ are second-order τ -formulas. If A is a160

τ -structure and Φ is a second-order τ -sentence, we write A |= Φ (and say that A is a model of161

Φ) if A satisfies Φ, which is defined in the usual Tarskian style. We write JΦK for the class of162

all finite models of Φ. A second-order formula is called monadic if all second-order variables163

are unary. We use syntactic sugar and also write ∀x ∈ X : ψ instead of ∀x(X(x) ⇒ ψ) and164

∃x ∈ X : ψ instead of ∃x(X(x) ∧ ψ).165

2.3 Guarded Second-Order Logic166

Guarded Second-order Logic (GSO), introduced by Grädel, Hirsch, and Otto [21], is the167

extension of guarded first-order logic by second-order quantifiers. Guarded (first-order)168

τ -formulas are defined inductively by the following rules [1]:169

1. all atomic τ -formulas are guarded τ -formulas;170

2. if ϕ and ψ are guarded τ -formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.171

3. if ψ(x̄, ȳ) is a guarded τ -formula and α(x̄, ȳ) is an atomic τ -formula such that all free172

variables of ψ occur in α then ∃ȳ
(
α(x̄, ȳ)∧ψ(x̄, ȳ)

)
and ∀ȳ

(
α(x̄, ȳ) ⇒ ψ(x̄, ȳ)

)
are guarded173

τ -formulas.174

CVIT 2016
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v1 v2 v3 v4

w1 w2 w3 w4

S TR R

N N N

N N N

(a) Structure B

v1 v2 v3 v4

w1 w2 w3 w4

< < <

< < <

>

Pb Pb PbPb

Pa Pa Pa Pa

(b) Structure A

aaaabbbb

(c) Word wA

Figure 1 An example of an {S, T, R, N}-structure B in the class C of Proposition 3.

Guarded second-order formulas are defined similarly, but we additionally allow (unrestricted)175

second-order quantification; GSO generalises Courcelle’s logic MSO2 from graphs to general176

relational structures.177

▶ Definition 1. A second-order τ -formula is called guarded if it is defined inductively by178

the rules (1)-(3) for guarded first-order logic and additionally by second-order quantification.179

There are many semantically equivalent ways of introducing GSO [21]. Let B be a180

τ -structure. Then (t1, . . . , tn) ∈ Bn is called guarded in B if there exists an atomic τ -formula181

ϕ and b1, . . . , bk such that B |= ϕ(b1, . . . , bk) and {t1, . . . , tn} ⊆ {b1, . . . , bk}. Note that (for182

n = 1) every element of B is guarded (because of the atomic formula x = x). A relation183

R ⊆ Bn is called guarded if all tuples in R are guarded. Note that all unary relations184

are guarded. If Ψ is an arbitrary second-order sentence, we say that a finite structure A185

satisfies Ψ with guarded semantics, in symbols A |=g Φ, if all second-order quantifiers in Ψ186

are evaluated over guarded relations only. Note that for MSO sentences, the usual semantics187

and the guarded semantics coincide.188

▶ Proposition 2 (see [21]). Guarded Second-order Logic and full Second-order Logic with189

guarded semantics are equally expressive.190

It follows that GSO is at least as expressive as MSO. There are Datalog programs that191

are equivalent to a GSO sentence, but not to an MSO sentence. The proof is based on a192

variant of an example of a Datalog query in GSO given in [13] (Example 2).193

▶ Proposition 3. There is a Datalog query that can be expressed in GSO but not in MSO.194

Proof. Let τ be the signature consisting of the binary relation symbols S, T,R,N , and let C195

be the class of finite τ -structures such that the following Datalog program with one binary196

IDB U derives goal.197

U(x, y) :−S(x, y)198

U(x′, y′) :−U(x, y), N(x, x′), N(y, y′), R(x′, y′)199

goal :−U(x, y), T (x, y) ◀200
201

On the left of Figure 1 one can find an example of a {S, T,R,N}-structure B where the202

given Datalog program derives goal. To show that C is not MSO definable, suppose for203

contradiction that there exists an MSO sentence Φ such that JΦK = C. We use Φ to construct204

an MSO sentence Ψ which holds on a finite word w ∈ {a, b}∗ (represented as a structure with205

signature Pa, Pb, < in the usual way [24]) if and only if w ∈ {anbn | n ≥ 1}; this contradicts206

the theorem of Büchi-Elgot-Trakhtenbrot (see, e.g., [24]). Let Φ′ be the MSO sentence207

obtained from Φ by replacing all subformulas of Φ of the form208
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S(x, y) by a formula ϕS(x, y) that states that x is the smallest element with respect to209

<, that Pb(y), and that there is no z < y in Pb;210

T (x, y) by a formula ϕT (x, y) that states that Pa(x), that there is no z > x in Pa, and211

that y is the largest element with respect to <;212

R(x, y) by the formula ϕR(x, y) given by x < y;213

N(x, y) by a formula ϕN (x, y) stating that y is the next element after x with respect to214

