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Abstract. A parallelization approach for SAT solving is presented. Com-
mon parallel portfolio approaches seem to stagnate at four parallel solvers
and cannot compete with the growing number of cores in the next gen-
eration of CPUs. The presented algorithm provides an opportunity to
use additional cores by parallelizing the unit propagation. In average,
unit propagation consumes 80% of the solvers runtime and thus provides
a high potential to be parallelized. This load can be distributed among
cores by splitting the clause database into partitions. The presented algo-
rithm uses only a single lock for synchronizing conflicts. The paralleliza-
tion is implemented into riss. A speedup of 1.57 can be reached by using
two threads on the SAT Race 2010 benchmark in the best case, however,
the performance of the parallelization is higher, because the sequential
algorithm can solve only 48 instances within the timeout, whereas two
threads can solve at least 61 out of 100 instances. Experiments on the
SAT Competition 2009 Application benchmark showed that using four
threads does not increase the solvers power. Still, by applying the pre-
sented technique to an existing solver, the number of used cores can be
doubled.

1 Introduction

The satisfiability problem(SAT) is an intensely studied problem in Computer
Science. Due to the power of SAT solvers, numerous applications, e.g. planning,
scheduling or cryptography ([12,3,19]), are solved in the domain of SAT.

The introduction of the multi core architecture and the reduced increasing
the CPU frequency force developers of SAT solvers to create parallel systems. A
modern CPU has 4 to 6 cores and provides simultaneous multi threading. These
cores need to be provided with work. Most parallel solvers follow a portfolio
approach [9]. With this approach, the number of parallel running solvers is lim-
ited by the memory bandwidth, so that the number of used cores is also limited
although there might be much more cores available in the near future [7].

In this paper a new techniques is presented which is able to extend existing
solutions. The most time consuming part of the sequential SAT solving algorithm
CDCL [17], namely the unit propagation (UP), uses 80% of the solvers runtime
and is the component of the solver that provides the biggest potential to be
parallelized [10]. The suggested parallelization is based on distributing the clause
database into partitions with the result that each processor can work on its
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private clauses. This approach can be combined with all existing parallel solvers,
because it does not interfere with current parallelization techniques.

The algorithm is implemented in the CDCL solver riss [13] and its perfor-
mance measurements have been done by using the benchmark of the SAT Race
2010 and a subset of the SAT Competition 2009 Application benchmark. The
SAT Race instances and setup has been used to study the number of solved in-
stances within a certain timeout, and the speedup on commonly solved instances.
The parallel implementation has been run several times to get an average result.
The SAT Competition benchmark has been used to analyze the algorithm in
more detail, and to find weaknesses in the implementation.

The most notably result is the speedup of the algorithm. By combining the
best runs, a speedup of 1.57 can be reached by using 2 processors. This value
is very close to the theoretical optimum of 1.66, specified by Amdahl’s law [2],
which predicts the maximal possible speedup if a certain part of an algorithm is
parallelized. Using Amdahl’s law is not accurate, because parallelizing UP can
provide a super linear speedup due to a changed search path.

From a practical point of view, the user of a SAT solver would solve a certain
instance only once. The measured speedup for this scenario is 1.28. However,
the speedup is only calculated for commonly solved instances. The performance
of the parallelization is much higher, because it is able to solve 61 instances,
where the sequential solver can solve only 48 instances. For a set of instances
with medium difficulty, the speedup of the parallelization is close to 1 and only
a few more instances can be solved on average. The used implementation has
potential to be improved, because by using two threads, 2% of the runtime is
spend for thread management (6% for four threads).

This paper is consequently structured in the following way. Important details
of the sequential CDCL algorithm are given in Section 2. The parallelization is
introduced in Section 3. Section 4 will focus on the results of the experiments.
Finally, related work is discussed in Section 5 and a conclusion and future work
are given in Section 6.

