TECHNISCHE <& International Center @-?Computahonql

DRDERSTAT W for Computational Logic ‘,I-.D Logic - Group

Sebastian Rudolph
International Center for Computational Logic
TU Dresden

Existential Rules — Lecture 7

Adapted from slides by Andreas Pieris and Michaél Thomazo
Summer Term 2023

BCQ-Answering: Our Main Decision Problem

database (aka ABox)

knowledge base

YN

N

ontology (aka V @
s \i/

VXYY (o(X,Y) = 3Z (X,2Z))

decide whether DA 2 E Q

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 2

Termination of the Chase

* Drop the existential quantification
o We obtain the class of full existential rules

o Very close to Datalog
v

» Drop the recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

v

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 3

Sum Up

Data Complexity

Naive algorithm
FULL PTIME-c

Reduction from Monotone Circuit Value problem
ACYCLIC in LOGSPACE | Not covered here

Combined Complexity

Naive algorithm
FULL EXPTIME-c

Simulation of a deterministic exponential time TM

Small witness property
ACYCLIC NEXPTIME-c

Reduction from Tiling problem
é@?’, Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 4

Recall our Example

D—""""+
person(Alice)

VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

chase(D,2) = D U {hasParent(Alice, z4), Person(z,),

hasParent(z4, z,), Person(z,),

hasParent(z,, z3), Person(zs), ...

Existential quantification & recursive definitions

are key features for modelling ontologies

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 5

Linear Existential Rules

 Alinear existential rule is an existential rule of the form
VXYY (P(X,Y) —» 3Z ¢(X,2))

where P(X,Y) is an atom (which is trivially a guard)
« We denote LINEAR the class of linear existential rules

* Alocal property - we can inspect one rule at a time
= given X2, we can decide in linear time whether Z € LINEAR
= 241 € LINEAR, 2, € LINEAR = (2 U 2,) € LINEAR

« Strictly more expressive than DL-Lite

 Infinite chase - VX (Person(X) — 3Y (hasParent(X,Y) A Person(Y)))

« But, BCQ-Answering is decidable - the chase has finite treewidth

[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 6

Chase Graph

The chase can be naturally seen as a graph - chase graph

R(a,b) S(b)
D = {R(a,b), S(b)} | >
R(z4,a) S(a)

s) IV RXY)AS(Y) > IZREZX)) v><
VXYY (R(X,Y) — S(X)) E :

For LINEAR, the chase graph is a forest

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 7

Bounded Derivation-Depth Property

D

For LINEAR, k= |Q| - m

chase(D,%) with m = |sch(Z)| - (2 - maxarity)maxarity

depth k
/ o h \ k does not depend on D

chase graph up to depth k

v

chase(D,2) E Q = chaseXD,2)F Q

7'
5 .
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 8

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

Proof (cont.):

At each step we need to maintain
« O(|Q]) atoms

« Acounter ctr < (|Q|)? - |sch(X)| - (2 - maxarity)maxarity

« Thus, we need polynomial space

 The claim follows since NPSPACE = PSPACE

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 9

Combined Complexity of LINEAR

Theorem: BCQ-Answering under LINEAR is in PSPACE w.r.t. the combined

complexity

We cannot do better:

Theorem: BCQ-Answering under LINEAR is PSPACE-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic polynomial space Turing machine

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 10

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input
string / using a database D, a set 2 € LINEAR, and a BCQ Q such that

D A ZEQ iff Maccepts /using at most n = (|/|)* cells

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 11

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

Initial configuration - the database D

Config(sinit,01,...,0m,,...,11,1,0,...,0)

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 12

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

Transition rule - 93(s4,a) = (s5,3,+1)

foreachie {1,...,n}:

VX (Config(s1,X1,...,X,-_1,G,X,-+1,...,Xn,0,...,0,1, O,,O) —>
COnﬁg(Sz,X1,...,X,‘_1,B, X,‘+1,...,Xn,0 0,1, 0 O))
\// \//

n-i-1

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 13

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L/}

» Suppose that M halts on / = a;... a,, using n = mk cells, for k>0

D A 2 E dX Config(sae..,X) iff Maccepts /

...but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 14

PSPACE-hardness of LINEAR

Initial configuration - the database D

auxiliary constants for the states

and the tape alphabet

"

Config(sini,a1,...,0m,,...,1,1,0,...,0,84,...5,,0,1, LI)

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 15

PSPACE-hardness of LINEAR

Transition rule - 8(s4,0) = (so,U,+1)

foreachie {1,...,n}:

Config(S1 ,X1 yeun ,X,'_1 ,Z,X,‘+1 yenn ,Xn,Z, e ,Z,O,Z, . ,Z,S1 ye s .Sg,Z,O,B) —>
COnﬁg(SQ,X1 yeun ,X,'_1 ,B, X,'+1 yenn ,Xn,Z, ... ,Z,O,Z, - ,Z, S1 . .Sg,Z,O,B)
\\// \\//

i n-i-1

(V-quantifiers are omitted)

