Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs
- There are many ways to describe query languages:
 - relational algebra, domain independent FO queries, safe-range FO queries, actice domain FO queries, Codd's tuple calculus
 - either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?

How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
 - database queries return many results (no decision problem)
- The size of a query result can be very large
 - it would not be fair to measure this as "complexity"
- In practice, database instances are much larger than queries
 - can we take this into account?
Query Answering as Decision Problem

We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query \(q \) and a database instance \(I \), does \(I \models q \) hold?
- **Query of tuple problem**: given an \(n \)-ary query \(q \), a database instance \(I \) and a tuple \(\langle c_1, \ldots, c_n \rangle \), does \(\langle c_1, \ldots, c_n \rangle \in M[q](I) \) hold?
- **Query emptiness problem**: given a query \(q \) and a database instance \(I \), does \(M[q](I) \neq \emptyset \) hold?

\[\leadsto \] Computationally equivalent problems (exercise)

The Size of the Input

Combined Complexity

Input: Boolean query \(q \) and database instance \(I \)
Output: Does \(I \models q \) hold?

\[\leadsto \] estimates complexity in terms of overall input size
\[\leadsto \] “2KB query/2TB database” = “2TB query/2KB database”
\[\leadsto \] study worst-case complexity of algorithms for fixed queries:

Data Complexity

Input: database instance \(I \)
Output: Does \(I \models q \) hold? (for fixed \(q \))

\[\leadsto \] we can also fix the database and vary the query:

Query Complexity

Input: Boolean query \(q \)
Output: Does \(I \models q \) hold? (for fixed \(I \))

The Turing Machine (1)

Computation is usually modelled with Turing Machines (TMs)
\[\leadsto \] “algorithm” = “something implemented on a TM”

A TM is an automaton with (unlimited) working memory:

- It has a finite set of states \(Q \)
- \(Q \) includes a start state \(q_{\text{start}} \) and an accept state \(q_{\text{acc}} \)
- The memory is a tape with numbered cells \(0 \), \(1 \), \(2 \), \ldots
- Each tape cell holds one symbol from the set of tape symbols \(\Sigma \)
- There is a special symbol \(_ \) for “empty” tape cells
- The TM has a transition relation \(\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{l, r, s\}) \)
- \(\Delta \) might be a partial function \((Q \times \Sigma) \to (Q \times \Sigma \times \{l, r, s\}) \)

\[\leadsto \] deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.

Review: Computation and Complexity Theory
The Turing Machine (2)

TMs operate step-by-step:

- At every moment, the TM is in one state \(q \in Q \) with its read/write head at a certain tape position \(p \in \mathbb{N} \), and the tape has a certain contents \(\sigma_0 \sigma_1 \sigma_2 \cdots \) with all \(\sigma_i \in \Sigma \)
- \(~\sim\) current configuration of the TM
- The TM starts in state \(q_{\text{start}} \) and at tape position 0.
- Transition \((q, \sigma, q', \sigma', d) \in \Delta \) means:
 - if in state \(q \) and the tape symbol at its current position is \(\sigma \),
 - then change to state \(q' \), write symbol \(\sigma' \) to tape, move head by \(d \) (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.

Solving Computation Problems with TMs

A decision problem is a language \(L \) of words over \(\Sigma \setminus \{\alpha\} \)
- \(~\sim\) the set of all inputs for which the answer is “yes”

A TM decides a decision problem \(L \) if it accepts exactly the words in \(L \)

TMs take time (number of steps) and space (number of cells):

- \(\text{TIME}(f(n)) \): Problems that can be decided by a DTM in \(O(f(n)) \) steps, where \(f \) is a function of the input length \(n \)
- \(\text{SPACE}(f(n)) \): Problems that can be decided by a DTM using \(O(f(n)) \) tape cells, where \(f \) is a function of the input length \(n \)
- \(\text{NTIME}(f(n)) \): Problems that can be decided by a TM in at most \(O(f(n)) \) steps on any of its computation paths
- \(\text{NSPACE}(f(n)) \): Problems that can be decided by a TM using at most \(O(f(n)) \) tape cells on any of its computation paths

Languages Accepted by TMs

The (nondeterministic) TM accepts an input \(\sigma_1 \cdots \sigma_n \in (\Sigma \setminus \{\alpha\})^* \) if,

- \(\text{(1)} \) the TM halts on every computation path and
- \(\text{(2)} \) there is at least one computation path that halts in the accepting state \(q_{\text{acc}} \in Q \).