2 Preliminaries

Specifying a SAT problem is done in conjunctive normal form (CNF). The de-
scription of the problem is given by a set of n propositional variables that are
represented by natural numbers starting with 1. These variables can occur in lit-
erals positively or negatively, e.g. 2 respectively ¬2.In addition to the variables,
a problem is specified by a set of clauses F where a clause is a disjunction of
literals. A clause is denoted by using square brackets, for example [¬1, 2,¬3].
The set of clauses is written by using angle brackets F = 〈[1], [¬2]〉. To solve
a SAT problem, a mapping from the set of variables to true or false has to be
found such that for every clause at least one of its literals is satisfied.

For industrial benchmarks the CDCL [17] algorithm, which is an extension of
the DPLL [8] procedure, is used. The main part of the runtime of this algorithm
is spent on unit propagation (UP) [10], although an efficient scheme, namely
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the Two-Watched-Literal unit propagation [14] is used already. In the sequel it
is assumed that the reader is familiar with the CDCL algorithm and the Two-
Watched-Literal scheme. More details can be found in [4,16].

Watching the raising number of cores, any computing platform provides the
ability to run parallel programs. An advantage of a multi core architecture is the
fast communication among the cores. This communication is usually done via a
fast accessible shared memory, e.g. the L2 cache. Furthermore, all the data from
one core can be accessed by another core without the first core taking actively
part in the communication. In contrast to Graphic Processing Units (GPUs), a
multi core CPU has the ability to execute instructions on a core independently
from the instructions on the other cores. These two properties are exploited in
the parallelization of UP. Since UP uses most of the runtime [10], it provides the
highest speedup potential if it is executed in parallel. The number of memory
accesses is not multiplied, and thus the load on the memory bus is reduced
compared to other parallelization techniques. Running independent parts of the
solver on multi core CPUs enables the propagation to split the clause database
into partitions. Consequently, each core can work on its private partition. The
fast communication among the cores is exploited to share information about
implied literals and the current conflict. This sharing is done lazily without
blocking other cores. In the following, a multi core CPU is assumed to have n

cores. On each core exactly one thread Ti (1 ≤ i ≤ n) will be executed.
The CDCL algorithm has several requirements for the UP, namely:

Requirement 1 The closure of literals that are implied by all the current deci-
sions has to be propagated.

Requirement 2 The order of variable assignments is stored in the trail.

Requirement 3 The reason clause is given for all assignments (compare Defi-
nition 1 below) and is called reason.

Requirement 4 A conflict clause fulfills Definition 2 below. A conflict clause
is called conflict.

Requirement 1 ensures that all clauses are checked before a model is accepted
to ensure completeness. Requirement 2 is necessary for modern implementations
of the conflict analysis that use the order of the variable assignments to generate
a 1st-UIP clause with linear resolution steps [16,22]. Furthermore, to generate a
learned clause, the reason clause for an assigned variable is used for resolution
(Requirement 3). Requirement 4 is needed to ensure that only learned clauses
are generated from unsatisfied clauses with respect to the current assignment. In
the sequel, the assignment, the trail and the reason information per assignments
are called search data.

Definition 1 A reason is a clause with a single satisfied literal and no unas-
signed literal with respect to the current search state. All unsatisfied literals have
been assigned before the satisfied literal was assigned.

Definition 2 A conflict is a clause that contains only unsatisfied literals with
respect to the current assignment.
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To get familiar with the data structures, an example is given with the formula
F = 〈[¬1, 2], [¬2, 3], [¬1, 4], [¬4, 5]〉. The clauses are referred to by their indices;
Ci represents the i-th clause in the formula. Let the algorithm choose the decision
1. Literal 1 will be enqueued to the propagation queue and the propagate()-
method is called to process the watch list for this literal with the clauses [¬1, 2]
and [¬1, 4]. Both 2 and 4 will be enqueued with the corresponding reasons.
Now the next literal, namely 2, is read from the queue and propagated. Literal
3 is enqueued with the reason C2. The next literal on the propagation queue
is 4 and it enqueues literal 5 with the reason C4. Finally, the literals 3 and 5
are processed. Since their lists are empty reaches a fix point. The final trail is
trail = [1, 2, 4, 3, 5] (left to right).

