Conditionals and the Selection Task

Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

- Obligation and Factual Conditionals
- The Selection Task
- Bounded Skeptical Abduction

"Logic is everywhere ..."
Obligation Conditional

- Dietz Saldanha, H., Lourêdo Rocha: Obligation versus Factual Conditionals under the Weak Completion Semantics. CEUR Workshop Proc. 1837, 55-64: 2017

- If it rains then the roofs are wet
 - Its consequence is obligatory
 - We cannot easily imagine a case, where the antecedent is true and the consequence is not

- Necessary antecedent
 - The consequence cannot be true unless the antecedent is true
Factual Conditional

- If it rains then she takes her umbrella
 - We can easily imagine a situation, where the antecedent is true and the consequence is not
 - Its consequence is not obligatory

- Sufficient antecedent
 - The antecedent does not appear to be necessary
Encoding Obligation and Factual Conditionals

▶ Program

\[
\begin{align*}
w & \leftarrow r \land \neg ab_4 \\
ab_4 & \leftarrow \bot \\
u & \leftarrow r \land \neg ab_5 \\
ab_5 & \leftarrow \bot
\end{align*}
\]

▶ Weakly completed program & least model

\[
\begin{align*}
w & \leftrightarrow r \land \neg ab_4 & \text{true} & \text{false} \\
ab_4 & \leftrightarrow \bot & ab_4 & \\
u & \leftrightarrow r \land \neg ab_5 & ab_5 & \\
ab_5 & \leftrightarrow \bot &
\end{align*}
\]

▶ Abducibles

\[
\begin{align*}
r & \leftarrow \top \\
r & \leftarrow \bot \\
ab_5 & \leftarrow \top \\
u & \leftarrow \top
\end{align*}
\]
The Evaluation of Indicative Conditionals

- Indicative conditional
 - If X then Y

- Background knowledge
 - Weakly completed program \(wcP \) with least model \(M \)
 - Set of abducibles \(A \)

- Evaluation
 - If \(M(X) \) is \textit{true}, then the conditional is evaluated to \(M(Y) \)
 - If \(M(X) \) is \textit{false}, then the conditional is evaluated to \textit{true}
 - If \(M(X) \) is \textit{unknown}, then the conditional is evaluated with respect to the skeptical consequences of \(wcP \) given \(A \) considering \(X \) as an observation
If the roofs are not wet then it did not rain

- **If** $\neg w$ **then** $\neg r$

- Explaining $\neg w$ by $r \leftarrow \bot$ we obtain

 \[
 \{ w \leftrightarrow r \land \neg ab_4, \ u \leftrightarrow r \land \neg ab_5, \ ab_4 \leftrightarrow \bot, \ ab_5 \leftrightarrow \bot, \ r \leftrightarrow \bot \}
 \]

- It’s least model is

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The conditional is **true**
If she did not take her umbrella then it did not rain

> **If** \(\neg u \) **then** \(\neg r \)

> The observation \(\neg u \) can be explained by \(r \leftarrow \bot \) and \(ab_5 \leftarrow \top \), and we obtain

> \(\{ w \leftrightarrow r \land \neg ab_4, \ u \leftrightarrow r \land \neg ab_5, \ ab_4 \leftrightarrow \bot, \ ab_5 \leftrightarrow \bot, \ r \leftrightarrow \bot \} \)

> \(\{ w \leftrightarrow r \land \neg ab_4, \ u \leftrightarrow r \land \neg ab_5, \ ab_4 \leftrightarrow \bot, \ ab_5 \leftrightarrow \bot \lor \top \} \)

> Their least models are

<table>
<thead>
<tr>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab_4)</td>
<td>(\top)</td>
</tr>
<tr>
<td>(ab_5)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(r)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(w)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(u)</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>

> Reasoning skeptically, the conditional is **unknown**
If the roofs are wet then it rained

- \textit{If \(w\) then \(r\)}

- Explaining \(w\) by \(r \leftarrow \top\) we obtain

\[
\{w \leftrightarrow r \land \neg ab_4, \; u \leftrightarrow r \land \neg ab_5, \; ab_4 \leftrightarrow \bot, \; ab_5 \leftrightarrow \bot, \; r \leftrightarrow \top\}
\]

- Its least model is

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td></td>
<td>(ab_4)</td>
</tr>
<tr>
<td>(ab_5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The conditional is \textit{true}
If she took her umbrella then it rained

If \(u \) then \(r \)

The observation \(u \) can be explained by \(r \leftarrow \top \) or \(u \leftarrow \top \), and we obtain

\[
\{w \leftrightarrow r \land \neg ab_4, \ u \leftrightarrow r \land \neg ab_5, \ ab_4 \leftrightarrow \bot, \ ab_5 \leftrightarrow \bot, \ r \leftrightarrow \top\}
\]

\[
\{w \leftrightarrow r \land \neg ab_4, \ u \leftrightarrow (r \land \neg ab_5) \lor \top, \ ab_4 \leftrightarrow \bot, \ ab_5 \leftrightarrow \bot\}
\]

