PRACTICAL USES OF EXISTENTIAL RULES IN KNOWLEDGE REPRESENTATION

Part 4: Practical Applications of Rules

David Carral,¹ Markus Krötzsch,¹ and Jacopo Urbani²
1. TU Dresden
2. Vrije Universiteit Amsterdam

ECAI, September 4, 2020
Outline

Goal
Show some example where either rules or related ideas were crucial to achieve the state of the art

- PLP
- Data integration
- Stream reasoning

Take-home message

1. Rules can be used also in scenarios where not everything is definite
2. A declarative approach is (often) intuitive and decreases the development time
3. Developing robust tools is fundamental
1st Scenario: Probabilistic Logic Programming
How can we perform logic-based reasoning in an uncertain domain?

Probabilistic Logic Programming (PLP): Formalisms to combine logic and probability for reasoning in uncertain domains.

Basic idea: Reason over facts which may be true with a certain probability

State of the art
Several PLP formalisms exist. **ProbLog** (Raedt, Kimmig, and Toivonen 2007) is one of the most popular ones.
Definition

A ProbLog program P is a triple (R, F, π) where R is set of (function-free) rules, F is a set of facts and $\pi : F \rightarrow [0, 1]$ is the function that labels facts with probabilities.

Key problem

Given P and query q as input, what is $Pr(q)$ (the probability of q)?

General Approach

It has been shown that computing $Pr(q)$ can be expressed using Weighted Model Counting (WMC) over weighted logical formulas (Vlasselaer et al. 2016)
The Grounding Problem

ProbLog2, a state-of-the-art engine, proceeds as follows:

1. Find relevant **ground** program for q with backward chaining

2. Execute a custom implementation of fixpoint operator T_P:
 - T_P proceeds bottom-up, akin to chase procedures
 - T_P incrementally computes, for each inferred fact f, a propositional formula λ_f which “remembers” all the possible ways f can be inferred

3. After T_P has finished, it computes WMC for λ_q

Problem

Grounding can be a major performance bottleneck with large knowledge bases
Some ideas developed for Datalog are useful here (Tsamoura, Gutiérrez-Basulto, and Kimmig 2020)

First idea
Don’t ground \mathcal{P} with backward chaining. Rewrite it with **magic sets** (Bancilhon et al. 1985)

Second idea
Apply **semi-naïve evaluation** (Abiteboul, Hull, and Vianu 1995) while computing $T_\mathcal{P}$ to reduce the number of duplicates
Consider database I and program P. Our goal is to answer query Q.

Idea

The main idea is to rewrite P into P' where additional *magic* relations restrict the derivations to facts relevant for answering Q.
Consider database I and program P. Our goal is to answer query Q.

Example 1

Consider the rules below and assume we want to answer $Q = \text{lives}(linda, X)$

\[
\begin{align*}
m\text{arried}(X, Y), \text{lives}(X, Z) \rightarrow \text{lives}(Y, Z) & \quad (r_1) \\
m\text{arried}(X, Y) \rightarrow \text{marriage}(Y, X) & \quad (r_2)
\end{align*}
\]

The rewriting procedure produces the program

\[
\begin{align*}
m\text{gc}_1(Y), \text{marriage}(X, Y), \text{lives}(X, Z) \rightarrow \text{lives}(Y, Z) & \quad (r_3) \\
m\text{gc}_1(X) \rightarrow m\text{gc}_2(X) & \quad (r_4) \\
m\text{gc}_2(Y), \text{marriage}(X, Y) \rightarrow \text{marriage}(Y, X) & \quad (r_5)
\end{align*}
\]

Then, we can reason on $I \cup \{m\text{gc}_1(linda)\}$.
Semi naïve evaluation is a well-known technique to avoid the recomputation of duplicate derivation during the materialization.

