
Concrete Domains Meet Expressive Cardinality
Restrictions in Description Logics

Franz Baader1,2 , Stefan Borgwardt1 , Filippo De Bortoli1,2 �, and
Patrick Koopmann3

1 TU Dresden, Institute of Theoretical Computer Science
Dresden, Germany

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, Germany

3 Vrije Universiteit Amsterdam, Department of Computer Science
Amsterdam, The Netherlands

Abstract. Standard Description Logics (DLs) can encode quantitative
aspects of an application domain through either number restrictions,
which constrain the number of individuals that are in a certain rela-
tionship with an individual, or concrete domains, which can be used to
assign concrete values to individuals using so-called features. These two
mechanisms have been extended towards very expressive DLs, for which
reasoning nevertheless remains decidable. Number restrictions have been
generalized to more powerful comparisons of sets of role successors in
ALCSCC, while the comparison of feature values of different individuals
in ALC(D) has been studied in the context of ω-admissible concrete do-
mains D. In this paper, we combine both formalisms and investigate the
complexity of reasoning in the thus obtained DL ALCOSCC(D), which
additionally includes the ability to refer to specific individuals by name.
We show that, in spite of its high expressivity, the consistency problem for
this DL is ExpTime-complete, assuming that the constraint satisfaction
problem of D is also decidable in exponential time. It is thus not higher
than the complexity of the basic DL ALC. At the same time, we show
that many natural extensions to this DL, including a tighter integration
of the concrete domain and number restrictions, lead to undecidability.

Keywords: Description Logics · Automated Deduction · Concrete Do-
mains · Cardinality Constraints

1 Introduction

Description logics (DLs) [6,9] are a well-investigated family of logic-based knowl-
edge representation languages, which can be used to formalize the terminological
knowledge of an application domain in a machine-processable way. For instance,
the popular Web Ontology Language OWL4 is based on an expressive DL and

4 https://www.w3.org/TR/owl2-overview/

https://orcid.org/0000-0002-4049-221X
https://orcid.org/0000-0003-0924-8478
https://orcid.org/0000-0002-8623-6465
mailto:filippo.de_bortoli@tu-dresden.de
https://orcid.org/0000-0001-5999-2583

2 F. Baader et al.

large medical ontologies such as SNOMED CT5 and Galen6 have been developed
using appropriate DLs. A key feature of DLs is the ability to construct descrip-
tions of complex concepts (i.e., sets of individuals sharing certain properties)
using concept names (unary predicates) and role names (binary predicates). For
example, the concept of a parent can be described as Human ⊓ ∃child.Human.
Knowledge about the relationship between concepts can then be expressed us-
ing concept inclusions (CIs), such as Human⊓∃child.Human ⊑ ∃eligible.TaxBreak,
which says that parents are eligible for a tax break.

Such purely qualitative statements are not always sufficient to express quan-
titative information (e.g. the number of children required for a tax break) that is
relevant for an application domain. Qualified number restrictions that constrain
the number of role successors belonging to a certain concept by a fixed natural
number can be employed in DLs to express such quantitative information; e.g.,
Human⊓(≥ 3 child.Human) ⊑ ∃eligible.TaxBreak says that a tax break is available
if one has at least three children. Concrete domain restrictions can represent a
different type of quantitative information, where concrete objects such as num-
bers or strings can be assigned to individuals using partial functions (features).
For example, a tax break might only be available if the annual salary is not too
high. The CI Human ⊓ (≥ 3 child.Human) ⊓ ∃salary.<100,000 ⊑ ∃eligible.TaxBreak
specifies at least three children and an annual salary of less than 100,000 e as
eligibility criteria for a tax break.

Both (qualified) number restrictions [18,17] and concrete domain restric-
tions [8] have been introduced early on in DL research, but it turned out that they
create considerable algorithmic challenges. For ALCQ, the extension of the basic
DL ALC with qualified number restrictions, it was open for a decade whether the
increase in expressivity also increases the complexity of reasoning if numbers in
number restrictions are assumed to be represented in binary, until Tobies [31,30]
was able to show that it stays the same (PSpace without and ExpTime with
CIs). It also turned out that the unrestricted use of transitive roles within num-
ber restrictions can cause undecidability [20]. In [3], it was shown that reasoning
in ALCSCC, which extends ALCQ with very expressive counting constraints on
role successors expressed in the logic QFBAPA [22], still has the same complex-
ity as in ALC and ALCQ. In this logic, one can, e.g., describe humans that have
exactly as many cars as children as Human⊓ succ(|own∩Car| = |child∩Human|),
without having to specify the exact numbers of cars and children. Such state-
ments cannot even be expressed in full first-order logic [7].

The decidability result for ALC(D), i.e., ALC extended with an admissi-
ble concrete domain D, in [8] did not take CIs into account. In the presence
of CIs, integrating even rather simple concrete domains into the DL ALC may
cause undecidability [26,10]. In [27], it was proved that integrating a so-called
ω-admissible concrete domain into ALC leaves reasoning decidable also in the
presence of CIs. That paper gives two examples of such concrete domains (Allen’s
interval algebra [1] and RCC8 [29]). Using well-known notions and results from

5 https://www.snomed.org/
6 https://bioportal.bioontology.org/ontologies/GALEN

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 3

model theory, additional ω-admissible concrete domains were exhibited in [10,11],
for example the rational numbers with comparisons Q := (Q, <,=, >). Decid-
ability results for ALC(D) in the presence of CIs for concrete domains D that are
not ω-admissible can be found in [14,23,15]. A simpler, but considerably more
restrictive way of achieving decidability is to use unary concrete domains [19].

In this paper, we study ALCOSCC(D), a combination of the DLs ALCSCC
and ALC(D) with ω-admissible concrete domains D as well as nominals (O).
However, our logic goes beyond a pure combination of number restrictions and
concrete domains by additionally allowing them to interact. For a numerical
concrete domain, it seems natural to use the values of concrete features directly
in the QFBAPA constraints, e.g. to describe people that own more books than
their age. We show, however, that this unrestricted combination easily leads to
undecidability. Instead, we use concrete domain constraints to define roles, which
can then be employed within QFBAPA constraints. For example, the concrete
role (salary < next salary) connects an individual to all individuals that have a
higher salary. One can use this to describe all persons that have a lower salary
than at least half of their children with succ(|child ∩ (salary < next salary)| >
|child ∩ (salary ≥ next salary)|). However, we show that the unrestricted use of
such concrete roles also leads to undecidability. Hence, we additionally restrict
them to pairs of individuals that are already connected by a role name.

Our main result is that the complexity of reasoning in ALCOSCC(D) stays
in ExpTime if the complexity of reasoning in D is in ExpTime. There are few
results in the literature that determine the exact complexity of reasoning in DLs
with concrete domains [25,23,15,13]. Only [25] and [13] consider ω-admissible
concrete domains, and the ExpTime-completeness result in the former is re-
stricted to a specific temporal concrete domain. Our paper extends the results
of the latter from ALC(D) to ALCOSCC(D) and is generic since it holds for all ω-
admissible concrete domains with a decision problem in ExpTime. Finally, apart
from the aforementioned undecidability results, we show that adding transitive
roles also makes reasoning undecidable, even under strong syntactic restrictions.
All proof details can be found in [5].

