

Reliance-based Static Analysis of Existential Rules

Diploma Thesis (defense) // Dresden, September 18, 2025

 $: \mathbf{student}(x) \longrightarrow \exists y. \mathbf{author}(x,y), \mathbf{thesis}(y)$

Reliances

- When applying ρ_1 , a new unsatisfied match for ρ_2 may occur
- When applying ρ_2 before ρ_1 , redundant nulls may be introduced

[Krötzsch, KR'221

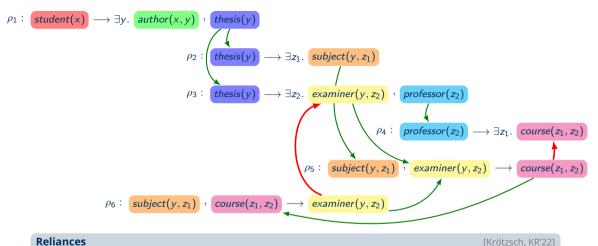
Reliances

When applying ρ_1 , a new unsatisfied match for ρ_2 may occur

• When applying ρ_2 before ρ_1 , redundant nulls may be introduced

[Krötzsch, KR'22]

positive reliance $\rho_1 \stackrel{+}{\prec} \rho_2$



Reliances

When applying ρ_1 , a new unsatisfied match for ρ_2 may occur

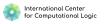
When applying ρ_2 before ρ_1 , redundant nulls may be introduced

positive reliance $\rho_1 \stackrel{\scriptscriptstyle{+}}{\prec} \rho_2$ restraint reliance $\rho_1 \stackrel{\square}{\prec} \rho_2$

- vertices \(\displies\) rules
- labelled edges

 reliance relations, with + for positive reliances and

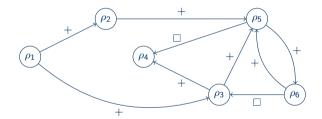
 for restraints



- vertices \(\disp \text{rules}\)
- labelled edges

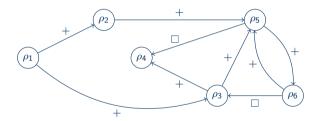
 reliance relations, with + for positive reliances and

 for restraints



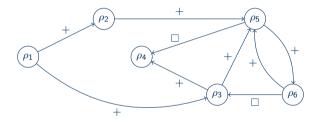


- vertices \(\disp \text{rules}\)
- A **core** is a minimal model (w/o redundancy).



- vertices

 rules
- labelled edges $\hat{=}$ reliance relations, with + for **positive reliances** and \square for **restraints**
- A core is a minimal model (w/o redundancy).
- The **restricted chase** will yield a universal core, when rule selection never violates **restraints**.

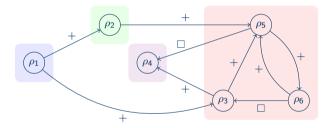


- vertices

 rules
- labelled edges

 eliance relations, with + for positive reliances and

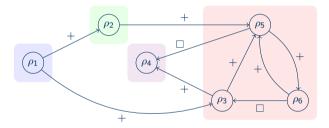
 for restraints
- A core is a minimal model (w/o redundancy).
- The **restricted chase** will yield a universal core, when rule selection never violates **restraints**.



• There is an SCC $\{\rho_3, \rho_5, \rho_6\}$ with restraint edge in the reliance graph.

- vertices

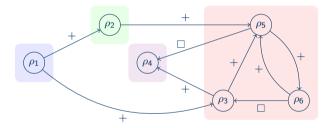
 rules
- labelled edges $\hat{=}$ reliance relations, with + for **positive reliances** and \square for **restraints**
- A core is a minimal model (w/o redundancy).
- The **restricted chase** will yield a universal core, when rule selection never violates **restraints**.



- There is an SCC $\{\rho_3, \rho_5, \rho_6\}$ with restraint edge in the reliance graph.
- The ruleset is not core-stratified!

- vertices

 rules
- labelled edges \triangleq reliance relations, with + for **positive reliances** and \square for **restraints**
- A **core** is a minimal model (w/o redundancy).
- The restricted chase will yield a universal core, when rule selection never violates restraints.



- There is an SCC $\{\rho_3, \rho_5, \rho_6\}$ with restraint edge in the reliance graph.
- The ruleset is not core-stratified! → But a core can still be computed with the restricted chase!

Contractions

Definition

Let $\rho_1:\phi_1\to\psi_1$ and $\rho_2:\phi_2\to\psi_2$ be two rules with distinct variables.

$$ho_3:$$
 thesis(y) $\longrightarrow \exists z_2.$ examiner(y, z₂), professor(z₂)
$$ho_5:$$
 subject(y, z₁), examiner(y, z₂) \longrightarrow course(z₁, z₂)

Contractions

Definition

Let $\rho_1:\phi_1\to\psi_1$ and $\rho_2:\phi_2\to\psi_2$ be two rules with distinct variables.