3 Parallel Unit Propagation

The idea to parallelize UP is to split the clause database into partitions, such
that each thread Ti gets a partition Pi. For a partition Pi, Ti is the only thread
that has write access. Furthermore, all threads have their private watch lists,
propagation queue, trail and reason information. Again, the owner of these data
structures is the sole writer. It is assumed, that the implementations of these data
structures except the watch lists allow multiple read accesses, even if the owner
adds more data to them in the same moment. For simplicity of description, the
implementation details of these structures are neglected. It is only important
that reading and writing a single 32 bit data word is executed atomically on
modern x86 architectures. Since only UP is parallelized, there is a single thread
T1, which executes the CDCL algorithm, including conflict analysis, decisions,
restart and removal. The thread T1 could also be seen as the master thread.
The remaining threads T2 . . .Tn could be referred to as slaves, because they are
dependent on the execution of T1. They wait for T1 until UP has to be executed.
To reduce power consumption, these threads sleep instead of performing busy
waiting. The work during UP is spread among all threads, so that the separation
in master and slave threads is not accurate. The major idea behind the proposed
algorithm is that sequential unit propagation needs also to touch most of the
clauses that are propagated using the parallelization and thus the same amount
of memory accesses will be performed.

3.1 Sequential Execution

First, the new unit propagation is introduced for a single thread T1, before the
parallel variant is presented. The algorithm is visualized in Fig. 1 where all the
colored boxes are the relevant steps for a sequential propagation. Since there is
no other thread, the interaction among the threads is dropped and the fix point
is reached after the queue has been processed without finding a conflict.

For a single thread there is no initial work to do. The whole clause database
is handled by T1. The search data for the CDCL algorithm is also maintained by
T1. The algorithm starts with enqueuing a literal that can come from either a
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Fig. 1: Algorithm for a parallel propagate implementation

decision or a learned clause that is unit. Afterwards, the occurrence of a conflict
is checked in order to return this conflict and stop the UP. Initially, there is no
conflict. If no conflict has been found, the next element of the propagation queue
will be propagated according to the Two-Watched-Literal scheme. During this
step, more implied literals can be found. Finding an implied literal results in the
following steps, which are executed in the specified order:

1. the corresponding variable is assigned such that this literal is satisfied
2. the reason clause is stored for this variable
3. the literal is added to the trail
4. the literal is added to the propagation queue

These steps ensure that the Requirements 2 and 3 are met. The loop of checking
for the next literal and propagating the literal is executed until a conflict is
detected, or until all enqueued literals have been propagated. A found conflict
fulfills Definition 2 with respect to the assignment of T1. Thus, Requirement 4
is also not violated. Requirement 1 cannot be seen from the propagation only. It
can be explained incrementally. At the beginning of the search, there is only the
first decision in the propagation queue. By propagating this decision, all implied
literals will be found and also propagated because the whole propagation queue
is processed. Finally, the first decision and all implied literals are stored on the
trail and a fix point is reached. The next decision can be seen as applying it as
first decision to the reduct of the formula with respect to the current trail. These
steps can be repeated iteratively.

After UP has reached a fix point or a conflict, the propagation queue will be
cleared, such that enqueuing the next decision can be done without having old
literals in the queue. Since T1 works on the search data that is also used during
the other parts of the CDCL algorithm, no more work is necessary.

3.2 Parallel Execution

For a multi processor system with n cores, there will be threads T1 to Tn. T1

executes the whole CDCL algorithm where all the other threads work only during
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UP. Therefore, T1 works on the shared search data. Each of the remaining threads
T2 to Tn gets its private copy of the search data. During the initialization of the
solver the clause database needs to be distributed by using a function Assign:
clause → thread that assigns each clause Cj to a thread Ti. This function is also
used to distribute learned clauses among the threads.