2 Preliminaries

Concrete domains. We adopt the term concrete domain to refer to a relational
structure D = (D,PD

1 , PD
2 , . . .) over a non-empty, countable relational signa-

ture {P1, P2, . . . }, where D is a non-empty set, and each predicate Pi has an
associated arity ki ∈ N and is interpreted by a relation PD

i ⊆ Dki . An example
is the structure Q := (Q, <,=, >) over the rational numbers Q with standard
binary order and equality relations. Given a countably infinite set V of vari-
ables, a constraint system over V is a set C of constraints P (v1, . . . , vk), where
v1, . . . , vk ∈ V and P is a k-ary predicate of D. We denote by V (C) the set
of variables that occur in C. The constraint system C is satisfiable if there is a
mapping h : V (C) → D, called solution of C, such that P (v1, . . . , vk) ∈ C implies
(h(v1), . . . , h(vk)) ∈ PD. The constraint satisfaction problem for D, denoted

4 F. Baader et al.

CSP(D), asks if a given finite constraint system C over D is satisfiable. The
CSP of Q is decidable in polynomial time, by reduction to <-cycle detection: for
example, the clique x1 < x2, x2 < x3, x3 < x1 is unsatisfiable over Q.

To ensure that reasoning in DLs with concrete domain restrictions remains
decidable, we impose further properties on D regarding its predicates and the
compositionality of its CSP for finite and countable constraint systems. We say
that D is a patchwork if it satisfies the following conditions:7

JEPD if k ≥ 1 and D has k-ary predicates, then these predicates partition Dk;
JD there is a quantifier-free, equality-free first-order formula ϕ=(x, y) over the

signature of D that defines equality between two elements of D;
AP if B, C are constraint systems and P (v1, . . . , vk) ∈ B iff P (v1, . . . , vk) ∈ C

holds for all v1, . . . , vk ∈ V (B) ∩ V (C) and all k-ary predicates P over D,
then B and C are satisfiable iff B ∪ C is satisfiable.

If D is a patchwork, we call a constraint system C complete if, for all k ∈ N
for which D has k-ary predicates and all v1, . . . , vk ∈ V (C), there is exactly one
k-ary predicate P over D such that P (v1, . . . , vk) ∈ C. The concrete domain D
is homomorphism ω-compact if every countable constraint system C over D is
satisfiable whenever all its finite subsystems C′ ⊆ C are satisfiable. We introduce
ExpTime-ω-admissible concrete domains, which differ from ω-admissible ones
as defined in [27,11] by a stronger requirement on the decidability of CSP(D).

Definition 1. A concrete domain D is ExpTime-ω-admissible if it has a finite
signature, it is a patchwork, it is homomorphism ω-compact and its CSP is in
ExpTime.

The finiteness of the signature of D is necessary to ensure decidability. Without
this assumption, one can find instances of D that satisfy all the other conditions
of Definition 1 such that reasoning in ALC(D) is undecidable. One such example
is given by the concrete domain (Z, {+m | m ∈ Z}) where +m relates those
integers whose difference is equal to m [11]. The conditions of Definition 1 are
satisfied by Allen’s interval algebra, RCC8 and Q [27,11].

The logic QFBAPA. Set terms are built using the operations intersection ∩,
union ∪ and complement c from set variables and the constants ∅ and U . Set
terms s, t are then used in inclusion- and equality constraints s ⊆ t, s = t.
Presburger Arithmetic (PA) expressions ℓ, ℓ′ of the form n0 + n1t1 + · · ·+ nktk,
where ni ∈ N and each ti is the cardinality |si| of a set term si or an integer
variable, are used to form numerical constraints ℓ = ℓ′, ℓ < ℓ′ and n div ℓ (n
divides ℓ), where n ∈ N. A QFBAPA formula is a Boolean combination of set-
and numerical constraints.

A solution σ of a QFBAPA formula ϕ assigns a finite set σ(U) to U , subsets
of σ(U) to set variables and integers to integer variables such that ϕ is satisfied
by σ, which is defined in the standard way. ϕ is satisfiable if it has a solution.
7 Originally [27] used JEPD (jointly exhaustive, pairwise disjoint) and AP (amalgama-

tion property), while JD (jointly diagonal) was later added by [11].

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 5

The satisfiability problem for QFBAPA formulae is NP-complete. Member-
ship in NP is proved in [22], using the notion of Venn regions. If ϕ is a QFBAPA
formula containing the set variables X1, . . . , Xk, a Venn region for ϕ is a set term
of the form Xc1

1 ∩· · ·∩Xck
k where each ci is either empty or the set complement c.

For a Venn region v for ϕ and a set variable X in ϕ, we write X ∈ v to indicate
that X occurs without complement in v, and X /∈ v if Xc occurs in v. The
following characterization, proved in [22] and strengthened in [3], guarantees the
existence of solutions with a polynomial number of non-empty Venn regions for
satisfiable QFBAPA formulae, as follows.

Lemma 1 ([3]). For every QFBAPA formula ϕ, one can compute in polyno-
mial time a number Nϕ, whose value is polynomial in the size of ϕ, such that for
every solution σ of ϕ there exists a solution σ′ fulfilling the following conditions:

– there are at most Nϕ Venn regions v for ϕ for which σ′(v) ̸= ∅;
– if v is a Venn region for ϕ and σ′(v) ̸= ∅, then σ(v) ̸= ∅.

3 Syntax and Semantics of ALCOSCC(D)

We now introduce the classical description logic ALCO, its extension ALCOSCC,
and finally our new logic ALCOSCC(D).

Given at most countable, disjoint sets NC, NR and NI of concept-, role- and
individual names, ALCO concepts are built using negation ¬ and conjunction ⊓
from concept names A ∈ NC, nominals {a} with a ∈ NI and existential re-
strictions ∃r.C with r ∈ NR and C an ALCO concept [9]. As usual, we use
C ⊔ D := ¬(¬C ⊓ ¬D) (disjunction) and ⊤ := A ⊔ ¬A. An interpretation I
consists of a domain ∆I ̸= ∅ and a mapping ·I assigning sets AI ⊆ ∆I to
A ∈ NC, relations rI ⊆ ∆I × ∆I to r ∈ NR and individuals aI ∈ ∆I to
a ∈ NI. For d ∈ ∆I , we define rI(d) := {e ∈ ∆I | (d, e) ∈ rI}. We extend
·I to concepts by (¬C)I := ∆I \ CI , (C ⊓ D)I := CI ∩ DI , {a}I := {aI}
and (∃r.C)

I
:= {d ∈ ∆I | ∃e ∈ rI(d) ∩ CI}. In this DL, the concept of all

individuals that are human and have a child who is not Sam can be written as
Human ⊓ ∃child.¬{Sam}.

ALCOSCC extends ALCO concepts with role successor restrictions (or succ-
restrictions) succ(con), where con is a set- or numerical constraint with role
names and concepts as set variables and no integer variables, e.g. r ⊆ C [3]. This
DL requires interpretations I to be finitely branching, i.e. such that the set of all
role successors arsI(d) :=

⋃
r∈NR

rI(d) is finite, for all d ∈ ∆I . Then, each d ∈ ∆I

induces a QFBAPA assignment σd, where σd(U) := arsI(d), σd(r) := rI(d) for
r ∈ NR and σd(C) := CI ∩ arsI(d) for concepts C. The mapping ·I is extended
to succ-restrictions by defining d ∈ succ(con)I iff σd is a solution of con.