Naïve Evaluation

Input: Facts I, program P

```plaintext
while true do
  $J := I$;
  for $r \in P$ do
    Let $r$ be $B \rightarrow H$;
    $J := J \cup \{H\sigma \mid B\sigma \subseteq I\}$;
  if $J = I$ then return $J$;
```

Semi Naïve Evaluation

Input: Facts I, program P

```plaintext
$\Delta := I$;
while true do
  $J := I$;
  for $r \in P$ do
    Let $r$ be $B \rightarrow H$;
    $J := J \cup \{H\sigma \mid B\sigma \subseteq I \land B\sigma \cap \Delta \neq \emptyset\}$;
  if $J = I$ then return $J$;
  $\Delta := J \setminus I$;
```
New approach

Tsamoura et al. (2020) proposed a new procedure:

1. Find relevant ground program for q with backward chaining. Use Magic Set to obtain a non-ground program

2. Execute a custom implementation of fixpoint operator T_{φ}. Offload the computation to a chase engine (VLog):
 - Leverage semi-naive evaluation
 - Introduce some rules to compute formulas (called λ-transformation)

3. After T_{φ} has finished, compute WMC for λ_q

Impact

The new procedure removes the need for grounding, which was a performance bottleneck
Performance improvement

Some key results from (Tsamoura, Gutiérrez-Basulto, and Kimmig 2020)

- The runtime of query answering was two order of magnitude and 25% faster than ProbLog2 in the best and worst cases, respectively
- VLog enabled the computation on much larger DBs than what was possible before

Lesson learned

Well-known ideas developed for rule-based query answering can be re-used as-is for other problems as well
2nd Scenario: Entity Resolution
Problem

Scientific advancement requires an extensive analysis of prior knowledge in the literature, but this is **time consuming**

AI can help!

Long-term vision: Develop an accurate and large-scale KB of scientific knowledge
In Figure 4, the latency of miDNN is small and grows linearly with respect to rerank size. But the latency of miRNN and miRNN+attention grows polynomially. When rerank size is 50, the latency of miRNN+attention increases 400% over the baseline, from 21 ms to 105 ms. Although the RNN models achieve larger GMV, the computational cost of the RNN models are huge when rerank size gets big. The large computational cost is the major drawback of our RNN models.

For RNN models, we use beam search to find a good ranking sequence. The beam size k is a key parameter for beam search. Larger k means larger search space and usually results in better ranking results. But larger k also lead to more computational cost. We studied the GMV and latency increase with respect to beam size. And the results are shown in Figure 5 and Figure 6.

Figure 5 shows that the GMV increases as beam size grows. But the GMV increase gets smaller when beam size gets larger. Figure 6 shows that the latency increases linearly with respect to beam size, which is in accordance with our time complexity analysis. A balance of GMV and latency is needed to choose the value of beam size. And we set the beam size to 5.

Finally, we summarize our online test results in Table 2. The rerank size is set to 50 and the beam size for RNN models is 5. Results in Table 2 show that our mutual influence aware ranking framework brings a significant GMV increase over the baseline. The miDNN model achieves a good GMV increase with only a little latency overhead. The miRNN+attention model gets the best GMV result but the latency grows too fast. The miRNN model achieves a very good GMV increase with much less latency compared to miRNN+attention. Therefore, if computational cost is very expensive, the miDNN model is a good choice. In our case where mild latency increase is acceptable, the miRNN model is preferred.
Advantages

Potential use cases:

- Retrieve experimental results with entity-based search
- Exploit co-authorship networks
- Identify potential inconsistencies across papers
Tab2Know: General pipeline

Tab2Know is a recent work to construct a KB from tables in scientific papers (Kruit, He, and Urbani 2020)

Key features:

- Heuristic-based methods to recognize and extract tables from PDFs
- Machine learning models to predict the type of tables and columns
- **Weak supervision** with SPARQL queries to counter the problem of lack of training data
- **(Focus of today)** logic-based reasoning for **entity resolution**
1. INTRODUCTION
Figure 1.1: Results table from ICDAR 2013
task. Tables, on the other hand, provide direct structured data which is easily ingestable into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the results for the ICDAR 2013 document recognition competition (1). The information density in this table is incredible. We see multiple method names, some of which are even directly linked to citations, with their respective recall, precision and F-score. If the structure of this table is known, structured data could easily be extracted. This data were to be of great use for the augmentation of existing knowledge bases. An example relationship that could be extracted would be a method and its score. The caption “Ranking of submitted methods to task 1.1” also gives us additional insights. We know that task 1.1 is probably defined somewhere else in the document, and linking this to the performance of a specific method is of great value. A simple search in the document provides us with the information that task 1.1 is “Text Localization”. Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> **Text Localization**

Linking this information and making it available through a search engine, would greatly enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows: imagine a direct query that provides a researcher with all the papers that report an exact same technique for the exact same task. This could even be provided to the user in table mark-up and could clearly show the discrepancies between similar research. Many computer science experiments are highly reproducible, but will never be questioned since such contradictory information is never found. This task does not necessarily question the professionality and integrity of researchers, but could definitely give us great insights.