The *contracted rule* of ρ_1 and ρ_2 for a variable substitution $\eta: \mathbf{V} \to (\mathbf{V} \cup \mathbf{C})$ is

$$\rho_{\rho_1,\rho_2,\eta}^{\oplus}: \quad \underbrace{\phi_1\eta \cup (\phi_2\eta \setminus \psi_1\eta)}_{=\phi^{\oplus}} \longrightarrow \underbrace{\psi_1\eta \cup \psi_2\eta \setminus \phi^{\oplus}}_{=\psi^{\oplus}}$$

Contractions

Definition

We call $\rho_1 \oplus \rho_2$ their *contractions* with

$$\begin{split} \rho_1 \oplus \rho_2 &:= \{ \; \rho_{\rho_1,\rho_2,\eta}^{\oplus} \mid \chi \subseteq \phi_2, \\ & \quad \mu : \chi \to \psi_1, \\ & \quad \eta : \textbf{\textit{V}} \to (\textbf{\textit{V}} \cup \textbf{\textit{C}}) \text{ leftmost MGU of } \chi \mu \text{ and } \chi, \\ & \quad \textit{\textit{var}}_{\exists}(\psi_1 \eta) \cap \textit{\textit{var}}(\phi_2 \eta \setminus \psi_1 \eta) = \varnothing \; \} \end{split}$$

 \oplus ρ_5 :

 $subject(y, z_1)$, $examiner(y, z_2) \longrightarrow course(z_1, z_2)$

$$\rho_3 \oplus \rho_5 = \{ \text{ thesis(y)}, \text{ subject(y, z_1)} \longrightarrow \exists z_2. \text{ examiner(y, z_2)}, \text{ professor(z_2)}, \text{ course(z_1, z_2)} \}$$

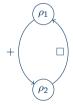
Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \stackrel{\leftarrow}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $var(\rho_1) \cap var(\rho_2 \zeta) = \emptyset$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Symmetry

 $\rho_1: a(x) \longrightarrow \exists v.r(x,v), b(v)$

 $\rho_2: \quad r(x,y) \longrightarrow r(y,x)$



reliance graph $\mathcal{G}(R)$

Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

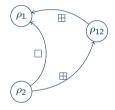
- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \stackrel{\leftarrow}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $var(\rho_1) \cap var(\rho_2 \zeta) = \emptyset$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Symmetry

 $\rho_1: a(x) \longrightarrow \exists v.r(x,v), b(v)$

 $\rho_2: r(x,y) \longrightarrow r(y,x)$

 $\rho_{12}: a(x) \longrightarrow \exists v.r(x,v), b(v), r(v,x)$



contracted reliance graph $\mathcal{G}^{\oplus}(R)$

• There is no restraint cycle in $\mathcal{G}^{\oplus}(R)$. \rightarrow We call R contraction core-stratified!

Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

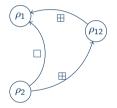
- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \stackrel{+}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $\mathit{var}(\rho_1) \cap \mathit{var}(\rho_2 \zeta) = \varnothing$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Symmetry

 $\rho_1: a(x) \longrightarrow \exists v.r(x,v), b(v)$

 $\rho_2: \quad r(x,y) \longrightarrow r(y,x)$

 $\rho_{12}: a(x) \longrightarrow \exists v.r(x,v), b(v), r(v,x)$



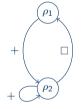
- There is no restraint cycle in $\mathcal{G}^{\oplus}(R)$. \rightarrow We call R contraction core-stratified!
- Here, Comp(R) is sure to be finite, as there is no positive reliance cycle in G(R).
 → But this is not generally the case...

Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \stackrel{\leftarrow}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $var(\rho_1) \cap var(\rho_2 \zeta) = \emptyset$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Transitivity