ALCOSCC does not need existential restrictions ∃r.C, as they can be ex-
pressed as succ(|r ∩C| ≥ 1). Moreover, succ-restrictions can compare quantities
of successors, e.g. succ(|own ∩ Car| = |child ∩Human|) describes people who own
as many cars as they have children, without specifying the exact amount.

6 F. Baader et al.

To integrate the concrete domain D, we complement NC, NR and NI with an
at most countable set NF of feature names that connect individuals with values
in D [8]. A feature path p is of the form f or rf with r ∈ NR and f ∈ NF. For
instance, salary is a feature name as well as a feature path, while child salary is
a feature path including the role name child. Concrete domain restrictions (or
CD-restrictions) are concepts ∃p1, . . . , pk.P , where pi are feature paths and P
is a k-ary predicate of D. An interpretation I assigns to each f ∈ NF a partial
function fI : ∆I ⇀ D. A feature path p is mapped to pI ⊆ ∆I ×D by defining
pI(d) := {fI(d)} if p = f8 and pI(d) := {fI(e) | e ∈ rI(d)} if p = rf . Then we
can define

(∃p1, . . . , pk.P)I :=
{
d ∈ ∆I | some tuple in pI1 (d)× · · · × pIk (d) is in PD}.

For example, one can describe individuals whose salaries are greater than that
of some of their children using ∃salary, child salary.>. Furthermore, due to JEPD,
we can encode universal CD-restrictions ∀p1, . . . , pk.P using the conjunction of
all concepts ¬∃p1, . . . , pk.P ′ where P ′ ̸= P is a k-ary predicate of D [27].

A naive extension of ALCOSCC with concrete domain reasoning that simply
combines succ- and CD-restrictions offers limited expressive power. To improve
that, we introduce feature pointers α of the form f or next f with f ∈ NF and
define feature roles γ := P (α1, . . . , αk), where each αi is a feature pointer and
P is a k-ary predicate of D. For example, salary is a pointer to the salary of a
given individual d, while next salary is a pointer to the salary of an individual e
that we want to compare to d; the feature role (salary < next salary) describes a
binary relation that contains (d, e) iff the salary of d is smaller than that of e.

We define ALCOSCC(D) as the extension of ALCOSCC with CD-restrictions
and succ-restrictions succ(con) where con can also contain feature roles as set
variables. We can now describe individuals that earn less than the majority of
their children by

Cex := succ(|child ∩ (salary < next salary)| > |child ∩ (salary < next salary)c|).

Feature roles γ := P (α1, . . . , αk) are mapped by interpretations I to relations
γI ⊆ ∆I ×∆I such that (d, e) ∈ γI iff (c1, . . . , ck) ∈ PD, where ci := fI

i (d) if
αi = fi and ci := fI

i (e) if αi = next fi. The QFBAPA assignment σd is extended
to map feature roles γ to γI ∩ arsI(d), and succ(con)I is defined as before.

An ALCOSCC(D) TBox T is a finite set of concept inclusions (CIs) C ⊑ D
between concepts C,D. For example, we can describe an individual Jane that
earns more than Sam, where the role refSam always points to Sam:

Tex :=
{
⊤ ⊑ succ(refSam = {Sam}), {Jane} ⊑ ∃salary, refSam salary.>

}
.

A finitely branching interpretation I is a model of T if CI ⊆ DI holds for every
CI C ⊑ D in T . A TBox T is consistent if it has a model.

8 In a slight abuse of notation, we view fI(d) both as a value and as a singleton set.

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 7

We mentioned above that feature roles make ALCOSCC(D) more expressive.
Precisely, we can show that some concepts with feature roles cannot be equiv-
alently expressed by only using feature names in CD-restrictions; two concepts
are equivalent if they are always interpreted by the same sets of individuals.

Theorem 1. There is no ALCOSCC(Q) concept without feature roles that is
equivalent to Cex.

Proof. Assume that there is an ALCOSCC(Q) concept D without feature roles
that is equivalent to Cex. Consider the interpretation I, where d has salary 0
and five child-successors, two whose salary is 0 and three whose salary is 1. Then,
d ∈ CI

ex = DI . Construct J from I by changing the salary of one of the succes-
sors from 1 to 0. Since every individual in J satisfies the same CD-restrictions,
concept names and succ-restrictions without feature roles as in I, we deduce that
d ∈ DJ . However, d has more successors with equal salary in J than successors
with greater salary, hence d /∈ CJ

ex = DJ must hold, which is a contradiction. ⊓⊔

4 Deciding Consistency

Let D be an ExpTime-ω-admissible concrete domain and T an ALCOSCC(D)
TBox. In this section, we assume w.l.o.g. that NC, NR, NI and NF are finite
and contain exactly the names occurring in T and that there is at least one
individual name; indeed, T is consistent iff T ∪{{a} ⊑ {a}} is consistent, where
a is a fresh individual name. We define the notion of individual types, describing
sets of equivalent individual names in an interpretation.

Definition 2. An individual type a w.r.t. NI is a non-empty subset of NI, and
a set of individual types I is an individual type system for NI if I partitions NI.
Given an interpretation I, an individual d ∈ ∆I has individual type aI(d) :=
{a ∈ NI | aI = d} if this set is non-empty, and d is anonymous otherwise.

We now fix an individual type system I. Let M be the set of all subconcepts
appearing in T , as well as their negations. We define the notion of type as usual.

Definition 3. A type w.r.t. T is a set t ⊆ M such that:

– if C ⊑ D ∈ T and C ∈ t, then D ∈ t;
– if ¬C ∈ M, then C ∈ t iff ¬C /∈ t;
– if C ⊓ C ′ ∈ M, then C ⊓ C ′ ∈ t iff C ∈ t and C ′ ∈ t.

The type of d ∈ ∆I w.r.t. T is the set tI(d) :=
{
C ∈ M | d ∈ CI}.

If I is a model of T , then tI(d) is indeed a type w.r.t. T . A type t is named with
an individual type at if for all a ∈ NI, a ∈ at iff {a} ∈ t, and is anonymous if it
is not named with any individual type.

Following the approach used in [3], we construct a QFBAPA formula ϕt that
is induced by the succ-restrictions succ(con) in a type t and enriched with con-
straints derived from the individual type system I and the set of role names NR.
Formally, ϕt is defined as the conjunction of

8 F. Baader et al.

– ϕcon if succ(con) ∈ t and ¬ϕcon otherwise, where ϕcon is derived from con by
replacing role names r, feature roles γ and concepts C with set variables Xr,
Xγ and XC , respectively;

– |
⋂

a∈a X{a}| ≤ 1 for every a ∈ I; and
– U =

⋃
r∈NR

Xr.

All formulae ϕt contain exactly the same set variables and thus have the same
Venn regions (cf. Section 2), called the Venn regions of T . A Venn region v of
T has individual type av = {a ∈ NI | X{a} ∈ v} if this set is non-empty, and
v is anonymous otherwise. The following example shows that ϕt does not yet
account for the numerical constraints induced by the CD-restrictions in t.