<.215

The resulting MSO sentence Ψ1 has the signature {Pa, Pb, <}; let Ψ be the conjunction of Ψ1216

with the sentence Ψ2 which states that for all x, y ∈ A, if x < y and Pa(y) then Pa(x). We217

first show that if A is a {<,Pa, Pb}-structure that represents a word wA ∈ {a, b}∗, then A |= Ψ218

if and only if wA is of the form anbn for some n ≥ 1. Let B be the {S, T,R,N}-structure219

such that for X ∈ {S, T,R,N} we have XB := {(x, y) | A |= ϕX(x, y)}. See Figure 1 for an220

example of a structure A such that wA = a4b4 and the corresponding {S, T,R,N}-structure221

B.222

If wA is of the form anbn for some n ≥ 1, then A clearly satisfies Ψ2. To show that223

it also satisfies Ψ1, let v1, . . . , vn, w1, . . . , wn ∈ A be such that {v1, . . . , vn} = PA
a and224

{w1, . . . , wn} = PA
b such that for all i, j ∈ {1, . . . , n}, if i < j then vi <

A vj and wi <
A wj .225

Then226

(v1, w1) ∈ SB, (vn, wn) ∈ TB,227

(vi, wi) ∈ RB for all i ∈ {2, . . . , n− 1}, (1)228

(vi, vi+1), (wi, wi+1) ∈ NB for all i ∈ {1, . . . , n− 1}.229
230

It follows that B satisfies Φ and therefore A |= Ψ.231

For the converse direction, suppose that A |= Ψ. Clearly, wA ∈ a∗b∗ because A |= Ψ2.232

Moreover, since A |= Ψ1 we have that B |= Φ, and hence there exist n ∈ N and elements233

v1, . . . , vn, w1, . . . , wn ∈ A such that B satisfies (1). We first prove that PA
a = {v1, . . . , vn}234

and |PA
a | = n. Since (vn, wn) ∈ TB we have ϕT (vn, wn) and hence vn ∈ PA

a . Since235

B |= N(v1, v2), . . . , N(vn−1, vn) we have that v1 < v2 < · · · < vn−1 < vn holds in A236

and it also follows that |PA
a | = n. Then for every i ∈ n we have that vi ∈ PA

a because237

vi ≤ vn, vn ∈ PA
a , and wA ∈ a∗b∗. Now suppose for contradiction that there exists238

x ∈ PA
a \ {v1, . . . , vn}; choose x largest with respect to <A. Since (vn, wn) ∈ TB and x ∈ PA

a239

we must have x ≤ vn, and hence x < vn since x /∈ {v1, . . . , vn}. Then there exists y ∈ A such240

that ϕN (x, y) holds in A. Since y ≤ vn, vn ∈ PA
a , and wA ∈ a∗b∗, we must have PA

a . By the241

maximal choice of x we get that y = vi for some i ∈ {1, . . . , n}. But then ϕN (x, vi) implies242

that x ∈ {v1, . . . , vn−1}, a contradiction. Similarly, one can prove that PA
b = {w1, . . . , wn}243

and that |PA
b | = n. This implies that wA = anbn.244

We finally have to prove that C is in GSO. Let Φ be the GSO {S, T,R,N} sentence with245

existentially quantified unary relations V,W , and existentially quntified binary relations246

R′ ⊆ R and N ′ ⊆ N , which states that247

there are elements v1, vn ∈ V and w1, wn ∈ W such that S(v1, w1) and T (vn, wn) hold;248

for every x ∈ V \ {v1} there exists a unique element y ∈ V \ {vn} such that N ′(y, x)249

holds;250

for every x ∈ V \ {vn} there exists a unique element y ∈ V \ {v1} such that N ′(x, y)251

holds;252

for every x ∈ W \ {w1} there exists a unique element y ∈ W \ {wn} such that N ′(y, x)253

holds;254

for every x ∈ W \ {wn} there exists a unique element y ∈ W \ {w1} such that N ′(x, y)255

holds;256

CVIT 2016
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for all v ∈ V and w ∈ W we have that N ′(v1, v) ∧N ′(w1, w) implies R′(v, w).257

for all v, v′ ∈ V \ {v1, vn} and w,w′ ∈ W \ {w1, wn} we have that R′(v, w) ∧N ′(v, v′) ∧258

N ′(w,w′) implies R′(v, w).259

For all v ∈ V and w ∈ W we have that N ′(v, vn) ∧N ′(w,wn) implies R′(v, w).260

Then Φ holds on a finite {S, T,R,N}-structure B if and only ifB has elements v1, . . . , vn, w1, . . . , wn261

satisfying (1), which is the case if and only if B ∈ C.262

Sometimes, we will also use the term GSO (MSO, Datalog) to denote all problems (i.e.,263

all classes of structures) that can be expressed in the formalism. In particular, this justifies264

to say that a certain CSP is in GSO (MSO, Datalog).265

3 Homomorphism-Closed GSO266

We prove that the class of finite models of a GSO sentence is a finite union of CSPs of267

ω-categorical structures whenever its complement is closed under homomorphisms. In268

particular, every CSP in GSO (and therefore every CSP in MSO) is the CSP of an ω-269

categorical structure. CSPs that can be formulated as the CSP of an ω-categorical structure270

have been characterised [10]; this characterisation will be recalled in the next section.271