After the initialization, the propagation can be executed according to the
whole algorithm shown in Fig. 1. Enqueuing a literal has to be done for each
private propagation queue. Afterwards, all other slave threads are woken up and
start executing the UP algorithm similarly to T1. If any of the threads finds
a conflict, the propagation stops and the conflict is processed further by T1 in
the conflict analysis. This case is explained in more detail in the next section.
As long as there is no conflict, the propagation follows the sequential algorithm.
Each thread propagates all implied literals of the enqueued decision with respect
to its clause database partition. As in the sequential case, it can be shown that
the four requirements of the CDCL algorithm hold for all threads.

Finding all Implied Literals A critical requirement for the correctness of this
UP algorithm is to find the closure of implied literals, because certain literals
might be implied only by clauses of Ti whereas the clauses of Tj imply other
literals. To ensure, that Ti also enqueues and propagates all implied literals that
have been found by Tj , Ti needs to check whether Tj found new literals. If there
are new literals that have to be propagated, Ti needs to enqueue these literals
with their reason information. To preserve the properties of reason clauses and
to fulfill the Requirements 2 and 3, enqueuing the new literals has to be done
exactly in the order Tj has found them1. To ensure the closure, each thread has
to check each other thread for new literals that need to be propagated.

If Ti does not find new literals, it has to wait for all other threads to com-
plete propagation. This waiting is implemented by a spin lock. Only if all threads
shared and propagated all implied literals, propagation can be stopped. Other-
wise, Ti might decide to stop propagating and Tj finds a new implied literal
¬5 during propagating 2. In this case, Ti cannot check its clause partition for
further literals that are implied by ¬5. Furthermore, Tj might find a conflict
during propagating literal 2 while Ti already signaled that there is no conflict
and has stopped propagation.

Since all new literals are enqueued by each thread and since all threads
wait for each other until all literals have been propagated, Requirement 1 is
met. Propagating a single literal in a thread did not change from the sequential
execution, so that the Requirements 2 and 3 are also fulfilled. Since Ti always
adds literals from Tj in the order the literals have been found by Tj , they can
also be used for the 1st-UIP conflict analysis. Naturally, the order of the literals
of Ti and Tj can be different.

After a fix point is reached, or a conflict is found, all the threads except T1

return to the sleep state until the next propagation. T1 continues the algorithm
with either the next decision or the conflict analysis.

1 There might be alternatives, which are more complex than chosen heuristic.
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Handling a Global Conflict The last Requirement 4 is not always met, since
a conflict C can be found by thread T2, although C contains unassigned literals
with respect to the assignment of T1. If C was given to the conflict analysis,
the learned clause would not be a 1st-UIP clause. Therefore, the search data of
T1 needs to be extended, if another thread Ti finds the conflict. This extension
is done by adding all implied literals from Ti to T1 according to the four steps
in Section 3.1. As soon as T1 has enqueued all literals from Ti, the conflict C

fulfills Definition 2 with respect to the search data of T1. If enqueuing a literal,
e.g. 7, found by Ti fails, another conflict clause C ′ is found, namely the reason
of 7. This clause is a conflict clause, because all its literals except 7 are already
unsatisfied, such that C ′ became the reason for the assignment of 7 in Ti and
because of the synchronization also for T1. In this case, 7 is unsatisfied with
respect to T1 as well. All other literals of C ′ are now unsatisfied with respect to
T1, because T1 enqueued and assigned already all the other literals.

As soon as a conflict has been found by T1 or when all literals of Ti have
been enqueued and assigned, the propagation can be stopped and the propaga-
tion queues can be cleared again. Afterwards, T1 can continue with the CDCL
algorithm and run the conflict analysis, because the returned conflict is always
a conflict with respect to T1.

