What is a Query?

The relational queries considered so far produced a result table from a database. We generalize slightly.

Definition 2.1:
- Syntax: a query expression q is a word from a query language (algebra expression, logical expression, etc.)
- Semantics: a query mapping $M[q]$ is a function that maps a database instance I to a database instance $M[q](I)$

\leadsto a “result table” is a result database instance with one table.

\leadsto for some semantics, query mappings are not defined on all database instances

Generic Queries

We only consider queries that do not depend on the concrete names given to constants in the database:

Definition 2.2: A query q is generic if, for every bijective renaming function $\mu : \text{dom} \rightarrow \text{dom}$ and database instance I:

$$\mu(M[q](I)) = M[\mu(q)](\mu(I)).$$

In this case, $M[q]$ is closed under isomorphisms.

Review: Example from Previous Lecture

Lines:

<table>
<thead>
<tr>
<th>Line</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>bus</td>
</tr>
<tr>
<td>3</td>
<td>tram</td>
</tr>
<tr>
<td>F1</td>
<td>ferry</td>
</tr>
</tbody>
</table>

Stops:

<table>
<thead>
<tr>
<th>SID</th>
<th>Stop</th>
<th>Accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Hauptbahnhof</td>
<td>true</td>
</tr>
<tr>
<td>42</td>
<td>Helmholtzstr.</td>
<td>true</td>
</tr>
<tr>
<td>57</td>
<td>Stadtgutstr.</td>
<td>true</td>
</tr>
<tr>
<td>123</td>
<td>Gustav-Freytag-Str.</td>
<td>false</td>
</tr>
</tbody>
</table>

Connect:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>42</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td>789</td>
<td>3</td>
</tr>
</tbody>
</table>

Every table has a schema:

- **Lines**[Line:string, Type:string]
- **Stops**[SID:int, Stop:string, Accessible:bool]
- **Connect**[From:int, To:int, Line:string]
First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations

\(\sim \) use first-order formulae as query language

\(\sim \) use unnamed perspective (more natural here)

Examples (using schema as in previous lecture):

- Find all bus lines: Lines(x, "bus")
- Find all possible types of lines: \(\exists y. \) Lines(y, x)
- Find all lines that depart from an accessible stop:
 \[\exists y. \text{Stop}(y, x) \land \text{Connect}(y, x, "true") \land \text{Connect}(y, x, y) \]

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

- flat conjunctions (\(\varphi_1 \land \varphi_2 \land \varphi_3 \) instead of \(\varphi_1 \land (\varphi_2 \land \varphi_3) \))
- flat disjunctions (similar)
- flat quantifiers (\(\exists x, y, z. \varphi \) instead of \(\exists x. \exists y. \exists z. \varphi \))

- \(\varphi \rightarrow \psi \) as shortcut for \(\neg \varphi \lor \psi \)
- \(\varphi \leftrightarrow \psi \) as shortcut for \((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \)
- \(\neg t_1 \equiv t_2 \) as shortcut for \(\neg (t_1 \equiv t_2) \)

But we always use parentheses to clarify nesting of \(\land \) and \(\lor \):

No "\(\varphi_1 \land \varphi_2 \lor \varphi_3 \)"!
First-order Logic Queries

Definition 2.3: An \(n \)-ary first-order query \(q \) is an expression \(\varphi[x_1, \ldots, x_n] \) where \(x_1, \ldots, x_n \) are exactly the free variables of \(\varphi \) (in a specific order).

Definition 2.4: An answer to \(q = \varphi[x_1, \ldots, x_n] \) over an interpretation \(I \) is a tuple \(\langle a_1, \ldots, a_n \rangle \) of constants such that

\[
I \models \varphi[x_1/a_1, \ldots, x_n/a_n]
\]

where \(\varphi[x_1/a_1, \ldots, x_n/a_n] \) is \(\varphi \) with each free \(x_i \) replaced by \(a_i \).

The result of \(q \) over \(I \) is the set of all answers of \(q \) over \(I \).