3.1 CSPs for Countably Categorical Structures272

By the theorem of Ryll-Nardzewski, a countable structure B is ω-categorical if and only if for273

every n ∈ N there are finitely many orbits of the componentwise action of the automorphism274

group of B on Bn (see, e.g., [22]). We now present a condition that characterises classes of275

structures that are CSPs of ω-categorical structures. Let C be a class of finite τ -structures. Let276

Λn be the class of primitive positive τ -formulas with free variables x1, . . . , xn whose canonical277

database is in C. We define ∼C
n to be the equivalence relation on Λn such that ϕ1 ∼C

n ϕ2 holds if278

for all primitive positive τ -formulas ψ(x1, . . . , xn) we have that ϕ1(x1, . . . , xn)∧ψ(x1, . . . , xn)279

is satisfiable in a structure from C if and only if ϕ2(x1, . . . , xn) ∧ ψ(x1, . . . , xn) is satisfiable280

in a structure from C. The index of an equivalence relation is the number of its equivalence281

classes.282

▶ Theorem 4 (Bodirsky, Hils, Martin [10], Theorem 4.27). Let C be a constraint satisfaction283

problem. Then there is an ω-categorical structure B such that C = CSP(B) iff ∼C
n has finite284

index for all n. Moreover, the structure B can be chosen so that for all n ∈ N the orbits of285

the componentwise action of the automorphism group of B on Bn are primitively positively286

definable in B.287

▶ Example 5. The structure B1 := (Z;<) is not ω-categorical. However, ∼CSP(B1)
n has finite288

index for all n, and indeed CSP(Z;<) = CSP(Q;<) and (Q;<) is ω-categorical. On the289

other hand, for B2 := (Z; Succ) we have that the index ∼CSP(B2)
2 is infinite, and it follows290

that there is no ω-categorical structure B such that CSP(B2) = CSP(B); see [6].291

A rich source of examples of ω-categorical structures are structures with finite relational292

signature that are homogeneous, i.e., every isomorphism between finite substructures can293

be extended to an automorphism. There are uncountably many countable homogeneous294

digraphs with pairwise distinct CSP, and it follows that there are homogeneous digraphs295

with undecidable CSPs. A structure B is called finitely bounded if there exists a finite set F296

of finite structures such that a finite structure A embeds into B if and only if no structure in297

F embeds into A.298
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It is well-known that if a structure is ω-categorical, then all of its reducts are ω-categorical299

as well [22]. Moreover, it is easy to see that the CSP of reducts of finitely bounded structures300

is in NP. It has been conjectured that the CSP of reducts of finitely bounded homogeneous301

structures is in P or NP-complete [12]; this conjecture generalises the finite-domain complexity302

dichotomy that was conjectured by Feder and Vardi [19] and proved by Bulatov [14] and by303

Zhuk [26].304

3.2 Quantifier Rank305

In order to construct ω-categorial structures for a given CSP in GSO, we need to verify the306

condition given in Theorem 4; in this context, it will be convenient to work with signatures307

that also contain constant symbols. The quantifier rank of a second-order τ -formula Φ is the308

maximal number of nested (first-order or second-order) quantifiers in Φ; for this definition,309

we view Φ as a second-order sentence with guarded semantics, just as in [5]. If A and B are310

τ -structures and q ∈ N we write A ≡GSO
q B if A and B satisfy the same GSO τ -sentences of311

quantifier rank at most q.312

▶ Lemma 6 (Proposition 3.3 in [5]). Let q ∈ N and τ be a finite signature with relation and313

constant symbols. Then ≡GSO
q is an equivalence relation with finite index on the class of all314

finite τ -structures. Moreover, every class of ≡GSO
q can be defined by a single GSO sentence315

with quantifier rank q. The analogous statements hold for MSO as well.316

If A is a τ -structure and ā is a k-tuple of elements of A, then we write (A, ā) for a317

τ ∪ {c1, . . . , ck}-structure expanding A where c1, . . . , ck denote fresh constant symbols being318

mapped to the corresponding entries of ā. If A and B are τ -structures and ā ∈ Ak, b̄ ∈ Bk,319

and when writing (A, ā) ≡GSO
q (B, b̄) we implicitly assume that we have chosen the same320

constant symbols for ā and for b̄.321

▶ Lemma 7 (Proposition 3.4 in [5]). Let q ∈ N and let A and B be τ -structures. Then322

A ≡GSO
q+1 B if and only if the following properties hold:323

(first-order forth) For every a ∈ A, there exists b ∈ B such that (A, a) ≡GSO
q (B, b).324

(first-order back) For every b ∈ B, there exists a ∈ A such that (A, a) ≡GSO
q (B, b).325