Example 1. Let T = {⊤ ⊑ (∃salary, child salary.<) ⊓ (succ(|child| ≤ 0)) }. For
every model I of T and d ∈ ∆I , the type t := tI(d) contains both conjuncts
appearing in this CI. The QFBAPA formula ϕt := |Xchild| ≤ 0 ∧ U = Xchild is
satisfied by any solution assigning the empty set to U . However, t cannot be
realized: the first conjunct implies that d has a child-successor e ̸= d such that
salaryI(d) < salaryI(e), while the last conjunct forces d to have no child-successor.

To realize the CD-restrictions in t, we may need up to MT := RT · PT distinct
role successors, where RT is the number of CD-restrictions in M and PT is the
maximal arity of predicates of D occurring in M. We add this information to the
QFBAPA formula ϕt with additional constraints over a set of pre-selected Venn
regions, representing sets of role successors whose existence is implied by the CD-
restrictions in t. Let S be a set of at most MT Venn regions v, each associated
to a natural number 0 ≤ nv ≤ MT . By Lemma 1, the QFBAPA formula ϕt,S ,
which extends ϕt with a conjunct |v| ≥ nv for each v ∈ S, is satisfiable iff there
is a natural number NT of polynomial size w.r.t. the size of ϕt and MT s.t. ϕt,S

has a solution in which at most NT Venn regions are non-empty. Moreover, since
all formulae ϕt are nearly of the same size (except for the difference between ϕcon

and ¬ϕcon) and |S| and the numbers nv are bounded by MT , we can assume
that the bound NT is independent of the choice of S and t, is polynomial w.r.t.
the size of T and can be computed in polynomial time.

To formalize these additional restrictions, we consider bags, i.e. functions V
assigning to every Venn region v of T a multiplicity V (v) ∈ N, whose support
supp(V) is the set of Venn regions of T with multiplicity V (v) ≥ 1. The associ-
ated QFBAPA formula ϕV is the conjunction of the constraint U =

⋃
supp(V)

and all constraints |v| ≥ c where v ∈ supp(V) and c = V (v).

Definition 4. A Venn bag for a type t w.r.t. T is a bag V of Venn regions of T
s.t. | supp(V)| ≤ NT , V (v) ≤ MT +1 holds for all v ∈ supp(V) and the QFBAPA
formula ϕt,V := ϕt ∧ ϕV is satisfiable.

By Lemma 1, ϕt,S is satisfiable iff there is a Venn bag V for t such that ϕt,V

includes all constraints from ϕt,S .
Finally, we take care of actually satisfying the CD-restrictions occurring in a

type by using complete constraint systems to describe all relevant feature values.
Feature values that are not represented in these systems correspond to undefined

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 9

values. To ensure that all types agree on the feature values of individual names,
we fix an individual constraint system CI w.r.t. I, i.e. a complete constraint
system over variables of the form fa, where f ∈ NF and a ∈ I, that refer to
the feature values of named individuals. Then, we define constraint systems
Ct,V representing the relations between the feature values associated with an
individual of type t and those of its role successors as specified by a Venn bag V
for t. The system Ct,V extends CI by adding variables of the form

– f⋆, representing the value of the feature f ∈ NF at the current individual;
– f (v,j) with v ∈ supp(V) and 1 ≤ j ≤ V (v) for the f -values at the successors,

in order to express the relevant CD-restrictions.

Again, not all these variables actually need to occur in the constraint system,
only the ones whose associated feature values should be defined. To handle named
types and named Venn regions, we define the indexing functions

ι(t) :=

{
⋆ if t is anonymous
at otherwise

and ι((v, j)) :=

{
(v, j) if v is anonymous
av otherwise

for all v ∈ supp(V) and 1 ≤ j ≤ V (v). Additionally, we do not allow more
variables of the form fa than those already contained in CI.

Definition 5. Let t be a type w.r.t. T and V a Venn bag for t. A local system
for t, V is a complete constraint system Ct,V that includes CI and no additional
variables of the form fa, a ∈ I, such that:

1. if C := ∃p1, . . . , pk.P ∈ M, then C ∈ t iff P (fx1
1 , . . . , fxk

k) ∈ Ct,V such that

xi =

{
ι(t) if pi = fi, or
ι((v, j)) if pi = rfi, for some 1 ≤ j ≤ V (v) and Xr ∈ v;

2. for all set variables XP (α1,...,αk), all v ∈ supp(V), and 1 ≤ j ≤ V (v) it holds
that XP (α1,...,αk) ∈ v iff P (fx1

1 , . . . , fxk

k) ∈ Ct,V , where

xi =

{
ι(t) if αi = fi, and
ι((v, j)) if αi = next fi.

In the following definition, we denote with Sv the subset of M that contains
C ∈ M if XC ∈ v and ¬C ∈ M if XC /∈ v (cf. Section 2).

Definition 6. An augmented type for T is a tuple t := (t, V,Ct), where t is a
type w.r.t. T , V is a Venn bag for t, and Ct is a satisfiable local system for t, V .
The root of t is root(t) := t.

An augmented type t′ = (t′, V ′,Ct′) patches t at (v, i), where v ∈ supp(V)
and 1 ≤ i ≤ V (v), if Sv ⊆ t′ and the merged system Ct ◁(v,i) Ct′ has a solution,

10 F. Baader et al.

Algorithm 1 Type elimination algorithm for ALCOSCC(D)

Input: An ALCOSCC(D) TBox T
Output: consistent if T is consistent, and inconsistent otherwise
1: guess an individual type system I and an individual constraint system CI
2: guess augmented types ta = (ta, Va,Ca) for a ∈ I s.t. ta is named with a
3: T← {t = (t, V,C) augmented type | t is anonymous} ∪ {ta | a ∈ I}
4: while there is t ∈ T that is not patched by T do T← T \ {t}
5: if ta ∈ T for all a ∈ I then return consistent
6: else return inconsistent

where Ct ◁(v,i) Ct′ is obtained as the union of Ct and the result of replacing all
variables in Ct′ as follows:

f⋆ 7→ f (v,i) if t′ is anonymous;
f (w,j) 7→ f (w,j)′ for all anonymous w ∈ supp(V ′) and 1 ≤ j ≤ V ′(w);
fa 7→ fa for all a ∈ I.

A set of augmented types T patches t if, for all v ∈ supp(V) and 1 ≤ i ≤ V (v),
there is a t′ ∈ T that patches t at (v, i).

The merging operation identifies all features associated to (v, i) in Ct with those
associated to t′ in Ct′ , while keeping the remaining variables associated to anony-
mous individuals separate. If t′ is not anonymous (and thus Ct′ contains no vari-
able of the form f⋆) then the condition Sv ⊆ t′ ensures that av = at′ , and thus
the variable f ι((v,i)) = fav = fat′ in Ct is already identical to f ι(t′) = fat′ in Ct′ .

The augmented types are now used by Algorithm 1 to decide consistency of an
ALCOSCC(D) TBox via a type elimination approach. We show that Algorithm 1
is indeed sound and complete.

Lemma 2. If there is a run of Algorithm 1 that returns consistent, then T
is consistent.

Proof. We construct a model I of T using the individual type system I and the
set T of augmented types constructed by Algorithm 1. The domain ∆I consists
of tuples (a, w), where a ∈ I and w is a word over the alphabet Σ of all tuples
(t, v, i) with t ∈ T, v a Venn region of T and i ≥ 1 a natural number. We associate
to each tuple (a, w) the augmented type end(a, w) ∈ T defined as end(a, ε) := ta
and end(a, w′ · (t, v, i)) := t for w′ ∈ Σ∗.