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 16

Sum Up

Data Complexity
Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC
in LOGSPACE | Second part of our course
LINEAR
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC NEXPTIME-c
Reduction from Tiling problem
Level-by-level non-deterministic algorithm
LINEAR PSPACE-c
” Simulation of a deterministic polynomial space TM
fﬁﬁ" Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 17

Forward Chaining Techniques

D

chase(D,2)

Useful techniques for establishing optimal upper bounds

...but not practical - we need to store instances of very large size

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 18

Query Rewriting

compilation

Qs [~ . evaluation

First-order query

Union of CQs \
SQL query
Datalog query

evaluated and optimized by
VD : DAN2ZEQ <
exploiting existing technology

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 19

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.
BCQ-Answering under L is Q-rewritable if, for every 2 € L and BCQ Q,
we can construct a query Qs € Q such that,

for every database D, DA 2 E Qiff D F Qs

NOTE: The construction of Qs is database-independent — the pure approach

to query rewriting

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 20

Issues in Query Rewriting

« How do we choose the target query language?
« How the ontology language and the target query language are related?
« How we construct such rewritings?

« What about the size of such rewritings?

the above issues, and more, will be covered next...

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 21

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X v v v
LINEAR X v v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 22

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X v v v
LINEAR X v v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 23

Target Query Language

Theorem: BCQ-Answering under L, where L € {FULL, ACYCLIC, LINEAR}, is not
CQ-rewritable

Proof:

It suffices to construct a set 2 € L and a CQ Q for which the following holds:
there is no CQ Qs such that for every database D, DA Z E Qiff DE Qs

Let & = {vX (P(X) —> S(X))} and Q = S(a)

Clearly, for every database D, D A 2 E S(a) iff DE P(a) v S(a)

Assume there exists a CQ-rewriting Qs

Since P(a) Vv S(a) is a rewriting, P(a) > Qs or S(a) - Qs

(— denotes the existence of a homomorphism)

Moreover, since Qs is a rewriting, Qs — P(a) and Qs — S(a)

Therefore, S(a) —» P(a) or P(a) — S(a), which is a contradiction

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 24

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X 4 v v
LINEAR X 4 v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 25

Union of Conjunctive Queries (UCQ)

A union of conjunctive queries (UCQ) is an expression

Y (04(X,Y) V ... v 3Y (2,(X,Y))

« Xand Y are tuples of variables of V

* v (X,Y) is a conjunctive query

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 26

Union of Conjunctive Queries (UCQ)

A union of conjunctive queries (UCQ) is an expression

Y (04(X,Y) V ... v 3Y (2,(X,Y))

g - _ ~ ~ ~/
Q; Qn
Q(J) = Ukeq,...m Qi)

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 27

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X 4 v v
LINEAR X 4 v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 28

Target Query Language

> = {YX (P(X) = T(X)), ¥XVY (R(X,Y) = S(X))}

Q = 3IX3Y (S(X) A UX,Y) A T(Y))

Qs = 3X3Y (S(X) A UCX,Y) A T(Y))
V
IX3Y (S(X) A UCX,Y) A P(Y))
V
IX3AYIZ (R(X,Z) A UX,Y) A T(Y))
V
IX3AYIZ (R(X,Z) A UX,Y) A P(Y))

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 29

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X v v v
LINEAR X v v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 30

Target Query Language

2 = {VXYY (R(X,Y) A P(Y) - P(X))}

Q = P(c) Qs = P(c)

Y1 (R(c,Y1) A P(Y4))
V
E|Y1E|Y2 (R(C,Y1) A\ R(Y1,Y2) A\ P(Yz))
V
Y ,3Y,3Y5 (R(c,Y4) A R(Y1,Y2) A R(Y5,Y3) A P(Y3))
V

« This cannot be written as a finite UCQ (or even FO query)
* It can be written as IX3Y (R(c,X) A R*(X,Y) A P(Y)), but transitive closure

is not FO-expressible

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 31

Target Query Language

Theorem: BCQ-Answering under FULL is not UCQ-rewritable

Proof 1:

» Transitive closure is not FO-expressible

Proof 2:

* Via a complexity-theoretic argument

* Assume that BCQ-Answering under FULL is UCQ-rewritable

« Thus, BCQ-Answering under FULL is in ACyw.r.t. to the data complexity
« BCQ-Answering under FULL is PTIME-hard w.r.t. to the data complexity
 Therefore, ACy = PTIME which is a contradiction