(second-order forth) For every expansion A′ of A by a guarded relation, there exists an326

expansion B′ of B by a guarded relation such that A′ ≡GSO
q B′.327

(second-order back) For every expansion B′ of B by a guarded relation, there exists an328

expansion A′ of A by a guarded relation such that A′ ≡GSO
q B′.329

In the following, τ denotes a finite relational signature.330

▶ Definition 8. Let ρ := {c1, . . . , cn} be a finite set of constant symbols. Then Dn is defined331

to be the set of all pairs (A,B) of finite (τ ∪ ρ)-structures such that332

cA = cB for all constant symbols c ∈ ρ;333

{cA1 , . . . , cAn} = A ∩B = {cB1 , . . . , cBn }.334

We write A ⊎ B for the structure with domain A ∪B such that RA⊎B := RA ∪RB for each335

relation symbol R ∈ τ and cA⊎B = cA = cB for each constant symbol c ∈ ρ.336

The following theorem in the special case of n = 0 is Proposition 4.1 in [5].337

▶ Theorem 9. Let q, n, r, s ∈ N, let (A1,B1), (A2,B2) ∈ Dn, and let ā1 ∈ (A1)r, ā2 ∈ (A2)r,
b̄1 ∈ (B1)s, b̄2 ∈ (B2)s be such that (A1, ā1) ≡GSO

q (A2, ā2) and (B1, b̄1) ≡GSO
q (B2, b̄2).

Then
(A1 ⊎ B1, ā1, b̄1) ≡GSO

q (A2 ⊎ B2, ā2, b̄2).
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Proof. Our proof is by induction on q. Every quantifier-free formula is a Boolean combination338

of atomic formulas, so for q = 0 it suffices to consider atomic formulas ϕ. By symmetry, it339

suffices to show that if (A1 ⊎B1, ā1, b̄1) |= ϕ then (A2 ⊎B2, ā2, b̄2) |= ϕ. Then ϕ is built using340

a relation symbol R ∈ τ , and the tuple that witnesses the truth of ϕ in A1 ⊎B1 must be from341

RA1 or from RB1 , by the definition of A1 ⊎ B1. We first consider the former case; the latter342

case can be treated similarly. If a constant that appears in ϕ is from A1 ∩B1, then by the343

definition of Dn this element is denoted by a constant symbol c ∈ ρ, and therefore we may344

assume without loss of generality that ϕ is a formula over the signature of (A1, ā1). Hence,345

(A1, ā1) |= ϕ and by assumption (A2, ā2) |= ϕ. This in turn implies that (A2 ⊎B2, ā2, b̄2) |= ϕ.346

For the inductive step, suppose that the claim holds for q, and that (A1, ā1) ≡GSO
q+1 (A2, ā2)

and (B1, b̄1) ≡GSO
q+1 (B2, b̄2). By symmetry and Lemma 7 it suffices to verify the properties

(first-order forth) and (second-order forth). Let c1 ∈ A1 ∪B1. We may assume that c1 ∈ A1;
the case that c1 ∈ B1 can be shown similarly. By Lemma 7, there exists c2 ∈ A2 such that
(A1, ā1, c1) ≡GSO

q (A2, ā2, c2). By the inductive assumption, this implies that

(A1 ⊎ B1, ā1, c1, b̄1) ≡GSO
q (A2 ⊎ B2, ā2, c2, b̄2)

and concludes the proof of (first-order forth).347

Now let R be a guarded relation of A1 ⊎ B1 of arity k. Let A′
1 be the expansion of A1348

by the guarded relation R ∩ Ak1 , and B′
1 be the expansion of B1 by the guarded relation349

R ∩ Bk1 . By Lemma 7 there are expansions A′
2 of A and B′

2 of B2 by guarded relations350

such that (A′
1, ā1) ≡GSO

q (A′
2, ā2) and (B′

1, b̄1) ≡GSO
q (B′

2, b̄2). By the inductive assumption,351

this implies that (A′
1 ⊎ B′

1, ā1, b̄1) ≡GSO
q (A′

2 ⊎ B′
2, ā2, b̄2), which completes the proof of352

(second-order forth). ◀353

▶ Corollary 10. Let C be a CSP that can be expressed in GSO. Then there exists a countable354

ω-categorical structure B such that C = CSP(B).355

Proof. Let τ be the signature of C, and let Φ be a GSO τ -formula with quantifierrank q such356

that C = JΦK. By Theorem 4 it suffices to show that the equivalence relation ∼C
n has finite357

index for every n ∈ N. Let ρ := {c1, . . . , cn} be a set of new constant symbols. By Lemma 6,358

there exists an m ∈ N such that ≡GSO
q has m equivalence classes on (τ ∪ ρ)-structures. If359

ϕ(x1, . . . , xn) is a primitive positive τ -formula, then define Sϕ to be the (τ ∪ ρ)-structure360

whose elements are the equivalence classes of the smallest equivalence relation on the variables361

of ϕ that contains all pairs x, y such that ϕ contains the conjunct x = y, and such that362

(C1, . . . , Cn) ∈ RS for R ∈ τ if and only if there are y1 ∈ C1, . . . , yn ∈ C2 such that363

R(y1, . . . , yn) is a conjunct of ϕ; finally, we set cSϕ

i := [xi] for all i ∈ {1, . . . , n}.364

We claim that if Sϕ ≡GSO
q Sψ, then ϕ ∼C

n ψ. Let θ(x1, . . . , xn) be a primitive positive365

τ -formula; we may assume that the existentially quantified variables of θ are disjoint from366

the existentially quantified variables of ϕ and of ψ, so that (Sϕ,Sθ), (Sψ,Sθ) ∈ Dn. Since367