Some Common Complexity Classes

\[
\begin{align*}
 P &= \text{PTIME} = \bigcup_{k \geq 1} \text{TIME}(n^k) \\
 NP &= \bigcup_{k \geq 1} \text{NTIME}(n^k) \\
 \text{Exp} &= \text{ExpTIME} = \bigcup_{k \geq 1} \text{TIME}(2^{n^k}) \\
 \text{NExp} &= \text{NExpTIME} = \bigcup_{k \geq 1} \text{NTIME}(2^{n^k}) \\
 2\text{Exp} &= 2\text{ExpTIME} = \bigcup_{k \geq 1} \text{TIME}(2^{2^{n^k}}) \\
 \text{N2Exp} &= \text{N2ExpTIME} = \bigcup_{k \geq 1} \text{NTIME}(2^{2^{n^k}}) \\
 \text{ETime} &= \bigcup_{k \geq 1} \text{TIME}(2^{2^{n^k}}) \\
 \text{L} &= \text{LogSpace} = \text{SPACE}(\log n) \\
 \text{NL} &= \text{NLogSpace} = \text{NSPACE}(\log n) \\
 \text{PSpace} &= \bigcup_{k \geq 1} \text{SPACE}(n^k) \\
 \text{ExpSpace} &= \bigcup_{k \geq 1} \text{SPACE}(2^{n^k})
\end{align*}
\]
NP

NP = Problems for which a possible solution can be verified in \(P \):

- for every \(w \in L \), there is a certificate \(c_w \in \Sigma^* \), such that
- the length of \(c_w \) is polynomial in the length of \(w \), and
- the language \(\{ w \# c_w \mid w \in L \} \) is in \(P \)

Equivalent to definition with nondeterministic TMs:

- \(\Rightarrow \) nondeterministically guess certificate; then run verifier DTM
- \(\Leftarrow \) use accepting polynomial run as certificate; verify TM steps

Examples

Examples:
- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia “Primality certificate”)
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)

NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

A Simple Proof for \(P = NP \)

Clearly \(L \in P \) implies \(L \in NP \)
therefore \(L \notin NP \) implies \(L \notin P \)
hence \(L \in coNP \) implies \(L \notin coP \)
that is \(coNP \subseteq coP \)
using \(coP = P \)
and hence \(coNP \subseteq P \)

so by \(P \subseteq NP \)

\(q.e.d. \)
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- \(r_i \) means "vertex \(i \) is red"
- \(g_i \) means "vertex \(i \) is green"
- \(b_i \) means "vertex \(i \) is blue"

Colouring conditions on vertices:
\[
(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)
\]
(and so on for all vertices)

Colouring conditions for edges:
\[
\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)
\]
(and so on for all edges)

Satisfying truth assignment \(\iff \) valid colouring

The Structure of NP

Idea: polynomial many-one reductions define an order on problems

NP-Hardness und NP-Completeness

Theorem (Cook 1971; Levin 1973)
All problems in \(\text{NP} \) can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- \(\text{NP} \) has a maximal class that contains a practically relevant problem
- If SAT can be solved in \(\text{P} \), all problems in \(\text{NP} \) can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition
A language is
- \(\text{NP-hard} \) if every language in \(\text{NP} \) is polynomially many-one reducible to it
- \(\text{NP-complete} \) if it is \(\text{NP-hard} \) and in \(\text{NP} \)
Comparing Complexity Classes

Is any NP-complete problem in P?
• If yes, then P = NP
• Nobody knows \(\Leftrightarrow\) biggest open problem in computer science
• Similar situations for many complexity classes

Some things that are known:

\(L \subseteq NL \subseteq P \subseteq NP \subseteq \text{ExpTime} \subseteq \text{NExpTime}\)
• None of these is known to be strict
• But we know that \(P \not\subseteq \text{ExpTime}\) and \(NL \not\subseteq \text{PSpace}\)
• Moreover \(\text{PSpace} = \text{NPSpace}\) (by Savitch’s Theorem)

The Power of LogSpace

LogSpace transducers can still do a few things:
• store a constant number of counters and increment/decrement the counters
• store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
• access/process/compare items from the input tape bit by bit

Examples:
Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, . . .

Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \(\Leftrightarrow\) what to use for \(P\) and below?

Definition

A LogSpace transducer is a deterministic TM with three tapes:
• a read-only input tape
• a read/write working tape of size \(O(\log n)\)
• a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:
• transition function input: state, input tape symbol, working tape symbol
• transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or \(\alpha\) to not write anything to the output

Joining Two Tables in LogSpace

Input: two relations \(R\) and \(S\), represented as a list of tuples
• Use two pointers \(p_R\) and \(p_S\) pointing to tuples in \(R\) resp. \(S\)
• Outer loop: iterate \(p_R\) over all tuples of \(R\)
• Inner loop for each position of \(p_R\): iterate \(p_S\) over all tuples of \(S\)
• For each combination of \(p_R\) and \(p_S\), compare the tuples:
 – Use another two loops that iterate over the columns of \(R\) and \(S\)
 – Compare attribute names bit by bit
 – For matching attribute names, compare the respective tuple values bit by bit
• If all joined columns agree, copy the relevant parts of tuples \(p_R\) and \(p_S\) to the output (bit by bit)

Output: \(R \bowtie S\)

\(\Leftrightarrow\) Fixed number of pointers and counters
(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))
LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \(\sim \) partial function \(\Sigma^* \rightarrow \Sigma^* \)

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition

A many-one reduction \(f \) from \(L_1 \) to \(L_2 \) is a LogSpace reduction if it is implemented by some LogSpace transducer.

\(\sim \) can be used to define hardness for classes P and NL

Beyond Logarithmic Space

Propositional satisfiability can be solved in linear space:
\(\sim \) iterate over possible truth assignments and check each in turn

More generally: all problems in NP can be solved in \(\text{PSPACE} \)
\(\sim \) try all conceivable polynomial certificates and verify each in turn

What is a “typical” (that is, hard) problem in \(\text{PSPACE} \)?
\(\sim \) Simple two-player games, and other uses of alternating quantifiers

From L to NL

NL: Problems whose solution can be verified in L

Example: Reachability
- Input: a directed graph \(G \) and two nodes \(s \) and \(t \) of \(G \)
- Output: accept if there is a directed path from \(s \) to \(t \) in \(G \)

Algorithm sketch:
- Store the id of the current node and a counter for the path length
- Start with \(s \) as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching \(t \), accept
- When the step counter is larger than the total number of nodes, reject

Example: Playing “Geography”

A children's game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians' game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?
\(\sim \) \(\text{PSPACE} \)-complete problem
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

\[Q_1 X_1. Q_2 X_2. \cdots Q_n X_n. \varphi[X_1, \ldots, X_n] \]

where \(Q_i \in \{\exists, \forall\} \) are quantifiers, \(X_i \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1, \ldots, X_n \) and constants \(\top \) (true) and \(\bot \) (false).

Semantics:
- Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual
- \(\exists X_1. \varphi[X_1] \) is true if either \(\varphi[X_1/\top] \) or \(\varphi[X_1/\bot] \) are
- \(\forall X_1. \varphi[X_1] \) is true if both \(\varphi[X_1/\top] \) and \(\varphi[X_1/\bot] \) are

Question: Is a given QBF formula true?

\(\leadsto \) \text{PSPACE}-complete problem

A Note on Space and Time

How many different configurations does a TM have in space \((f(n)) \)?

\[|Q| \cdot f(n) \cdot |\Sigma|^f(n) \]

\(\leadsto \) No halting run can be longer than this

\(\leadsto \) A time-bounded TM can explore all configurations in time proportional to this

Applications:
- \(L \subseteq \text{P} \)
- \(\text{PSPACE} \subseteq \text{ExpTime} \)

Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

\[L \subseteq \text{NL} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{ExpTime} \]

Problems are compared using many-one reductions

Open questions:
- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in \(\text{LOGSPACE} \) – is this tight?
- How can we study the expressiveness of query languages?