Tab2Know: General pipeline

From (Kruit, He, and Urbani 2020)
Entity resolution is the task of recognizing and linking entities across different tables. It is a well-known task in database literature (96+ papers between 2009-2014, see (Papadakis, Ioannou, and Palpanas 2020))

- Magellan (Konda et al. 2016)
- Deep Learning (Mudgal et al. 2018)
- Crowd-sourcing (Das et al. 2017)
- Embeddings (Cappuzzo, Papotti, and Thirumuruganathan 2020)
- ...
A declarative approach

Tab2Know’s approach: Use (existential) rules!

TGDs
Used to create new entities from the cells

EGDs
Used to infer equality among the entities

Output
After reasoning is completed, entities are used to populate a KB
A declarative approach: TGDs

Two TGDs are used:

\[
\begin{align*}
type(X, \text{Column}) & \rightarrow \exists Y. \text{colEntity}(X, Y) \quad (r_1) \\
type(X, \text{Cell}) & \rightarrow \exists Y. \text{cellEntity}(X, Y) \quad (r_2)
\end{align*}
\]

- Two types of entities are introduced. One describes columns, the other describes cells;
- Every cell is assigned to an entity; it is likely that the same entity is represented with multiple labeled nulls!
A declarative approach: EGDs

EGDs determines whether multiple cells refer to the same entity

\[ceNoTypLabel(X, L) \land ceNoTypLabel(Y, L) \rightarrow X \approx Y \] (r₃)
\[eNoTypLabel(X, C, L), eNoTypLabel(Y, C, L) \rightarrow X \approx Y \] (r₄)
\[eTableLabel(X, T, L), eTableLabel(Y, T, L) \rightarrow X \approx Y \] (r₅)
\[eTypLabel(X, S, L), eTypLabel(Y, S, M), STR_EQ(L, M) \rightarrow X \approx Y \] (r₆)
\[eAuthLabel(X, A, L), eAuthLabel(Y, A, M), STR_EQ(L, M) \rightarrow X \approx Y \] (r₇)

- Special built-in predicates \((STR_EQ)\) encode string similarities
- Other predicates include authors of the paper
- Program can be easily extended with other rules \(\rightarrow\) rapid KB construction
Preliminary results

Input
Approach was tested on a collection with 142k CS open-access papers and 73k tables (IJCAI, ECAI, etc.)

Key results

• Table interpretation superior than previous state-of-the-art approach (Yu et al. 2020)
• EGDs reduced number of “column” entities of 65% and of “cell” entities of 55%
• Every rule contributed by linking some entities
• On a sample of 541 entities, average precision was 97%
Lessons learned

1. A declarative approach is ideal for non-CS domain experts
2. Rules can be easily changed or adapted depending on the performance
3. VLog was scalable enough to perform rapid prototyping with large KGs
4. Support to built-in predicates was crucial
3rd Scenario: Stream Reasoning
A few of slides are a modified version of Harald Beck’s ISWC17 presentation, used with permission
Motivation

Stream reasoning: add reasoning on top of stream processing. Central question: "**What is true now?**" (Margara et al. 2014)

- E.g. public transport: What are the current expected arrival times?
- Is there currently a good connection between two lines?