Sϕ ≡GSO
q Sψ and Sθ ≡GSO

q Sθ, we have Sϕ ⊎ Sθ ≡GSO
q Sψ ⊎ Sθ by Theorem 9. Now368

suppose that ϕ ∧ θ is satisfiable in a model of Φ. This is the case if and only if Sϕ ⊎ Sθ369

satisfies Φ, which in turn implies that Sψ ⊎ Sθ satisfies Φ since Φ has quantifierrank q. This370

in turn is the case if and only if ψ ∧ θ is satisfiable in a model of Φ, which proves the claim.371

The claim implies that ∼C
n has at most m equivalence classes, concluding the proof. ◀372

▶ Example 11. Let Φ be the following MSO sentence.373

∀X
(
∃x : X(x) ⇒ ∃x, y ∈ X ∀z ∈ X(¬E(x, z) ∨ ¬E(y, z))

)
374
375
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It is easy to see that JΦK is closed under disjoint unions and that its complement is closed376

under homomorphisms. Corollary 10 implies that there exists a countable ω-categorical377

structure with CSP(B) = JΦK.378

3.3 Finite Unions of CSPs379

In this section we prove that every class in GSO whose complement is closed under homo-380

morphisms is a finite union of CSPs (Lemma 16); the statement announced at the beginning381

of Section 3 then follows (Corollary 17). Throughout this section, let C be a non-empty class382

of finite τ -structures whose complement is closed under homomorphisms. In particular, C383

contains the structure I with only one element where all relations are empty.384

Let ∼ be the equivalence relation defined on C by letting A ∼ B if for every C ∈ C we385

have A⊎C ∈ C if and only if B⊎C ∈ C; here ⊎ denotes the usual disjoint union of structures,386

which is a special case of Definition 8 for n = 0. Note that the equivalence classes of ∼ are387

in one-to-one correspondence to the equivalence classes of ∼C
0 . Also note that C is closed388

under disjoint unions if and only if ∼ has only one equivalence class.389

If A ∈ C, then we write [A] for the equivalence class of A with respect to ∼. The following390

observations are immediate consequences from the definitions:391

1. each ∼-equivalence class is closed under homomorphic equivalence.392

2. each ∼-equivalence class is closed under disjoint unions.393

3. A ∈ [I] if and only if A ⊎ B ∈ C for all B ∈ C.394

▶ Lemma 12. Let A ∈ C and let D be the smallest subclass of C that contains [A] and whose395

complement is closed under homomorphisms. Then396

1. D is a union of equivalence classes of ∼, and397

2. if ∼ has more than one equivalence class, then C \ D is non-empty.398

Proof. Let C ∈ [A], let B be a finite structure with a homomorphism to C, and let B′ ∈ [B].399

Since B ⊎ C and C are homomorphically equivalent, we have that B ⊎ C ∼ C. We claim that400

B′ ⊎ C ∼ C. To see this, let D ∈ C. Then401

C ⊎ D ∈ C ⇔ (B ⊎ C) ⊎ D ∈ C (since B ⊎ C ∼ C)402

⇔ B ⊎ (C ⊎ D) ∈ C403

⇔ B′ ⊎ (C ⊎ D) ∈ C (since B ∼ B′)404

⇔ (B′ ⊎ C) ⊎ D ∈ C405
406

which shows the claim. So B′ ⊎ C ∈ [C] = [A]. Since B′ has a homomorphism to B′ ⊎ C we407

obtain that B′ ∈ D; this proves the first statement.408

To prove the second statement, first observe that the statement is clear if A ∈ [I], since409

the complement of [I] is closed under homomorphisms. The statement therefore follows from410

the assumption that ∼ has more than one equivalence class. Otherwise, if A /∈ [I], then there411

exists a structure B ∈ C such that A ⊎ B /∈ C. Then B ∈ C \ D can be shown indirectly as412

follows: otherwise B would have a homomorphism to a structure A′ ∈ [A]. Since B ⊎ A′ is413

homomorphically equivalent to A′, we have B ⊎ A′ ∼ A′ ∼ A and in particular B ⊎ A′ ∈ C.414

But B ⊎ A′ ∈ C if and only if B ⊎ A ∈ C since A ∼ A′. This is in contradiction to our415

assumption on B. ◀416

▶ Example 13. We consider a signature τ := {R1, R2, R3} of unary relation symbols. Define
for every i ∈ {1, 2, 3} the τ -structure Si to be a one-element structure where Ri is non-empty
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and Rj , for j ̸= i, is empty. Let

C := CSP(S1 ⊎ S2) ∪ CSP(S2 ⊎ S3) ∪ CSP(S3 ⊎ S1).

