DATABASE THEORY

Lecture 5: Complexity of FO Query Answering (II)

David Carral
Knowledge-Based Systems

TU Dresden, April 21, 2020
Review: Query Complexity

Query answering as decision problem
\[\sim \text{consider Boolean queries} \]

Various notions of complexity:
- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq ExpTime \]
The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries.
The algorithm showed that FO query evaluation is in L

\rightsquigarrow can we do any better?

What could be better than L?

$? \subseteq L \subseteq NL \subseteq P \subseteq \ldots$

\rightsquigarrow we need to define circuit complexities first
Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where

• each node that has no predecessors is an input node
• each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
• one or more nodes are designated output nodes

→ we will only consider Boolean circuits with exactly one output

→ propositional logic formulae are Boolean circuits with one output and gates of fanout \(\leq 1 \)
Example

A Boolean circuit over an input string $x_1 x_2 \ldots x_n$ of length n

Corresponds to formula $(x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)$

\sim accepts all strings with at least two 1s
Circuits as a Model for Parallel Computation

Previous example:

\[
\begin{align*}
&x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad \ldots \\
&(\text{(n}^2\text{ gates}) \quad \ldots \\
&\downarrow \\
&V
\end{align*}
\]

\[\sim n^2 \text{ processors working in parallel}\]
\[\sim \text{computation finishes in 2 steps}\]

- **size**: number of gates = total number of computing steps
- **depth**: longest path of gates = time for parallel computation

\[\sim \text{circuits as a refinement of polynomial time that takes parallelizability into account}\]
Observation: the input size is “hard-wired” in circuits

→ each circuit only has a finite number of different inputs
→ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits $C_n \ (n \geq 0)$ that can easily be computed from n.

A language $L \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \geq 0}$ of Boolean circuits if for each word w of length $|w|$:

$$w \in L \text{ if and only if } C_{|w|}(w) = 1$$

We don’t discuss the details here; see course Complexity Theory.
Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:
- **size** of the circuit: overall number of gates
 (as function of input size)
- **depth** of the circuit: longest path of gates
 (as function of input size)
- **fan in**: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: \((C_n)_{n \geq 0} \) is a family of small-depth circuits if
- the size of \(C_n \) is polynomial in \(n \),
- the depth of \(C_n \) is poly-logarithmic in \(n \), that is, \(O(\log^k n) \).
Two important types of small-depth circuits:

Definition 5.4: \(NC^k \) is the class of problems that can be solved by uniform families of circuits \((C_n)_{n \geq 0} \) of fan-in \(\leq 2 \), size polynomial in \(n \), and depth in \(O(\log^k n) \).

The class \(NC \) is defined as \(NC = \bigcup_{k \geq 0} NC^k \).

(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: \(AC^k \) and \(AC \) are defined like \(NC^k \) and \(NC \), respectively, but for circuits with arbitrary fan-in.

(A is for “Alternating”: AND-OR gates alternate in such circuits)
family of polynomial size, constant depth, arbitrary fan-in circuits \leadsto in AC^0
Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

\[\text{NC}^0 \subseteq \text{AC}^0 \subseteq \text{NC}^1 \subseteq \text{AC}^1 \subseteq \ldots \subseteq \text{AC}^k \subseteq \text{NC}^{k+1} \subseteq \ldots \]

Only few inclusions are known to be proper: \(\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \)

Direct consequence of above hierarchy: \(\text{NC} = \text{AC} \)

Interesting relations to other classes:

\[\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{AC}^1 \subseteq \ldots \subseteq \text{NC} \subseteq \text{P} \]

Intuition:

- Problems in NC are parallelisable (known from definition)
- Problems in \(\text{P} \setminus \text{NC} \) are inherently sequential (educated guess)

However: it is not known if \(\text{NC} \neq \text{P} \)
Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC^0 with respect to data complexity.

Proof:

- **Membership:** For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- **Hardness:** Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)
From Query to Circuit

Assumptions:

• query and database schema is fixed
• database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

• one input node for each possible database tuple (over given schema and active domain)
 \(\sim \) true or false depending on whether tuple is present or not
• Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of
 this formula
 \(\sim \) true or false depending on whether the subformula holds for this tuple or not
• Logical operators correspond to gate types: basic operators obvious, \(\forall \) as generalised
 conjunction, \(\exists \) as generalised disjunction
• subformula with \(n \) free variables \(\sim \) \(|\text{adom}|^n\) gates
 \(\sim \) especially: \(|\text{adom}|^0 = 1\) output gate for Boolean query
Example

We consider the formula

$$\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$$

Over the database instance:

<table>
<thead>
<tr>
<th>R:</th>
<th>S:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

Active domain: \{a, b, c\}
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$
Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- \(\text{AC}^0 \)-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in \(\text{P} \)

Open questions:

- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- How can we study the expressiveness of query languages?