Boolean Queries

A Boolean query is a query of arity 0

\(~ \varphi \) we simply write \(\varphi \) instead of \(\varphi[] \)

\(\varphi \) is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

- \(I \models \varphi \), then the result of \(\varphi \) over \(I \) is \(\{ \langle \rangle \} \) (the unit table)
- \(I \not\models \varphi \), then the result of \(\varphi \) over \(I \) is \(\emptyset \) (the empty table)

Interpreted as Boolean check with result true or false (match or no match)

Domain Dependence

We have defined FO queries over interpretations

\(~ \) How exactly do we get from databases to interpretations?

- Constants are just interpreted as themselves: \(a^I = a \)
- Predicates are interpreted according to the table contents
- But what is the domain of the interpretation?

What should the following queries return?

1. \(\neg \text{Lines}(x, "bus")[x] \)
2. \((\text{Connect}(x_1, "42", "85") \lor \text{Connect}("57", x_2, "85"))[x_1, x_2] \)
3. \(\forall y. p(x, y)[x] \)

\(~ \) Answers depend on the interpretation domain, not just on the database contents

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

- fix the interpretation domain to \(\text{dom} \) (infinite)
- query answers might be infinite (not a valid result table)
- \(~ \) query result undefined for such databases

Markus Krötzsch, 10th Apr 2018 Database Theory
Active Domain: Examples

Query answers under active domain semantics:
(1) \(\neg \text{Lines}(x, "bus")[x] \)
 Undefined on all databases
(2) \((\text{Connect}(x_1, "42", "85") \lor \text{Connect}("57", x_2, "85")[x_1, x_2] \)
 Undefined on databases with matching \(x_1 \) or \(x_2 \) in Connect, otherwise empty
(3) \(\forall y. p(x, y)[x] \)
 Empty on all databases

Active Domain

Alternative: restrict to constants that are really used
\(\sim \) active domain
- for a database instance \(I \), \(\text{dom}(I) \) is the set of constants used in relations of \(I \)
- for a query \(q \), \(\text{dom}(q) \) is the set of constants in \(q \)
- \(\text{dom}(I, q) = \text{dom}(I) \cup \text{dom}(q) \)

Active domain semantics (AD):
consider database instance as interpretation over \(\text{dom}(I, q) \)

Domain Independence

Observation: some queries do not depend on the domain
- \(\text{Stops}(x, y, "true")[x, y] \)
- \((x \approx q)[x] \)
- \(p(x) \land \neg q(x)[x] \)
- \(\forall y.(q(x, y) \rightarrow p(x, y))[x] \) (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):
consider only domain independent queries
use any domain \(\text{dom}(I, q) \subseteq \Delta \subseteq \text{dom} \) for interpretation

Natural Domain: Examples

Query answers under natural domain semantics:
(1) \(\neg \text{Lines}(x, "bus")[x] \)
 Undefined on all databases
(3) \(\forall y. p(x, y)[x] \)
 Empty on all databases

Domain Independence

Observation: some queries do not depend on the domain
- \(\text{Stops}(x, y, "true")[x, y] \)
- \((x \approx q)[x] \)
- \(p(x) \land \neg q(x)[x] \)
- \(\forall y.(q(x, y) \rightarrow p(x, y))[x] \) (exercise: why?)

In contrast, all example queries on the previous few slides are not domain independent

Domain independent semantics (DI):
consider only domain independent queries
use any domain \(\text{dom}(I, q) \subseteq \Delta \subseteq \text{dom} \) for interpretation
How to Compare Query Languages

We have seen three ways of defining FO query semantics
~ how to compare them?

Definition 2.5: The set of query mappings that can be described in a query language \(L \) is denoted \(QM(L) \).

- \(L_1 \) is subsumed by \(L_2 \), written \(L_1 \sqsubseteq L_2 \), if \(QM(L_1) \subseteq QM(L_2) \)
- \(L_1 \) is equivalent to \(L_2 \), written \(L_1 \equiv L_2 \), if \(QM(L_1) = QM(L_2) \)

We will also compare query languages under named perspective with query languages under unnamed perspective.
This is possible since there is an easy one-to-one correspondence between query mappings of either kind (see exercise).

Equivalence of Relational Query Languages

Theorem 2.6: The following query languages are equivalent:
- Relational algebra \(RA \)
- FO queries under active domain semantics \(AD \)
- Domain independent FO queries \(DI \)

This holds under named and under unnamed perspective.