F = 〈[¬1, 2], [¬1, 4], [¬2, 3], [¬2, 5], [¬4,¬5]〉

T1: [¬1, 2], [¬2, 3], [¬4,¬5] T2: [¬1, 4], [¬2, 5]

T1: Reason - C1 C3 C2 C5 C4

Queue 1 2 3 sync 4 ¬5 sync �5

Step 0 1 2 3 4 5 6 7 8 9

T2: Queue 1 4 sync 2 3 ¬5 �5

Reason - C2 C1 C3 C5 C4

Fig. 2: Example for running UP in parallel

The example in Fig. 2 shows the parallel algorithm. The formula has five
clauses to which we refer with their index. It is assumed that no variables are
assigned. The algorithm decides to set variable 1 to true. This decision is en-
queued in the two queues in step 0. In step 1 both threads propagate this decision
on their private clauses. Found implied literals are also added to the queues and
propagated. The master thread finds the literals 2 and 3 with the corresponding
reason clauses and the slave thread finds literal 4 with C2. In the next step the
master thread synchronizes its queue with the slave’s queue. The new literal
4 is added with its reason clause C2. In step 4, this literal is propagated and
the implied literal ¬5 is also added to the private queue of the master thread
with its reason clause C5. Now the slave updates its queue and adds the literals
2, 3 and ¬5. In step 7 the slave thread tries to propagate the new elements of
its unit queue. While propagating the literal 2, clause C4 requires literal 5 to
be true. Since the complement is already assigned, C4 is recognized as conflict
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and set as global conflict. The master thread stops waiting for new clauses and
updates the shared search data. Since the master already enqueued all literals
that have been enqueued by the slave thread, C4 is also unsatisfied with respect
to the shared search data. Finally, the parallel propagation is stopped and the
algorithm proceeds with conflict analysis.

3.3 Implementation Details

The most critical point in a parallel algorithm is blocking another threads’ exe-
cution. The implementation of the presented algorithm needs only a single lock.
This lock manages the write access on the only shared variable, namely the
global conflict indicator. The remaining communication is lock free. It is not
wait free, because blocking a single thread results in waiting for this thread by
all the other threads to ensure that all threads propagate all implied variables.

The implementation is based on shared memory systems. A thread can read
from propagation queues of other threads to update its search data. Whenever
the size of a queue is increased, the element can always be read by other threads,
because the element is written before updating the size. A literal is never removed
from a queue, so that all threads can always read all literals that have been or
are in this queue. If a thread Ti wants to synchronize its propagation queue
with the new literals of Tj , it can simply read the size of Tj ’s queue and read
all the literals and the corresponding reason information. This implementation
is possible, because the write order to memory is not changed with respect to
the algorithm. As stated in the four enqueue steps in Section 3.1, the reason
information is written before the propagation queue is updated, so that the
needed data is always available, before the queue size indicates new data.

The read on shared memory is also applied to check the state of other threads.
If Ti wants to check whether all threads have already propagated all literals, it
checks whether the size of all propagation queues is the same and whether all
threads propagated all literal as indicated by their queue indexes.

4 Experiments

The parallel unit propagation has been implemented into the SAT solver riss [13].
The evaluation has been done in two stages. The UP algorithm used in [13]
treats binary clauses specially. This is not done for the parallel UP. Instead,
binary clauses are stored implicitly in the watch list [6]. The resource utiliza-
tion of riss has been studied in [10]. Adding another thread that executes UP
increases the load on the memory architecture. To reduce this load, the intro-
duced prefetching has been disabled.