We define ∆I as the union of sets ∆m with m ∈ N, where ∆0 contains
(a, ε) for every a ∈ I and ∆m+1 is defined inductively in the following. Given
(a, w) ∈ ∆m with end(a, w) = t = (t, V,Ct,V) ∈ T we observe that

– the QFBAPA formula ϕt has a solution σa,w such that σa,w(|v|) ≥ V (v) if
v ∈ supp(V) and σa,w(|v|) = 0 otherwise for all Venn regions v of T ,

– for v ∈ supp(V) and i = 1, . . . , V (v) there exists an augmented type t(v,i) ∈ T
patching t at (v, i), as otherwise t would have been eliminated from T.

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 11

Using these augmented types, we define for r ∈ NR the set ∆m+1
r [a, w] containing

(a, w · (t(v,i), v, j)) iff Xr ∈ v, root(t(v,i)) is anonymous, j = 1, . . . , σa,w(|v|) and
i = max(j, V (v)). We now define ∆m+1 as the extension of ∆m by all sets
∆m+1

r [a, w] for which r ∈ NR and (a, w) ∈ ∆m.
The extensions of a ∈ NI, A ∈ NC and r ∈ NR are defined as:

aI := (a, ε), where a is the unique individual type in I containing a;

AI := {(a, w) ∈ ∆I | end(a, w) = t and A ∈ root(t)};
rI := {((a, w), (b, ε)) | end(a, w) = t and tb patches t at (v, i) with Xr ∈ v} ∪

{((a, w), (a, w′)) | (a, w) ∈ ∆m and (a, w′) ∈ ∆m+1
r [a, w] with m ∈ N}.

For f ∈ NF, fI is defined as follows. If (a, w) ∈ ∆I and end(a, w) = (t, V,Ct,V),
we extend Ct,V with all variables f (v,i) where i > V (v) and f ∈ NF such that
f (v,V (v)) occurs in Ct,V and (a, w · (t′, v, i)) occurs in ∆I . Then, we add all con-
straints P ((fx1

1)′, . . . , (fxk

k)′) obtained by replacing every occurrence of f (v,V (v))

in a constraint P (fx1
1 , ..., fxk

k) ∈ Ct,V with some variable f (v,i) among those oc-
curring in the extended system with i ≥ V (v). In this way, the feature values of
all role successors of (a, w) are handled correctly w.r.t. one another and w.r.t.
those of (a, w). Next, we replace all variables fa with fa,ε, all variables f⋆ with
fa,w and all variables f (v,i) with fa,u where u is the unique word of the form
w · (t′, v, i) for which (a, u) ∈ ∆I .

Let Ca,w be the resulting complete constraint system and Cm with m ∈ N
be the union of all Ca,w with (a, w) ∈ ∆m. We show in [5] (Lemma 6) that for
every m ∈ N, the constraint system Cm has a solution. Let CI be the union of
all systems Cm with m ∈ N. Every finite subsystem of CI is a subsystem of Cm

for some m ∈ N and is thus satisfiable. Thus, by homomorphism ω-compactness
of D, we can infer that CI has a solution hI . For every f ∈ NF and (a, w) ∈ ∆I ,
we now define fI((a, w)) := hI(fa,w) if fa,w occurs in CI and leave it undefined
otherwise.

We show in [5] (Lemma 7) that for all d = (a, w) ∈ ∆I and C ∈ M, we have
C ∈ root(end(d)) iff d ∈ CI . It is a direct consequence that I satisfies all CIs in
T and is thus a model of T . Hence, T is consistent. ⊓⊔

Lemma 3. If T is consistent, then there is a run of Algorithm 1 that returns
consistent.

Proof. Let I be a model of T and I be the individual type system that contains an
individual type a iff a = aI(d) for some d ∈ ∆I (cf. Definition 2). Then I is well-
defined, as every a ∈ NI is uniquely assigned to aI ∈ ∆I . For a ∈ I, we denote
by aI the unique d ∈ ∆I with a = aI(d). Further, let TI := {tI(d) | d ∈ ∆I} be
the set of all types that are realized in I.

For each individual type a ∈ I, we define ta := tI(a
I). Using I and TI ,

we build a constraint system CI and a set TI := {tI(d) | d ∈ ∆I} of aug-
mented types, containing unique types ta whose roots are named with a ∈ I. We
define the individual constraint system CI over all variables fa with f ∈ NF

12 F. Baader et al.

and a ∈ I for which fI(aI) is defined, such that P (fa1
1 , . . . , fak

k) ∈ CI iff(
fI
1 (a

I
1), . . . , f

I
k (a

I
k)
)
∈ PD. Clearly, CI is complete.

Next, we associate to each d ∈ ∆I an augmented type tI(d) := (tI(d), Vd,Cd).
If e is a role successor of d, let ve be the Venn region of T whose variables Xr,
XC , Xγ for role names r, concepts C and feature roles γ satisfy the following:

– Xr ∈ ve iff e is an r-successor of d;
– XC ∈ ve iff C ∈ tI(e);
– Xγ ∈ ve iff e ∈ γI(d).

For every non-negated CD-restriction ∃p1, . . . , pk.P ∈ tI(d), we can find values
ci ∈ pIi (d) for i = 1, . . . , k such that (c1, . . . , ck) ∈ PD. If pi = rifi, this implies
that there is ei ∈ rIi (d) such that fI

i (ei) = ci. We collect all these successors
of d, which are at most MT many distinct elements, in the set Scd. For e ∈ Scd,
let ne be the number of elements e′ ∈ Scd such that ve = ve′ . We show in [5]
(Lemma 8) that there is a Venn bag Vd for tI(d) w.r.t. T such that Vd(ve) = ne

for all e ∈ Scd, and for all other v ∈ supp(Vd) we have Vd(v) = 1 and there is a
role successor e ∈ ∆I \ Scd of d such that v = ve.

It remains to define the local system Cd. Consider the set Xd that contains
ι(tI(d)) (either ⋆ or atI(d)), all a ∈ I, and all pairs (v, j) with anonymous Venn
bags v ∈ supp(Vd) and 1 ≤ j ≤ Vd(v) (cf. Definition 5). Let λd be a bijection
mapping every such (v, j) to an anonymous successor e of d satisfying ve = v,
such that λd((ve, j)) ∈ Scd for all e ∈ Scd. Such a bijection exists due to Lemma
8 in [5]. We extend this bijection to I by setting λd(a) := aI . Furthermore, we
extend λd to ξd with ξd(ι(tI(d))) := d. Then, ξd is injective except for ⋆: if d
is its own role successor, it can happen that ξd(⋆) = d = ξd((v, j)). We define
the complete constraint system Cd over variables fx with f ∈ NF, x ∈ Xd, such
that P (fx1

1 , . . . , fxk

k) ∈ Cd iff
(
fI
1 (ξd(x1)), . . . , f

I
k (ξd(xk))

)
∈ PD holds for all

x1, . . . , xk ∈ Xd. If fI(ξd(x)) is undefined, then fx does not occur in Cd.
We show in [5] (Lemma 9) that Cd is a satisfiable local system for tI(d)

and Vd. Thus, tI(d) =
(
tI(d), Vd,Cd

)
is an augmented type. Furthermore, we

can show (cf. Lemma 10 in [5]) that every augmented type in TI is patched in
TI . If Algorithm 1 guesses I, CI, and ta, where a ∈ I, then the initial set T must
contain TI , and no augmented type from TI can ever be removed from T. This
shows that the augmented types {ta | a ∈ NI} ⊆ TI remain in T throughout
the execution of the algorithm. Since the algorithm terminates, it thus returns
consistent. ⊓⊔

Because Algorithm 1 runs in exponential time, we obtain a matching upper
bound to the ExpTime-hardness inherited from ALC. Indeed, as there are at
most exponentially many individual type systems and polynomially many indi-
vidual types in such a type system, all guesses can be implemented by enumerat-
ing all choices in exponential time. The main elimination procedure also runs in
exponential time as the number of augmented types is exponentially bounded,
and all required tests can be performed in exponential time, provided that D is
ExpTime-ω-admissible. We thus obtain the following result.