Clearly, the complement of C is closed under homomorphisms. The equivalence classes of ∼417

can be described as follows. For distinct i, j ∈ {1, 2, 3},418

[Si ⊎ Sj ] = CSP(Si ⊎ Sj) \ (CSP(Si) ∪ CSP(Sj))419

[Si] = CSP(Si) \ [I]420

[I] = CSP(I).421
422

For the remainder of the section we fix a GSO τ -sentence Φ of quantifier rank q. Recall423

that Lemma 6 asserts that the equivalence relation ≡GSO
q on the class of finite τ -structures has424

finitely many equivalence classes C1, . . . , Cm, and that each of the equivalence classes Ci can be425

defined by a single GSO τ -sentence Ψi with quantifier rank q; we write T τq := {Ψ1, . . . ,Ψm}426

for this set of GSO sentences. Let J ⊆ {1, . . . ,m} be such that {Ψj ∈ T τq | j ∈ J} is exactly427

the set of all sentences in T τq that imply Φ. Then |J | is called the degree of Φ. It is easy428

to see that the degree of Φ is exactly the index of ≡GSO
q restricted to JΦK. Let ∼ be the429

equivalence relation defined in the beginning of this section for the class C := JΦK.430

▶ Lemma 14. For every ∼-class D there exists I ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK.431

Proof. As in the proof of Corollary 10 one can use Theorem 9 to show for all finite τ -structures432

A,B that if A ≡GSO
q B, then A ∼ B. This means that D is a union of ≡GSO

q -classes and433

therefore there exists I ⊆ J ⊆ {1, . . . ,m} such that D =
⋃
i∈IJΨiK. ◀434

▶ Corollary 15. The index of ∼ is smaller than or equal to the degree of Φ.435

▶ Lemma 16. If the complement of JΦK is closed under homomorphisms, then there are436

GSO τ -sentences Φ1, . . . ,Φt each of which describes a CSP such that Φ is equivalent to437

Φ1 ∨· · ·∨Φt. If Φ is an MSO sentence, then Φ1, . . . ,Φt can be be chosen to be MSO sentences438

as well.439

Proof. We prove the statement by induction on the degree n of Φ. By Lemma 15 the440

equivalence relation ∼ has at most n equivalence classes on τ -structures. Hence, if n = 1,441

then JΦK is closed under disjoint unions, and we are done.442

Let A1, . . . ,As be τ -structures such that {[A1], . . . , [As]} is the set of all equivalence443

classes of ∼ that are distinct from [I]. Let Di be the smallest subclass of JΦK that contains444

[Ai] and whose complement is closed under homomorphisms. Note that JΦK =
⋃
i≤s Di since445

[I] is contained in Di for all i ≤ s. By Lemma 12 (1), each Di is a union of ∼-classes which are446

themselves a union of ≡GSO
q -classes by Lemma 14. It follows that there exists Ii ⊆ {1, . . . ,m}447

such that Di =
⋃
j∈Ii

JΨjK. We define Φi :=
∨
j∈Ii

Ψj . Note that the GSO sentence Φi is of448

quantifier rank q such that Di = JΦiK. Hence, Φ is equivalent to
∨
i≤s Φi. Lemma 12 (2)449

asserts that JΦK \ Di is non-empty, and hence the degree of Φi must be strictly smaller than450

n for all i ∈ {1, . . . , s}. The statement now follows from the inductive assumption. The same451

argument applies to MSO as well. ◀452

Lemma 16 together with Corollary 10 implies the following.453

▶ Corollary 17. Every GSO sentence which is closed under homomorphisms is equivalent to454

a finite conjunction of GSO sentences each of which describes the complement of a CSP of a455

countable ω-categorical structure. The analogous statement holds for MSO.456
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Not every homomorphism-closed class of structures that can be expressed in Second-order457

Logic is a finite intersection of complements of CSPs. We even have an example of a class of458

finite τ -structures that can be expressed in Datalog but cannot be written in this form.459

▶ Example 18. Let S and T be unary, and let R be a binary relation symbol. Let C be the460

class of all finite {S, T,R}-structures A such that the following Datalog program Π with the461

binary IDB E derives goal on A.462

E(x, y) :− S(x), S(y)463

E(x, y) :− E(x′, y′), R(x′, x), R(y′, y)464

goal :− T (x), E(x, x′), R(x′, y)465
466

For n ∈ N, let Pn be the {S, T,R}-structure on the domain {1, . . . , n} with467

SPn := {1} TPn := {n} RPn :=
{

(i, i+ 1) | i ∈ {1, . . . , n− 1}
}
.468

469

It is easy to see that each of the structures in {Pn | n ≥ 1} is not contained in C, and that470

the disjoint union of Pi and Pj , for i ̸= j, is contained in C. It follows that C is not a finite471

intersection of complements of CSPs (and, by Corollary 17, cannot be expressed in GSO).472

4 Canonical Datalog Programs473

A remarkable fact about the expressive power of Datalog for constraint satisfaction problems474

over finite domains is the existence of canonical Datalog programs [19]; this has been475

generalised to CSPs for ω-categorical structures.476

▶ Theorem 19 (Bodirsky and Dalmau [7]). Let B be a countable ω-categorical τ -structure.477

Then for all ℓ, k ∈ N there exists a canonical Datalog program Π of width (ℓ, k) for the478

complement of CSP(B). Moreover, for every finite τ -structure A the following are equivalent:479

Π derives goal on A;480

Spoiler has a winning strategy for the existential (ℓ, k)-pebble game on (A,B).481

We later need the following well-known fact.482

▶ Lemma 20. If C1 and C2 are in Datalog, then so are C1 ∪ C2 and C1 ∩ C2. If Π1 and Π2483

are Datalog programs of width (ℓ, k), then there is a Datalog program Π of width (ℓ, k) for484