4.1 Instantiation of the Algorithm

The function Assign is set such that it distributes the clauses of the original
formula in an alternating fashion. Learned clauses are also spread this way. As
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Configuration Seq1 D1 D2 D3 D4 D5 Q1 Q2 Q3 Q4 Q5

Threads 1 2 (Dual) 4 (Quad)

Solved instances 38 41 38 38 38 40 40 38 39 41 39

Avg. user time (s) 1737 1565 1630 1589 1700 1596 1668 1634 1657 1714 1678

Avg. CPU time (s) 1737 2672 2776 2688 2927 2743 5196 5131 5136 5327 5177

Any instances 38 45 47

All instances 38 30 27

User time Std.Dev. 0% 32.98% 31.27%

Propagations∗ 5.48 4.69 4.41 4.86 5.76 4.71 5.24 5.13 4.85 5.22 4.92

UP time 79% 78% 78% 76% 78% 78% 78% 79% 77% 78% 76%

Common - 27 23

All speedup 1 1.06 1.11

Any speedup 1 1.10 1.05

System time 0% 1.5% 5.32%

Table 1: Scalability Experiment Summary; ∗in million

long as no removal is scheduled, this simple scheme should reach a good load
balancing. After several removals it might be the case, that Ti has to propagate
only original clauses and Tj still has all its learned clauses. This unbalanced
load could be removed by re-distributing some clauses. There might be several
approaches for the instantiation of the Assign function. For simplicity, the al-
ternating scheme has been kept although load balancing might perform better.

The variable assignment order highly influences the performance of the search,
because it determines the order of resolution steps during conflict analysis. Thus,
different clauses are learned and the search continues in a different part of the
search space. These different clauses and the different search space complicate
the comparison of two parallel executions and can result in super linear speedup.
To obtain a better result, parallel configurations are run several times.

4.2 Measuring Scalability

For finding a good number of threads for the algorithm, a subset of instances
of the SAT Competition 2009 Application benchmark has been selected. The
49 instances, which could be solved between 15 and 120 minutes by either riss,
the sequential algorithm or the parallel algorithm with two threads have been
selected. For these instances, a configuration Dual with two thread and a config-
uration Quad with four threads have been tested with a timeout of 60 minutes.
To overcome the repeatability problem of parallel programs, each configuration
has been executed five times, resulting in runs D1, . . . , D5 with two threads and
Q1, . . . , Q5 with four threads. Many measurements have been collected and are
given in Table 1.2. The experiments have been executed on a cluster with AMD
Opteron 285 CPUs from 2006.

The first comparison is done on the number of solved instances. On average,
both parallel configurations can solve at least one instance more than the se-

2 More details per instance can be found at http://www.ki.inf.tu-dresden.de/

~norbert/paperdata/POS2011.html.

http://www.ki.inf.tu-dresden.de/~norbert/paperdata/POS2011.html
http://www.ki.inf.tu-dresden.de/~norbert/paperdata/POS2011.html
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quential solver. The expected reduction of the user time (wall clock) by using
another thread does not occur. Instead, the parallel configurations use almost as
much time as Seq1. Comparing the time that has been really used for computa-
tion (CPU time), the values are not twice as much as the CPU time of Seq1 nor
the wall clock time of the configuration itself, because during conflict analysis
or preprocessing, only a single core is used. Comparing the number of instances,
that could be solved by any solver with a certain configuration, it can be seen,
that using more cores results in the higher number, namely 38, 45 and 47 with
one, two and four threads. However, comparing the number of instances that
have been solved by all solvers with the same configuration, the picture is the
other way around. The effect can be explained with the high variance, namely a
third of the average runtime of the parallel solvers.