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 13

Theorem 2. Let D be an ExpTime-ω-admissible concrete domain. Then, con-
sistency checking in ALCOSCC(D) is ExpTime-complete.

5 Reasoning with ABoxes

In DLs, a TBox is often complemented by an ABox containing concept assertions
C(a) and role assertions r(a, b), where a, b ∈ NI, r ∈ NR, and C is a concept, with
the obvious semantics. In our DL, those assertions can be expressed in the TBox
using nominals [9]. In the presence of a concrete domain, however, we may want
to use additional kinds of assertions: predicate assertions P (f1(a1), . . . , fk(ak))
with fi ∈ NF, ai ∈ NI, i = 1, . . . , k, and a k-ary predicate P of D, and feature
assertions f(a, c) with f ∈ NF, a ∈ NI, and a constant c ∈ D. The former requires
every model I to satisfy (fI

1 (a
I
1), . . . , f

I
k (a

I
k)) ∈ PD, and the latter states that

fI(aI) = c.
Using predicate assertions, we can rewrite the TBox Tex in Section 3 into a

single, intuitive assertion salary(Sam) < salary(Jane). This also demonstrates how
predicate assertions can be simulated by CIs: instead of P (f1(a1), . . . , fk(ak)), we
can use ⊤ ⊑ succ(refai

= {ai}) for i = 1, . . . , k and ⊤ ⊑ ∃refa1
f1, . . . , refak

fk.P .
On the other hand, with feature assertions, we can give specific values and

state, for instance, that Sam’s salary is 100,001 e with salary(Sam, 100,001). Fea-
ture assertions seemingly increase the expressivity, since we can use them to refer
to constant values. However, we first have to specify how these constants are ac-
tually encoded. For the following results, we consider concrete domains D with
constants, which extend concrete domains with an encoding for arbitrary con-
stants c ∈ D and constraint systems that can use such constants in addition to
variables. For ExpTime-ω-admissible concrete domains with constants, we also
require the extended CSP(D) to be decidable in exponential time. In particu-
lar, the main known examples of ExpTime-ω-admissible concrete domains (Q,
Allen’s relations, and RCC8) satisfy this requirement under the reasonable as-
sumptions that all numbers are given as integer fractions in binary encoding and
the constants in RCC8 refer to polygonal regions in the rational plane [21,24].
We can now use this encoding to represent the constants in feature assertions
f(a, c).

Unfortunately, we cannot directly use constants in constraints to extend Al-
gorithm 1 to support feature assertions, since this would result in infinitely many
possible local constraint systems. Another idea to deal with feature assertions is
that, if D has singleton predicates =c with (=c)

D = {c}, then one can express
f(a, c) by {a} ⊑ ∃f.=c. Since an ω-admissible concrete domain D has a finite
signature, however, this only works for a fixed, finite set of values c ∈ D. Due
to the JD and JEPD conditions, it turns out that feature assertions are actually
equivalent to additional singleton predicates =c that are not part of D, but can
be used in concepts with the same semantics as defined above.9

9 The results in this section also hold for ALC(D), since they can be shown without
succ-restrictions, nominals, or restricting to finitely-branching interpretations [13].

14 F. Baader et al.

Lemma 4. For ALCOSCC(D) with an ω-admissible concrete domain D with
constants, the following problems are reducible to each other: (a) consistency
with additional singleton predicates, and (b) consistency with feature assertions.
The reductions take exponential time, but produce ontologies of polynomial size.

Additionally, feature assertions can be expressed by predicate assertions if D
is homogeneous, i.e. such that every isomorphism between finite substructures
of D can be extended to an isomorphism from D to itself [11]. All known ω-
admissible concrete domains are homogeneous [11].

Lemma 5. For ALCOSCC(D) with an ω-admissible and homogeneous concrete
domain D with constants, consistency with feature assertions can be reduced to
consistency without feature assertions in exponential time. The resulting ontology
is of polynomial size.

Together, Lemmas 4 to 5 show that, under these conditions, we can freely use
constant values (either in feature assertions or additional singleton predicates)
in ALCOSCC(D), without increasing the complexity of reasoning. The following
result then follows together with Theorem 2.

Theorem 3. If D is an ExpTime-ω-admissible and homogeneous concrete do-
main with constants, then consistency in ALCOSCC(D) with feature assertions
and additional singleton predicates is ExpTime-complete.

6 Undecidable Extensions

To conclude our investigations, we show that several extensions of ALCOSCC(D),
inspired by existing DLs or obtained by seemingly harmless tweaks to the syntax
and semantics, are undecidable. Hereafter, we assume that the domain set of D
is infinite and that D is JD (cf. Section 2). In this case, we allow w.l.o.g. the
usage of set terms (f = next g) expressing equality of the values assigned to f
and next g (we detail the construction of this term in [5]).

Comparing set cardinalities and feature values. If D is a numerical concrete
domain where D is either N, Z or Q, it is natural to consider comparisons
between feature values of an individual d and the cardinalities of sets of role
successors of d. For example, we could describe individuals whose age is twice
the number of their children using the concept succ(age = 2 · |child|). This could
be achieved by allowing succ-restrictions to contain mixed numerical constraints
f = ℓ, where ℓ is a PA expression (cf. Section 2) that is allowed in ALCOSCC(D)
and f ∈ NF; then, we extend ·I by defining d ∈ succ(f = ℓ)I iff fI(d) = σd(ℓ).
Unfortunately, for the CDs considered here, this leads to undecidability, which
can be shown by a reduction to ALC(D) with the concrete domain D = (N,+1)
where +1 is the successor relation, which is known to be undecidable [11].

Theorem 4. If D is a numerical concrete domain that is JD, then consistency
of ALCOSCC(D) TBoxes with mixed numerical constraints is undecidable.

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 15

Proof. We force r ∈ NR to be functional with the CI ⊤ ⊑ succ(|r| ≤ 1). We
encode the CD-restriction C := ∃p0, p1.+1 using C0 ⊓ C1, where

Ci :=

{
succ(fi = |S|+ i) if pi = fi

succ(f ′
i = |S|+ i) ⊓ succ(|ri ∩ (f ′

i = next fi)| ≥ 1) if pi = rifi.

for i = 0, 1, with fresh names S ∈ NC, f ′
i ∈ NF. ⊓⊔

Local and global cardinality constraints. It is possible to extend ALCSCC by re-
placing succ-restrictions, ranging over sets of role successors, with sat-restrictions
sat(con) ranging over the whole domain of an interpretation. For the resulting
DL, called ALCSCC++, the consistency problem is NExpTime-complete [4]. In
this DL, we can state that an individual likes all existing cars using the concept
sat(likes∩Car = Car); in contrast, succ(likes∩Car = Car) describes an individual
that likes all cars to which it is related by some role.