Their least models are

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r)</td>
<td>(ab_4)</td>
</tr>
<tr>
<td></td>
<td>(ab_5)</td>
<td></td>
</tr>
<tr>
<td>(w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reasoning skeptically, the conditional is *unknown*
The Selection Task

- If there is the letter d on one side of the card, then there is the number 3 on the other side
 ▶ Factual conditional with necessary antecedent

- If a person is drinking beer, then the person must be over 19 years of age
 ▶ Obligation conditional with sufficient antecedent

- Reasoning skeptically yields the adequate answers
 ▶ Dietz Saldanha, H., Lourêdo Rocha: Obligation versus Factual Conditionals under the Weak Completion Semantics. CEUR Workshop Proc. 1837, 55-64: 2017
The Abstract Case

► Program

\[3 \leftarrow d \land \neg ab_6 \]
\[ab_6 \leftarrow \bot \]

► Abducibles

\[d \leftarrow \top \]
\[d \leftarrow \bot \]
\[ab_6 \leftarrow \top \]

► Observations & least models

\[
\begin{array}{ccc}
\text{true} & \text{false} \\
\hline
\text{d} & \text{ab}_6 \\
3 & \\
\hline
\text{a} & \neg d & 3 \\
\hline
\text{true} & \text{false} \\
\hline
\text{d} & \text{ab}_6 \\
3 & \\
\hline
\text{d} & \text{ab}_6 \\
3 & \\
\hline
\text{true} & \text{false} \\
\hline
\text{d} & \text{ab}_6 \\
3 & \\
\hline
\text{ab}_6 & \text{false} \\
3 & \\
\hline
\end{array}
\]

turn: 89%
nor turn: 16%
turn: 62%
nor turn: 25%
The Social Case

▶ Program

\[o \leftarrow b \land \neg ab_7 \]
\[ab_7 \leftarrow \bot \]

▶ Abducibles

\[b \leftarrow \top \quad b \leftarrow \bot \quad o \leftarrow \top \]

▶ Observations & least models

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>true</td>
<td>false</td>
<td>ab_7</td>
<td>true</td>
<td>false</td>
<td>ab_7</td>
<td>true</td>
<td>false</td>
<td>ab_7</td>
<td>true</td>
<td>false</td>
<td></td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>o</td>
<td>true</td>
<td>false</td>
<td></td>
<td>true</td>
<td>false</td>
<td></td>
<td>true</td>
<td>false</td>
<td></td>
<td>true</td>
<td>false</td>
<td></td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>turn</th>
<th>95%</th>
<th>no turn</th>
<th>0,025%</th>
<th>no turn</th>
<th>0,025%</th>
<th>turn</th>
<th>80%</th>
</tr>
</thead>
</table>

Steffen Hölldobler
Conditionals and the Selection Task
Syllogistic Reasoning

- The Weak Completion Semantics achieves 89% when reasoning skeptically
 - It is better than 12 established cognitive theories
The Complexity of Skeptical Abduction

- H., Philipp, Wernhard: An Abductive Model for Human Reasoning
 In: Logical Formalizations of Commonsense Reasoning
 Papers from the AAAI 2011 Spring Symposium

- Dietz Saldanha, H., Philipp: Contextual Abduction and Its Complexity Issues
 In: Proc. 4th Int. Workshop on Defeasible and Ampliative Reasoning
 CEUR Workshop Proc. 1827, 58-70: 2017

- Skeptical Reasoning is DP-complete
 - L is in the class DP
 iff there are languages $L_1 \in \text{NP}$ and $L_2 \in \text{coNP}$ such that $L = L_1 \cap L_2$
 - Deciding whether there exists an explanation is NP-complete
 - Deciding whether a formula follows from all explanations is coNP-complete
Bounded Skeptical Abduction Hypotheses

- Humans generate some, but usually not all possible explanations
- Humans reason skeptically with respect to them
Which Explanations are Generated?

► Are short explanations preferred?
 ▶ We have specified a connectionist system implementing the Weak Completion Semantics
 ▶ Our system generates singleton sets first

► Are minimal explanations preferred?
 ▶ The Weak Completion Semantics utilizes minimal explanations

► Are supersets of known explanations generated?
 ▶ It is unnecessary to investigate explanations containing $A \leftarrow \top$ and $A \leftarrow \bot$
 ▶ In the presented system, if E is an explanation, then so is each $E' \supseteq E$
 ▶ However, this does not hold anymore in extensions of the presented system

► Are more explanations generated if more time is available?

► Is the generation of explanations biased and, if so, how is it biased?

► Does attention play a role?