To prove it, we will show:

\[RA_{\text{named}} \sqsubseteq DI_{\text{unnamed}} \sqsubseteq AD_{\text{unnamed}} \sqsubseteq RA_{\text{named}} \]

RA_{\text{named}} \sqsubseteq DI_{\text{unnamed}} (cont’d)

Remaining cases:
- if \(q = \pi_{a_1, \ldots, a_n}(q') \) for a subquery \(q'[b_1, \ldots, b_m] \) with \(\{b_1, \ldots, b_m\} = \{a_1, \ldots, a_n\} \cup \{c_1, \ldots, c_k\} \), then \(\varphi_q = \exists x_1, \ldots, x_n \, \varphi' \)
- if \(q = q_1 \land q_2 \) then \(\varphi_q = \varphi_{q_1} \land \varphi_{q_2} \)
- if \(q = q_1 \lor q_2 \) then \(\varphi_q = \varphi_{q_1} \lor \varphi_{q_2} \)
- if \(q = q_1 - q_2 \) then \(\varphi_q = \varphi_{q_1} \land \neg \varphi_{q_2} \)

One can show that \(\varphi_q[a_1, \ldots, a_n] \) is domain independent and equivalent to \(q \)

~ exercise
DI unnamed ⊑ AD unnamed

This is easy to see:
- Consider an FO query q that is domain independent
- The semantics of q is the same for any domain $\text{dom} \subseteq I \subseteq \Delta I \subseteq \text{dom}$
- In particular, the semantics of q is the same under active domain semantics
- Hence, for every DI query, there is an equivalent AD query

AD unnamed ⊑ RA named

Consider an AD query $q = \varphi[x_1, \ldots, x_n]$.

For an arbitrary attribute name a, we can construct an RA expression E_{adom} such that

$$E_{\text{adom}}(I) = \{ [a \mapsto c] \mid c \in \text{adom}(I, q) \}$$

For every variable x, we use a distinct attribute name a_x.

- if $\varphi = R(t_1, \ldots, t_m)$ with signature $R[a_1, \ldots, a_m]$ with variables $x_1 = t_{i_1}, \ldots, x_n = t_{i_n}$ and constants $c_1 = t_{k_1}, \ldots, c_k = t_{k_2}$,
 then $E_{\varphi} = \delta_{a_1 \ldots a_n = a_{i_1} \ldots a_{i_n}}(\sigma_{a_{i_1} = c_1}(\ldots \sigma_{a_{i_k} = c_k}(R)\ldots))$
- if $\varphi = (x \approx c)$, then $E_{\varphi} = [\{a_x \mapsto c\}]$
- if $\varphi = (x \approx y)$, then $E_{\varphi} = \sigma_{a_x = a_y}(E_{\varphi_{a_x, \text{adom}}} \land E_{\varphi_{a_y, \text{adom}}})$
- other forms of equality atoms are similar

How to find DI queries?

Domain independent queries are arguably most intuitive, since their result does not depend on special assumptions.

$$\sim \text{How can we check if a query is in DI? } \text{Unfortunately, we can’t:}$$

Theorem 2.7: Given a FO query q, it is undecidable if $q \in \text{DI}$.

$$\sim \text{find decidable sufficient conditions for a query to be in DI}$$

A note on order: The translation yields an expression $E_{\varphi}[a_{i_1}, \ldots, a_{i_n}]$. For this to be equivalent to the query $\varphi[x_1, \ldots, x_n]$, we must choose the attribute names such that their global order is a_{i_1}, \ldots, a_{i_n}. This is clearly possible, since the names are arbitrary and we have infinitely many names available.
Definition 2.8: An FO query $q = \varphi[x_1, \ldots, x_n]$ is a safe-range query if

$$rr(SRNF(\varphi)) = \{x_1, \ldots, x_n\}.$$
Summary and Outlook

First-order logic gives rise to a relational query language

The problem of domain dependence can be solved in several ways

All common definitions lead to equivalent calculi

\[\leadsto \text{"relational calculus"}\]

Open questions:
- How hard is it to actually answer such queries? (next lecture)
- How can we study the expressiveness of query languages?
- Are there interesting query languages that are not equivalent to RA?