If we consider the DL ALCSCC++(D) obtained by adding sat-restrictions in
the presence of concrete domains, then these restrictions may additionally con-
tain feature roles. For example, the concept sat(⊤ = (age ≥ next age)) describes
the overall oldest individuals, by saying that their age is greater or equal to
those of all individuals, while succ(⊤ = (age ≥ next age)) describes individuals
that are not younger than any individuals related to them by some role name.

Formally, both ALCSCC++ and ALCSCC++(D) are evaluated over finite in-
terpretations. In [4], this has been used to show that the consistency problem for
the extension of ALCSCC++ with inverse roles is undecidable. Similarly, we can
use sat-restrictions with feature roles to simulate multiplication of cardinalities
of finite sets, and thus reduce Hilbert’s tenth problem [28] to the consistency of
a ALCSCC++(D) TBox, provided that D is JD. Writing C ≡ D as a shorthand
for C ⊑ D and D ⊑ C, we can encode the equation e = (x = y · z) over integers
as a product of cardinalities |AI

x | = |AI
y | · |AI

z |, in three steps. First, we enforce
rIe = AI

y × AI
z to hold with Ay ≡ sat(|re| ≥ 1) and Ay ≡ sat(re = Az); then, we

enforce |sIe | = |AI
x | by adding ⊤ ⊑ sat(se = (fe = next ge)) and the CIs

⊤ ⊑ sat(|(ge = next fe)| ≤ 1) and Ax ⊑ sat(|(ge = next fe)| ≥ 1).

Finally, we add ⊤ ⊑ sat(|re| = |se|), so that, for every finite model I of all these
CIs, |AI

x | = |sIe | = |rIe | = |AI
y ×AI

z | = |AI
y | · |AI

z | holds.

Theorem 5. If the concrete domain D is infinite and JD, then the consistency
problem for ALCSCC++(D) TBoxes is undecidable.

Transitive roles. Often, we may want a role name to be interpreted as a tran-
sitive relation: for instance, trans(ancestor) in the TBox expresses the fact that
the ancestor of an ancestor is also an ancestor. The interaction between number
restrictions and transitivity axioms in the presence of role inclusions is known
to lead to undecidability [20]. It is possible to regain decidability by disallow-
ing transitive roles within number restrictions, even in the presence of inverse
roles [20]. Another restriction that leads to decidability is to replace number

16 F. Baader et al.

restrictions with role functionality axioms; in this case, decidability holds even
if one additionally allows nominals and inverse roles [16].

In the DL SSCC that extends ALCSCC with transitivity axioms, consistency
is undecidable even under all syntactic constraints mentioned above. In par-
ticular, we require that numerical constraints contain no transitive roles and
no constants other than 0 or 1. By adapting the reduction [20] from the tiling
problem, which is known to be undecidable [12], we obtain the following.

Theorem 6. Consistency in SSCC is undecidable, even if numerical constraints
contain no transitive roles and no constants other than 0 or 1.

7 Conclusion

We have presented the very expressive DL ALCOSCC(D) that supports concrete
domain restrictions and role successor restrictions involving feature values. We
have shown that consistency in this logic is ExpTime-complete, the same as
for the basic DL ALC. Moreover, we have discussed the consequences of adding
assertions, transitive roles, unrestricted semantics, or mixed constraints, most
of which make the logic undecidable. While feature roles can already express
a restricted form of inverse roles, in the future, we would like to investigate
the decidability and complexity of ALCOISCC(D) with full inverse roles, for
which it is known that they increase the complexity of classical DLs with nom-
inals and number restrictions to NExpTime [30]. Another avenue of research
is to implement a reasoner for ALCOSCC(D), based on a suitable tableaux al-
gorithm [27] that needs to integrate a QFBAPA solver and a concrete domain
reasoner. Currently, reasoners for DLs with non-trivial concrete domains only
exist for ALC(D) and EL(D) with so-called p-admissible concrete domains and
without feature paths [2].

Acknowledgments. This work was partially supported by DFG grant 389792660
as part of TRR 248 – CPEC, by the German Federal Ministry of Education and
Research (BMBF, SCADS22B) and the Saxon State Ministry for Science, Culture and
Tourism (SMWK) by funding the competence center for Big Data and AI “ScaDS.AI
Dresden/Leipzig”.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Commun. ACM
26(11), 832–843 (1983). https://doi.org/10.1145/182.358434

2. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Com-
bining Proofs for Description Logic and Concrete Domain Reasoning. In: Fensel,
A., Ozaki, A., Roman, D., Soylu, A. (eds.) Rules and Reasoning - 7th Interna-
tional Joint Conference, RuleML+RR 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 14244, pp. 54–69. Springer (2023). https://doi.org/10.1007/
978-3-031-45072-3_4

https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 17

3. Baader, F.: A New Description Logic with Set Constraints and Cardinality Con-
straints on Role Successors. In: Dixon, C., Finger, M. (eds.) Proc. of the 11th
Int. Symposium on Frontiers of Combining Systems (FroCoS’17). Lecture Notes in
Computer Science, vol. 10483, pp. 43–59. Springer-Verlag, Brasília, Brazil (2017).
https://doi.org/10.1007/978-3-319-66167-4_3

4. Baader, F., Bednarczyk, B., Rudolph, S.: Satisfiability and Query Answering in
Description Logics with Global and Local Cardinality Constraints. In: ECAI 2020.
pp. 616–623. IOS Press (2020). https://doi.org/10.3233/FAIA200146

5. Baader, F., Borgwardt, S., De Bortoli, F., Koopmann, P.: Concrete Domains
Meet Expressive Cardinality Restrictions in Description Logics (Extended Version)
(2025). https://doi.org/10.48550/arXiv.2505.21103

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press (2003). https://doi.org/10.1017/
CBO9780511711787

7. Baader, F., De Bortoli, F.: On the Expressive Power of Description Logics with
Cardinality Constraints on Finite and Infinite Sets. In: Herzig, A., Popescu, A.
(eds.) Frontiers of Combining Systems – 12th International Symposium, FroCoS
2019, Proceedings. Lecture Notes in Computer Science, vol. 11715, pp. 203–219.
Springer (2019). https://doi.org/10.1007/978-3-030-29007-8_12

8. Baader, F., Hanschke, P.: A Scheme for Integrating Concrete Domains into Concept
Languages. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 1991. pp. 452–457. Morgan
Kaufmann (1991), http://ijcai.org/Proceedings/91-1/Papers/070.pdf

9. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017). https://doi.org/10.1017/9781139025355

10. Baader, F., Rydval, J.: Description Logics with Concrete Domains and General
Concept Inclusions Revisited. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Au-
tomated Reasoning – 10th International Joint Conference, IJCAR 2020, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 12166, pp. 413–431. Springer
(2020). https://doi.org/10.1007/978-3-030-51074-9_24

11. Baader, F., Rydval, J.: Using Model Theory to Find Decidable and Tractable De-
scription Logics with Concrete Domains. Journal of Automated Reasoning 66(3),
357–407 (Aug 2022). https://doi.org/10.1007/s10817-022-09626-2