Since the algorithm parallelizes UP, the number of method calls is also pre-
sented. Seq1 call this method most often, which leaves room for more discussion
whether the parallel execution has a beneficial propagation order. By looking at
the ratio of the time, the solvers spend for UP, it can be seen that the paralleliza-
tion does not improve the performance of UP significantly. There is no relation
between the number of calls and the relative time consumption. To calculate the
speedup, only the mutually solved instances can be taken into account. Comput-
ing the speedup for instances that could be solved by all parallel configurations
(All speedup), the value 1.06 for two threads is not much lower than 1.11 for
four threads. For instances, that could be solved by at least one configuration
(Any speedup), the difference is the other way around. Using two threads (1.1)
outperforms using four threads (1.05). A reason for this effect could be the ratio
the parallel solver spend in the system to manage the threads. On average, Dual
spends 1.5% of its runtime in the system without proceeding with the algorithm
but just waking up threads or stopping them again. This time almost quadruples
to 5.32% for Quad. Based on this measurement it can be concluded that there
will not be much more performance gain by adding more cores, if the implemen-
tation of the algorithm is not improved, for example by spin locks. Since the
differences between using two or four cores are not significant, we claim that two
threads are the most efficient instantiation for the algorithm on current comput-
ing platforms with the current implementation. Thus, a combination with other
parallel approaches can double the number of used cores.

4.3 Measuring Performance

For comparing the system to the most recent competition, the remaining used
heuristics of the solver are set to the same settings as used for the SAT Race 2010.
The benchmark of the SAT Race 2010 with 100 instances is used to measure the
performance of the parallel algorithm. The results are not comparable to the
results of riss in the SAT Race, because the algorithm of the unit propagation
has been changed. The used computing system is similar to the one used in
the SAT Race. The CPU is an Intel Core 2 Quad Q9450 with 6MB L2 Cache
and 4GB main memory. The timeout for the experiments has been set to 900
seconds. To compare the performance of the introduced approach, the algorithm
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Configuration Seq1 D1 D2 D3 Median

Solved instances 48 61 64 68 83

Average runtime 191.721 219.941 193.019 215.212 239.66

Table 2: Experiment Summary

Solved instances Average speedup Maximal speedup D1 speedup Median speedup

41 1.091 1.578 1.28 1.3

Table 3: Speedup on solved instances

is run with one thread and with two threads, because Section 4.2 showed that
additional threads do not lead to major improvements. The repeated runs of the
settings are limited because we do not have a cluster with these CPUs available.

For solving a single instance, the most interesting measurement is the run-
time. However, a threshold is introduced to cut off instances that would take too
long. Thus, there is another measurement, namely the number of instances that
can be solved within a specified timeout. A user of the solver will only see the
performance of a single run, because it is sufficient to find a solution for a given
instance once. Therefore, this result needs to be treated specially.

Table 2 shows the runtime of the configurations. Median has been introduced
to represent the median of the three configurations. Due to race conditions, dif-
ferences in the parallel execution occur. The sequential configuration solves 48
instances whereas any parallel configuration solves at least 13 more instances.
Usually, the average runtime increases with the number of solved instances, be-
cause more difficult instances have been solved. Surprisingly, D2 has solved more
instances than D1 with a lower average runtime. This effect can be explained
with the high standard deviation of the parallel runs on the same instance.

For analyzing speedup and efficiency, only instances that could be solved by
all configurations can be used. The results are given in Table 3. All configurations
solved 41 instances. Seq1 can solve 7 instances that have not been solved by all
parallel solvers. On the other hand, another 20 instances can be solved by using a
second thread. The average speedup on mutually solved instances is very close to
1 so that the efficiency is 0.5. Still, the overall efficiency of the presented approach
is higher, because the parallel algorithm solved more instances. If always the
fastest parallel run would occur, the average speedup would increase to 1.57. This
is very close to the upper bound of 1.66 that is specified by Amdahl’s law [2],
if no super linear speedup could be obtained. Using only the first of the three
runs, as it would be done in practise, results in a speedup of 1.28. The median
solver can solve 45 instances that can also be solved by Seq1. The speedup of
this solver is 1.3 and shows, that the parallelization yields a performance boost.
Since unit propagation is an algorithm that is P-complete, it is hard to find
a scalable paralellization with an efficiency close to 1. By tuning the Assign
function and by introducing dynamic load balancing there is room to improve
the presented work. Still, parallelizing UP helps to exploit a higher number of
cores than dropping this technique.
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5 Related Work

There are several approaches for solving SAT in parallel. The most commonly
used approach during recent competitions is the portfolio based approach: Sev-
eral configurations of a SAT solver are chosen and run in parallel. Achieving that
the combination is faster than the best solver, learned clauses are shared among
configurations. A well known implementation of this approach is ManySAT [9].