JΠ1K ∪ JΠ2K and for JΠ1K ∩ JΠ2K.485

Proof. For union, let Π be obtained by taking the union of the rules of Π1 and of Π2, possibly486

after renaming IDB predicate names to make them disjoint except for goal. For intersection,487

we proceed similarly, but we first rename the symbol goal in Π1 to goal1 and the symbol goal488

in Π2 to goal2. Finally we add the new rule goal :− goal1, goal2 to the union of Π1 and Π2.489

It is clear that these constructions preserve the width. ◀490

▶ Theorem 21. Let Φ be a GSO sentence such that JΦK is closed under homomorphisms.491

Let ℓ, k ∈ N. Then there exists a canonical Datalog program Π of width (ℓ, k) for JΦK.492

Proof. By Corollary 17 there are GSO sentences Φ1, . . . ,Φm and ω-categorical structures493

B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK = CSP(Bi). Let Πi be494

the canonical Datalog program for CSP(Bi) which exists by Theorem 19. Then Lemma 20495

implies that there exists a Datalog program Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. It is clear496

that Π is sound for JΦK. To see that Π is a canonical Datalog program for JΦK, suppose497
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that A is such that some Datalog program Π′ of width (ℓ, k) which is sound for JΦK derives498

goal on A. Since, for every i ∈ {1, . . . ,m}, the program Π′ is also sound for JΦiK, and499

Πi is a canonical Datalog program for JΦiK, the program Πi derives goal on A. Hence,500

A ∈ JΠK = JΠ1K ∩ · · · ∩ JΠmK. ◀501

▶ Theorem 22. Let Φ be a GSO sentence. Then JΦK can be defined in Datalog if and only if502

1. JΦK is closed under homomorphisms, and503

2. there exist ℓ, k ∈ N such that for all finite structures A, Spoiler wins the (ℓ, k)-game for504

JΦK on A if and only if A |= Φ.505

Proof. First suppose that JΦK is in Datalog. That is, there exists ℓ, k ∈ N and a Datalog506

program Π of width (ℓ, k) such that JΦK = JΠK. Then clearly JΦK is closed under homomor-507

phisms, and by Lemma 16, there are GSO sentences Φ1, . . . ,Φm such that Φ is equivalent508

to Φ1 ∧ · · · ∧ Φm and JΦiK is the complement of a CSP, for each i ∈ {1, . . . ,m}. Corol-509

lary 10 implies that there exists an ω-categorical structure Bi such that CSP(Bi) = J¬ΦiK.510

Now suppose that A is a finite τ -structure such that A |= Φ. Then Spoiler wins the511

(ℓ, k)-game as follows. Suppose that Duplicator plays the countable structure B such that512

CSP(B) ∩ JΦK = ∅. Then CSP(B) ∩ JΦiK = ∅ for some i ∈ {1, . . . ,m}; otherwise, if there513

is a structure Ai ∈ CSP(B) ∩ JΦiK for every i ∈ {1, . . . ,m}, then the disjoint union of514

A1, . . . ,Am satisfies Φi since Φi is closed under homomorphisms, and is in CSP(B) since515

CSP(B) is closed under disjoint unions; but this is in contradiction to our assumption that516

CSP(B) ∩ JΦK = ∅. Hence, CSP(B) ⊆ CSP(Bi) and hence there is a homomorphism h from517

B to Bi (see [7]). Note that Π is sound for CSP(Bi), and Π derives goal on A, and hence518

Theorem 19 implies that Spoiler wins the existential (ℓ, k)-pebble game on (A,Bi). But since519

B homomorphically maps to Bi, this implies that Spoiler wins the existential (ℓ, k)-pebble520

game on (A,Bi). Now suppose that A |= ¬Φ. Hence, there exists i ∈ {1, . . . ,m} such that521

A |= ¬Φi. Then Duplicator wins the (ℓ, k)-game as follows. She starts by playing Bi. Then522

A homomorphically maps to Bi, and Duplicator can win the existential (ℓ, k) pebble game523

on (A,Bi) by always playing along the homomorphism.524

For the converse implication, suppose that 1. and 2. hold. Since JΦK is closed under525

homomorphisms, Corollary 17 implies that there are GSO sentences Φ1, . . . ,Φm and ω-526

categorical structures B1, . . . ,Bm such that Φ is equivalent to Φ1 ∧ · · · ∧ Φm and J¬ΦiK =527

CSP(Bi). By Theorem 19, for every i ∈ {1, . . . ,m} there exists a canonical Datalog program528

Πi of width (ℓ, k) for JΦiK. Then Lemma 20 implies that there exists a Datalog program529

Π such that JΠK = JΠ1K ∩ · · · ∩ JΠmK. Since each Πi is sound for JΦiK, it follows that Π is530

sound for JΦK. Hence, it suffices to show that if A is a finite τ -structure such that A |= Φ,531

then Π derives goal on A. Since A |= Φi for all i ∈ {1, . . . ,m}, the assumption implies that532

Spoiler wins the existential (ℓ, k) pebble game on (A,Bi). By Theorem 19, it follows that Πi533

derives goal on A. Hence, Π derives goal on A. ◀534

5 A coNP-complete CSP in MSO535

In this section we show that the class of CSPs in MSO is (under complexity-theoretic536

assumptions) larger than the class of CSPs for reducts of finitely bounded structures (see537