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 32

Target Query Language

we target the weakest query language

Datalog
CQ ucQ FO Datalog
FULL X X X v
ACYCLIC X v v v
LINEAR X v v v

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 33

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 34

Normalization Procedure

VXYY (0(X,Y) = 3Z (Py(X,Z) A ... A P(X,Z)))

VXYY (0(X,Y) = 3Z Auxiliary(X,Z))
VXVZ (Auxiliary(X,Z) — P1(X,Z))

VXVZ (Auxiliary(X,Z) — P(X,Z))

VXVZ (Auxiliary(X,Z) — P,(X,Z))

NOTE 1: Acyclicity and linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering (not logically equivalent)

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 35

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 36

Rewriting Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3JA3IB hasCollaborator(A,db,B)

g={X—B,Y—>db,Z— A}

hasCollaborator(A,db,B)

Thus, we can simulate a chase step by applying a backward resolution step

Qs = 3A3B hasCollaborator(A,db,B)

V
1B (project(B) A inArea(B,db))

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 37

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

g={X—B,Y—>db,Z— c}

hasCollaborator(c,db,B)

After applying the rewriting step we obtain the following UCQ

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 38

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

« Consider the database D = {project(a), inArea(a,db)}
« Clearly, DE Qs

« However, D A Z does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(c,db,) during the chase

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 39

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(c,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 3-variable

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 40

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

g={X—B,Y—>db, Z— B}

hasCollaborator(B,db,B)

After applying the rewriting step we obtain the following UCQ

Qs = 3B hasCollaborator(B,db,B)
V
1B (project(B) A inArea(B,db))

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 41

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

« Consider the database D = {project(a), inArea(a,db)}
« Clearly, DE Qs

« However, D A Z does not entail Q since there is no way to obtain an atom of
the form hasCollaborator(t,db,t) during the chase

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 42

Unsound Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X))}

Q = 3B hasCollaborator(B,db,B)

Qs = 3B hasCollaborator(c,db,B)
V
1B (project(B) A inArea(B,db))

the fact that B in the original query participates in a join is lost after the application

of the rewriting step since B is unified with an 3-variable

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 43

Applicability Condition
Consider a BCQ Q, an atom a in Q, and a (normalized) rule o.

We say that o is applicable to a if the following conditions hold:

1. head(o) and a unify via h : terms(head(o)) U terms(a) — terms(a)

2. For every variable X in head(o), if h(X) is a constant, then X is a V-
variable

3. For every variable X in head(o), if h(X) = h(Y), where Y is a shared
variable of a, then X is a V-variable

4. If Xis an 3-variable of head(o), and Y is a variable in head(o) such
that X #Y, then h(X) # h(Y)

...but, although is crucial for soundness, may destroy completeness

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 44

Incomplete Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))
V
JAIB3C3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))

« Consider the database D = {project(a), inArea(a,db)}

» Clearly, chase(D,2) = D U {hasCollaborator(z,db,a), collaborator(z)} E
Qs

j-g‘.;'However, D does not entail Qs

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 45

Incomplete Rewritings

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B4C (hasCollaborator(A,B,C) A collaborator(A))
V
JA3IBdC3E3F (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V
dB3C (project(C) A inArea(C,B))

...but, we cannot obtain the last query due to the applicablity condition

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 46

Minimization Step

= {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

V
JA3IBJC3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))

N/

hasCollaborator(A,B,C)

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 47

Minimization Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))
V
JAIBJC3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V
JAIB4C (hasCollaborator(A,B,C)) - by minimization

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 48

Minimization Step

2 = {VXVY (project(X) A inArea(X,Y) — 3Z hasCollaborator(Z,Y,X)),
VYXVYVZ (hasCollaborator(X,Y,Z) — collaborator(X))}

Q = 3JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

Qs = JA3B3C (hasCollaborator(A,B,C) A collaborator(A))

V

JAIB3C3EdF (hasCollaborator(A,B,C) A hasCollaborator(A,E,F))
V

JAIB4C (hasCollaborator(A,B,C)) - by minimization
V

IB4C (project(C) A inArea(C,B)) - by rewriting

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 49

UCQ-Rewritings

« The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

« The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 50

The Rewriting Algorithm

Qs = Q;
repeat
Qaux = Qs;
foreach disjunct g of Q,,, do
/IRewriting Step
foreach atom a in g do
foreach rule o in 2 do
if 0 is applicable to a then
Qrew .= rewrite(q,a,0); //we resolve a using o
if .., does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qrems
/IMinimization Step
foreach pair of atoms a,3 in g that unify do
Qmin -= mMinimize(q,a,B); //we apply the MGU of a and B on g
if 9.ni» does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qminy

until Qaux = QZ;

return Qz;
G
1!-"

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 51

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

« Key observation: after arranging the disjuncts of the rewriting in a tree T, the
branching of T is finite, and the depth of T is at most the number of predicates
occurring in the rule set

« Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

[9 Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 52

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

« Key observation: the size of each partial rewriting is at most the size of the
given CQ Q

« Thus, each partial rewriting can be transformed into an equivalent query that
contains at most |Q| - maxarity variables

« The number of queries that can be constructed using a finite number of
predicates and a finite number of variables is finite

« Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

7'
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 53

Complexity of BCQ-Answering

Data Complexity

Naive algorithm
FULL PTIME-c
Reduction from Monotone Circuit Value problem
ACYCLIC
in LOGSPACE | UCQ-rewriting
LINEAR
Combined Complexity
Naive algorithm
FULL EXPTIME-c
Simulation of a deterministic exponential time TM
Small witness property
ACYCLIC NEXPTIME-c
Reduction from Tiling problem
Level-by-level non-deterministic algorithm
LINEAR PSPACE-c
” Simulation of a deterministic polynomial space TM
fﬂﬁ" Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 54

Size of the Rewriting

 Ideally, we would like to construct UCQ-rewritings of polynomial size
« But, the standard rewriting algorithm produces rewritings of exponential size

e« Can we do better? NO!!!

2 = {VX(RX) = PX)}ket,..n) Q = AX(P1(X) A ... A Py(X))

IX (P4(X) A ... A Py(X))

/ N\

P1(X) v Ri(X) Pn(X) vV Ry(X)

thus, we need to consider 2" disjuncts

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 55

Size of the Rewriting

|deally, we would like to construct UCQ-rewritings of polynomial size

But, the standard rewriting algorithm produces rewritings of exponential size

Can we do better? NO!!!

Although the standard rewriting algorithm is worst-case optimal, it can

be significantly improved

Optimization techniques can be applied in order to compute efficiently

small rewritings - field of intense research

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 56

Minimization Step Revisited

2 = {VX(P(X) - 3Y R(X,Y))}

Q =3JA,...3A,3B (S1(A)) A R(A1,B) A ... A S(An) A R(A,,B))

exponentially many minimization steps must be applied in order to get the query
JA3B (S1(A) A ... A S,(A) A R(A,B))
and then apply the rewriting step, which will lead to the query

IA (S1(A) A ... A Sy(A) A P(A))

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 57

Minimization Step Revisited
S = (VX (P(X) - 3Y RX,Y))}

Q =3A;...3A,3B (S1(A1) A R(A1,B) A ... A Si(A,) A R(A,,B))

Piece-based Rewriting
» Instead of rewriting a single atom

» Rewrite a set of atoms that have to be rewritten together

Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 58

Computing the Piece

Input: CQ g, atom a = R(t4,...,t,) in g, rule o
Output: piece of ain gw.rt. o

Piece = {R(t;,....t,)};
while TRUE do
if Piece and head(o) do not unify then
return J;
h := most general unifier of Piece and head(o);
if h violates points 2 or 4 of the applicability condition then
return J;
if h violates point 3 of the applicability condition then
Piece := Piece U {atoms containing a variable that unifies with an 3-variable};
else
return Piece;

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 59

The Piece-based Rewriting Algorithm

Qs = Q;
repeat
Qaux = QZ;
foreach disjunct g of Q,,, do
foreach atom a in g do
foreach rule o in < do
[/IRewriting Step
if 0 is applicable to a then

Qrew .= rewrite(q,a,0); //we resolve a using o
if 9., does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qrems
/IMinimization Step
P .= piece of a in g w.r.t. o;

Qmin := minimize(q,P); //we apply the MGU of P on q
if g.ni» does not appear in Qs (modulo variable renaming) then
Qs = Qs V Qminy
until Qaux = Qz;

return Qz;
G
1!-"

Existential Rules — Lecture 7 — Sebastian Rudolph Slide 60

Termination

2 = {VXYY (R(X,Y) A P(Y) - P(X))}

Q = X PX) @ =3XPX)
3IX3Y, (R(c,vw) A P(Y4))
IX3Y43Y; (R(C,Y1) A I\R’/(Y1,Y2) A P(Y5))
IX3Y,43Y,3Y; (R(C,Y4) A R(Y\:,Yz) A R(Y2,Y3) A P(Y3))
V

» The piece-based rewriting algorithm does not terminate

* However, there exists a finite UCQ-rewritings, that is, X P(X)

...careful application of the homomorohism check

7'
5 |
[Existential Rules — Lecture 7 — Sebastian Rudolph Slide 61

Limitations of UCQ-Rewritability
@ evaluated and optimized by
VD : DANZEFQ <
exploiting existing technology

« What about the size of Qs? - very large, no rewritings of polynomial size
« What kind of ontology languages can be used for 2?7 - below PTIME

= a more refined approach is needed

7Y
[Existential Rules — Lecture 7 — Sebastian Rudolph

Slide 62