12. Berger, R.: The undecidability of the domino problem. Memoirs of the
American Mathematical Society 66, 72 (1966), https://mathscinet.ams.org/
mathscinet-getitem?mr=216954

13. Borgwardt, S., De Bortoli, F., Koopmann, P.: The Precise Complexity of Reasoning
in ALC with ω-Admissible Concrete Domains. In: Giordano, L., Jung, J.C., Ozaki,
A. (eds.) Proceedings of the 37th International Workshop on Description Logics
(DL 2024). CEUR Workshop Proceedings, vol. 3739. CEUR-WS.org (2024), https:
//ceur-ws.org/Vol-3739/paper-1.pdf

14. Carapelle, C., Turhan, A.: Description Logics Reasoning w.r.t. General TBoxes Is
Decidable for Concrete Domains with the EHD-Property. In: Kaminka, G.A., Fox,
M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., van Harmelen, F. (eds.)
ECAI 2016 – 22nd European Conference on Artificial Intelligence. Frontiers in
Artificial Intelligence and Applications, vol. 285, pp. 1440–1448. IOS Press (2016).
https://doi.org/10.3233/978-1-61499-672-9-1440

15. Demri, S., Quaas, K.: First Steps Towards Taming Description Logics with Strings.
In: Gaggl, S.A., Martinez, M.V., Ortiz, M. (eds.) Logics in Artificial Intelligence

https://doi.org/10.1007/978-3-319-66167-4_3
https://doi.org/10.1007/978-3-319-66167-4_3
https://doi.org/10.3233/FAIA200146
https://doi.org/10.3233/FAIA200146
https://doi.org/10.48550/arXiv.2505.21103
https://doi.org/10.48550/arXiv.2505.21103
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1007/978-3-030-29007-8_12
https://doi.org/10.1007/978-3-030-29007-8_12
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-030-51074-9_24
https://doi.org/10.1007/978-3-030-51074-9_24
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://mathscinet.ams.org/mathscinet-getitem?mr=216954
https://mathscinet.ams.org/mathscinet-getitem?mr=216954
https://ceur-ws.org/Vol-3739/paper-1.pdf
https://ceur-ws.org/Vol-3739/paper-1.pdf
https://doi.org/10.3233/978-1-61499-672-9-1440
https://doi.org/10.3233/978-1-61499-672-9-1440

18 F. Baader et al.

– 18th European Conference, JELIA 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 14281, pp. 322–337. Springer (2023). https://doi.org/10.1007/
978-3-031-43619-2_23

16. Gutiérrez-Basulto, V., Ibáñez-García, Y.A., Jung, J.C.: Number Restrictions on
Transitive Roles in Description Logics with Nominals. In: Singh, S., Markovitch, S.
(eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
pp. 1121–1127. AAAI Press (2017). https://doi.org/10.1609/AAAI.V31I1.10678

17. Hollunder, B., Baader, F.: Qualifying Number Restrictions in Concept Languages.
In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91).
pp. 335–346. Morgan Kaufmann (1991)

18. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption Algorithms for Con-
cept Description Languages. In: 9th European Conference on Artificial Intelligence,
ECAI 1990. pp. 348–353 (1990)

19. Horrocks, I., Sattler, U.: Ontology Reasoning in the SHOQ(D) Description Logic.
In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, IJCAI 2001. pp. 199–204. Morgan Kaufmann (2001)

20. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive De-
scription Logics. Log. J. IGPL 8(3), 239–263 (2000). https://doi.org/10.1093/
JIGPAL/8.3.239

21. Jonsson, P.: Constants and Finite Unary Relations in Qualitative Constraint Rea-
soning. Artificial Intelligence 257, 1–23 (Apr 2018). https://doi.org/10.1016/j.
artint.2017.12.003

22. Kuncak, V., Rinard, M.: Towards Efficient Satisfiability Checking for Boolean
Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) Automated Deduc-
tion – CADE-21. Lecture Notes in Computer Science, vol. 4603, pp. 215–230.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73595-3_15

23. Labai, N., Ortiz, M., Simkus, M.: An ExpTime Upper Bound for ALC with Inte-
gers. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th
International Conference on Principles of Knowledge Representation and Reason-
ing, KR 2020. pp. 614–623 (2020). https://doi.org/10.24963/KR.2020/61

24. Li, S., Liu, W., Wang, S.: Qualitative Constraint Satisfaction Problems: An Ex-
tended Framework with Landmarks. Artificial Intelligence 201, 32–58 (Aug 2013).
https://doi.org/10.1016/j.artint.2013.05.006

25. Lutz, C.: The complexity of description logics with concrete domains. Ph.D. thesis,
RWTH Aachen University, Germany (2002), http://sylvester.bth.rwth-aachen.de/
dissertationen/2002/042/index.htm

26. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM
Transactions on Computational Logic (TOCL) 5(4), 669–705 (2004). https://doi.
org/10.1145/1024922.1024925

27. Lutz, C., Miličić, M.: A Tableau Algorithm for Description Logics with Concrete
Domains and General TBoxes. Journal of Automated Reasoning 38(1), 227–259
(Apr 2007). https://doi.org/10.1007/s10817-006-9049-7

28. Matiyasevich, Y.V.: Hilbert’s tenth problem. With a foreword by Martin Davis.
Cambridge, MA: MIT Press (1993)

29. Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic based on Regions and Con-
nection. In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reason-
ing (KR’92). pp. 165–176. Morgan Kaufmann (1992)

https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1007/978-3-031-43619-2_23
https://doi.org/10.1609/AAAI.V31I1.10678
https://doi.org/10.1609/AAAI.V31I1.10678
https://doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.1016/j.artint.2017.12.003
https://doi.org/10.1016/j.artint.2017.12.003
https://doi.org/10.1016/j.artint.2017.12.003
https://doi.org/10.1016/j.artint.2017.12.003
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.24963/KR.2020/61
https://doi.org/10.24963/KR.2020/61
https://doi.org/10.1016/j.artint.2013.05.006
https://doi.org/10.1016/j.artint.2013.05.006
http://sylvester.bth.rwth-aachen.de/dissertationen/2002/042/index.htm
http://sylvester.bth.rwth-aachen.de/dissertationen/2002/042/index.htm
https://doi.org/10.1145/1024922.1024925
https://doi.org/10.1145/1024922.1024925
https://doi.org/10.1145/1024922.1024925
https://doi.org/10.1145/1024922.1024925
https://doi.org/10.1007/s10817-006-9049-7
https://doi.org/10.1007/s10817-006-9049-7

Concrete Domains Meet Expressive Cardinality Restrictions in DLs 19

30. Tobies, S.: The Complexity of Reasoning with Cardinality Restrictions and Nom-
inals in Expressive Description Logics. J. Artif. Intell. Res. 12, 199–217 (2000).
https://doi.org/10.1613/JAIR.705

31. Tobies, S.: PSPACE Reasoning for Graded Modal Logics. J. Log. Comput. 11(1),
85–106 (2001). https://doi.org/10.1093/LOGCOM/11.1.85

https://doi.org/10.1613/JAIR.705
https://doi.org/10.1613/JAIR.705
https://doi.org/10.1093/LOGCOM/11.1.85
https://doi.org/10.1093/LOGCOM/11.1.85

	Concrete Domains Meet Expressive Cardinality Restrictions in Description Logics