Dividing the search space based on guiding path is done in e.g. Pminisat [1]
and c-sat [15]. After splitting, workers process the sub spaces and share informa-
tion. Most of these approaches are implemented for computing clusters such that
many CPUs can be used. Although this approach scales well with respect to the
number of CPUs, its performance does not necessarily increase, because after
splitting the resulting sub formulas are not always easier to solve. Furthermore,
it is hard to prove unsatisfiability if one of the workers does not finish its work,
for example because of a timeout.

To overcome these two issues [11] splits the search space as well, but also
solves the original formula. This separation is repeated for all nodes in the tree
that is used to split the search space. Thus, the parallel solver is at least as fast
as solving the formula sequentially. Furthermore, if only a single worker fails to
prove unsatisfiability it might be still possible to prove unsatisfiability based on
the results of the original formula. Sharing clauses has not been enabled yet.

Similarly, the search space is split and explored by multiple threads in [21],
where each thread that works on a node of the tree can either explore the whole
subtree, apply UP once, or simply compute the next branching variable. The
work steps are more fine grained, than in [11].

Another splitting technique has been used in [18]. The variables of the formula
are split into two sets. The third set of variables is the intersection of these
two sets. By finding all models for the first two sets it is possible to find a
combination, that also satisfies the third set. A drawback of this solution is,
that more than one model for the subsets has to be found.

6 Conclusion and Future Work

In this paper a new approach to parallelize SAT solving by splitting the clause
database is presented. The aim is to speed up the solving process by utilizing
more processing units. The parallelization is based on independent unit prop-
agation among several processors. The main problems are to keep the order of
propagated literals consistent and to keep soundness. To overcome these issues,
the algorithm restricts the synchronization order and stops propagation only if
all processors reached a fix point after propagating all implied literals.

The benchmark of the SAT Race 2010 has been used for experiments. The
parallelization can solve at least 61 instances whereas the sequential run can
solve only 48 instances. The measured speedup of 1.28 is a good starting point
for further development. The presented algorithm is a powerful extension for
recent parallelizations of SAT, because it can be integrated into common par-
allelizations, e.g. the portfolio and the search space splitting approach. On a
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subset of the SAT Competition 2009 Application benchmark it has been shown
that using more than 2 thread does not lead to additional improvements. Still,
existing approaches can be extended by the presented technique to use twice as
many cores as at the moment.

Finding a good distribution for the clause database is considered a hard
task. The aim is to provide each thread with a set of clauses such that the
communication among the threads can be reduced. The shared search data could
be improved by the data that is found in all threads. One example for this
improvement could be the selection of a shorter reason clause. Removing learned
clauses should also result in load balancing with the result that all threads
maintain a similar amount of clauses. These steps are considered future work.

Developing a state-of-the-art SAT solver is not easy if all the modern tech-
niques are taken into account, e.g. [20,16]. Tools to test the solver can be used to
find bugs in the solver [5]. However, having a proven SAT solver would be much
more convenient, because in this case only the small extensions would have to be
proved. Developing extensions would be much easier. It would also be possible
to prove the correct behavior of the presented parallel unit propagation formally
and thus in a way that is easier to understand.

More future work needs to be done by analyzing and improving the resource
utilization of parallel SAT solvers. The presented approach has also to be com-
bined with the current most used approach: the portfolio approach. Provided
with a solver that can efficiently solve SAT instances in parallel, its utilization
can be analyzed and improved for modern memory architectures. Scalability
plays a huge role and is the main aim of our current research. We know that we
will not reach a good scalability by only parallelizing UP, but it is a first nice
extension for existing approaches.
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