Section 3.1). Let T = {T2,T3, . . . } be the set of Henson tournaments: the tournament Tn,538

for n ≥ 2, has vertices 0, 1, . . . , n+ 1 and the following edges:539

(i, i+ 1) for i ∈ {0, . . . , n};540

(0, n+ 1);541

(j, i) for i+ 1 < j and (i, j) ̸= (0, n+ 1).542
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The class C of all finite loopless digraphs that do not embed any of the digraphs from T is543

an amalgamation class, and hence there exists a homogenous structure H with age C. It has544

been shown in [9] that CSP(H) is coNP-complete.545

▶ Proposition 23. CSP(H) can be expressed in MSO.546

Proof. We have to find an MSO sentence that holds on a given digraph (V ;E) if and only if547

(V ;E) does not embed any of the tournaments from T . We specify an MSO {X,E}-sentence548

Φ, for a unary relation symbol X, that is true on a finite {X,E}-structure S if and only if549

(XS;ES) is isomorphic to Tn, for some n ≥ 2. In ϕ we existentially quantify over550

two vertices s, t ∈ X (that stand for the vertex 0 and the vertex n+ 1 in Tn).551

a partition of X \ {s} into two sets A and B (they stand for the set of even and the set552

of odd numbers in {1, . . . , n+ 1}).553

The formula Φ has the following conjuncts:554

1. a first-order formula that states that E defines a tournament on X;555

2. a first-order formula that expresses that E is a linear order on A with maximal element a;556

3. a first-order formula that expresses that E is a linear order on B with maximal element b;557

4. E(s, t), E(s, a), E(a, b), and E(x, s) for all x ∈ X \ {a, t};558

5. a first-order formula that states that if there is an edge from an element x ∈ A to an559

element y ∈ B then there is precisely one element z ∈ A such that (y, z), (z, x) ∈ E,560

unless y = t;561

6. a first-order formula that states that if there is an edge from an element x ∈ B to an562

element y ∈ A then there is precisely one element z ∈ B such that (y, z), (z, x) ∈ E,563

unless y = t.564

We claim that the MSO sentence ∀x : ¬E(x, x)∧∀X : ¬Φ holds on a finite digraph if and only565

if the digraph is loopless and does not embed Tn, for all n ≥ 3. The forwards implication566

easily follows from the observation that if (X;T ) is isomorphic to Tn, for some n ≥ 2, then567

ϕ holds; this is straightforward from the construction of Φ (and the explanations above568

given in brackets). Conversely, suppose that Φ holds. Then (X;T ) is a tournament. We569

construct an isomorphism f from (X;T ) to T|X|−1 as follows. Define f(s) := 0, f(a) := 1,570

and f(b) = 2. Since E(a, b), by item 5 there exists exactly one a′ ∈ A such that E(b, a′)571

and E(a′, a). Define f(a′) := 3. If a′ = t then we have found an isomorphism with T2.572

Otherwise, the partial map f defined so far is an embedding into Tn for some n ≥ 3. Item 6573

and E(b, a′) imply that there exists exactly one b′ ∈ B such that E(a′, b′) and E(b′, b), and574

we define f(b′) := 4. Continuing in this manner, we eventually define f on all of X and find575

an isomorphism with T|X|−1. ◀576

This shows that CSP(H) cannot be expressed, unless NP = coNP, as CSP(B) for some577

reduct of a finitely bounded structure and such CSPs are in NP. We do not know how to show578

this statement without complexity-theoretic assumptions, even if we just want to rule out579

that CSP(H) can be expressed as CSP(B) for some reduct of a finitely bounded homogeneous580

structure.581

6 Conclusion and Open Problems582

We provided a game-theoretic characterisation of those problems in Guarded Second-order583

Logic that are equivalent to a Datalog program. We also proved the existence of canonical584

Datalog programs for GSO sentences whose models are closed under homomorphisms. To585

prove these results, we showed that every class of finite τ -structures in GSO whose complement586

is closed under homomorphisms is a finite union of CSPs. We also showed that every CSP in587
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GSO can be formulated as a CSP of an ω-categorical structure. These results also imply that588

the so-called universal-algebraic approach, which has eventually led to the classification of589

finite-domain CSPs in Datalog [3], can be applied to study problems that are simultaneously590

in Datalog and in GSO (also see [11]). Our results might also pave the way towards a591

syntactic characterisation of Datalog ∩ GSO. We close with two open problems.592

1. Nested monadically defined queries (Nemodeq) have been introduced by Rudolph and593

Krötzsch [25]; they prove that Nemodeq is contained both in MSO and in Datalog. We594

ask wether conversely, every problem in MSO ∩ Datalog is expressible as a Nemodeq.595

2. Is every CSP of a reduct of a finitely bounded homogeneous structure in GSO?596

We are also confident that our results will advance the understanding of CSPs (the com-597

plements of) which are obtained as the homomorphism-closure of the set of some theory’s598

finite models. For example, the homomorphism-closures of the model sets of guarded- and599

guarded-negation-theories have recently been found to be GSO-expressible [8] so, by virtue600

of our results, we immediately know they must be (complements of) ω-categorical CSPs.601
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