Semantic Web: RDF Stream Processing - SPARQL extensions: C-SPARQL, CQELS, SPARQLStream, ... Typical: **Window operators** select snapshots of recent data

- Window examples: [RANGE 3m], [TRIPLES 2]
Goals & Challenges

- Goal: expressive stream reasoning solutions

 (1) based on model-based semantics
 (2) high performance

- Central challenge: throughput vs. expressiveness
LARS: A Logic for Analytic Reasoning over Streams

LARS (Beck, Dao-Tran, and Eiter 2018) is a logic-based frameworks to reason on streams

- Stream \(S = (T, \nu) \)
 - Timeline \(T \) closed interval in \(\mathbb{N} \), \(t \in T \) time point
 - Evaluation function \(\nu : T \rightarrow 2^A \) (sets of atoms)
- Window function \(w \) yields window \(w(S, t) \subseteq S \)
- Formulas \(\psi \) evaluated on \(S \) at \(t \)

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square^w \varphi)</td>
<td>in (w(S, t)) at (t)</td>
<td>(3 \square a \checkmark)</td>
</tr>
<tr>
<td>(\Diamond \varphi)</td>
<td>at some time point (t' \in T)</td>
<td>(3 \Diamond a \times)</td>
</tr>
<tr>
<td>(\square \varphi)</td>
<td>at all time points (t' \in T)</td>
<td>(3 \square a \checkmark)</td>
</tr>
<tr>
<td>(\Diamond_{t'} \varphi)</td>
<td>at time point (t') and (t' \in T)</td>
<td>(3 \Diamond_{t'} a \checkmark)</td>
</tr>
</tbody>
</table>
Plain LARS

Observations

- Many practical problems do not need a multiple model semantics
- Time-based and tuple-based windows often suffice
- Sliding windows can be exploited for incremental reasoning

Plain LARS (Bazoobandi, Beck, and Urbani 2017)

Focus on positive LARS programs where for each rule \(\alpha \leftarrow \beta_1, \ldots, \beta_n \) we have:

- head \(\alpha \): atom \(a \) or \(@_t a \)
- body elements: \(\beta_i ::= a \mid @_t a \mid \bowtie^w @_t a \mid \bowtie^w a \mid \bowtie^w \square a \)

Consider **non-ground programs**, using substitutions due to available ground atoms, as usual
From LARS to Datalog

Observation
LARS rules can be rewritten into Datalog rules

- How do we represent time?
 - Increase arity of the relations, e.g., $P(X) \rightarrow P(X, T)$

- How can we translate LARS rules?
 - $\exists S P(X)$ as $P(X, S)$
 - $\forall P(X) \rightarrow Q(X)$ as $P(X, T) \rightarrow Q(X)$ and $P(X, T - 1) \rightarrow Q(X)$

Semi-naïve evaluation (SNE)
One key novelty of (Bazoobandi, Beck, and Urbani 2017) is to show how to replicate SNE in a stream
For formula $\varphi = \alpha, \beta_i$ in any rule $\alpha \leftarrow \beta_1, \ldots, \beta_n$, consider **annotated ground formulas** $\varphi_\sigma[i, h]$, where

- φ_σ is the **ground instance** of φ due to substitution σ
- $[i, h]$ is an annotation stating that φ_σ holds from **consideration time** i to **horizon time** h

Horizon time can be extended in the future, e.g., at time point t, $\star^3 \diamond p(a)$ can be annotated as $\star^3 \diamond p(a)[t, t+3]$

When computing substitution σ for instantiating rule $B_1 \land B_2 \land \ldots B_n \rightarrow H$ at time point t, at least one $B_i \sigma[i, h]$ has $i = t$, i.e., has been derived at the current time point.
Laser: Implementation & Evaluation

Evaluation: Time per triple

- Compare to C-SPARQL, CQELS, and Ticker
- Micro benchmarks to test (1) \(q(A, B) \leftarrow \Box^w \diamond p(A, B) \) (resp. □); elementary data join; multiple rules; (2) small show case example requiring LARS features.
- Window sizes: 1s to 80s; stream rate: 200 to 800 triples/second
Lesson learned

• A good idea remains a good idea (even if is old)
• ... but it might need to be properly implemented

To conclude

We have described cases where rules turned out to be very useful

• In some scenarios, existential quantification was necessary (data integration). In others, Datalog rules were enough (PLP, stream reasoning)
• Sometimes, the tools could be directly used (data integration). In other cases, some modifications are required (PLP)
• Finally, we have seen how sometimes ideas rather than technology can make the difference
References

References III