 $\rho_1: a(x) \longrightarrow \exists v.r(x,v), b(v)$ $\rho_2: r(x,v), r(y,z) \longrightarrow r(x,z)$



reliance graph $\mathcal{G}(R)$

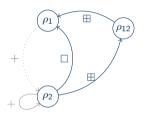
Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \stackrel{+}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $\mathit{var}(\rho_1) \cap \mathit{var}(\rho_2 \zeta) = \varnothing$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Transitivity

$$\rho_1: \quad a(x) \longrightarrow \exists v.r(x,v), b(v)$$
 $\rho_2: \quad r(x,y), r(y,z) \longrightarrow r(x,z)$

$$\rho_{12}: \quad \textbf{a}(\textbf{x}), \textbf{r}(\textbf{x}', \textbf{x}) \longrightarrow \exists \textbf{v}. \textbf{r}(\textbf{x}, \textbf{v}), \textbf{b}(\textbf{v}), \textbf{r}(\textbf{x}', \textbf{v})$$



contracted reliance graph $\mathcal{G}^{\oplus}(R)$

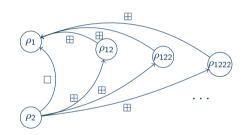
• There is no restraint cycle in $\mathcal{G}^{\oplus}(R)$. \rightarrow We call R contraction core-stratified!

Let the contracted rules completion Comp(R) (for a ruleset R) be the smallest rulesets, s.t.

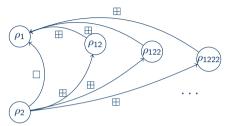
- 1. $R \subseteq Comp(R)$, and
- 2. for any pair $\langle \rho_1, \rho_2 \rangle \in \overset{\leftarrow}{\prec} \cap \mathsf{Comp}(R) \times R$ with minimal renaming ζ , s.t. $\mathit{var}(\rho_1) \cap \mathit{var}(\rho_2 \zeta) = \varnothing$, their contractions $\rho_1 \oplus \rho_2 \zeta \subset \mathsf{Comp}(R)$.

Transitivity

$$\rho_1: \quad a(x) \longrightarrow \exists v. r(x, v), b(v)
\rho_2: \quad r(x, y), r(y, z) \longrightarrow r(x, z)
\rho_{12}: \quad a(x), r(x', x) \longrightarrow \exists v. r(x, v), b(v), r(x', v)
\dots$$

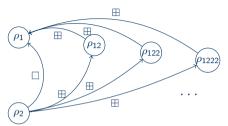


- There is no restraint cycle in $\mathcal{G}^{\oplus}(R)$. \rightarrow We call R contraction core-stratified!
- In this case, there is a positive reliance cycle in $\mathcal{G}(R)$ and Comp(R) is *infinite*.



- Structure of $\mathcal{G}^{\oplus}(R)$ seams regular
- \rightarrow Is it sufficient to consider a finite subgraph?

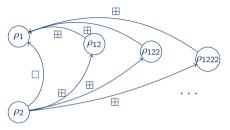
(1)



- Structure of $\mathcal{G}^{\oplus}(R)$ seams regular
- \rightarrow Is it sufficient to consider a finite subgraph?

- Assign each (contracted) rule a set $\operatorname{orig}(\rho^\oplus)$ of sequences over alphabet Σ to track information regarding their formation
- **Idea:** Stop "lengthening" ρ^{\oplus} when all words in $\operatorname{orig}(\rho^{\oplus})$ are of the form uwqwv

(I)



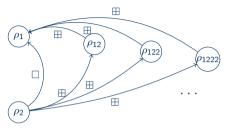
- Structure of $\mathcal{G}^{\oplus}(R)$ seams regular
- \rightarrow Is it sufficient to consider a finite subgraph?

What do we need to show?

- If there is a restraint cycle in $\mathcal{G}^{\oplus}(R)$, then there is a restraint cycle in $\mathcal{G}^{[\oplus]}(R)$
- Rules labeled uwqw and uw can be continued in the same way
- Restraints depend only on first/last letter of labels

- Assign each (contracted) rule a set $\operatorname{orig}(\rho^\oplus)$ of sequences over alphabet Σ to track information regarding their formation
- Idea: Stop "lengthening" ho^\oplus when all words in $\operatorname{orig}(
 ho^\oplus)$ are of the form uwqwv

(I)



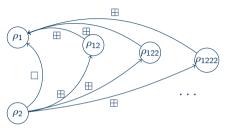
- Structure of $\mathcal{G}^{\oplus}(R)$ seams regular
- \rightarrow Is it sufficient to consider a finite subgraph?

What do we need to show?

- If there is a restraint cycle in $\mathcal{G}^{\oplus}(R)$, then there is a restraint cycle in $\mathcal{G}^{[\oplus]}(R)$
- Rules labeled uwqw and uw can be continued in the same way
- Restraints depend only on first/last letter of labels

- Assign each (contracted) rule a set $\operatorname{orig}(\rho^\oplus)$ of sequences over alphabet Σ to track information regarding their formation
- Idea: Stop "lengthening" ρ^\oplus when all words in $\mathrm{orig}(\rho^\oplus)$ are of the form uwqwv
- **Question:** Which information must be tracked in letters of Σ ?

(I)

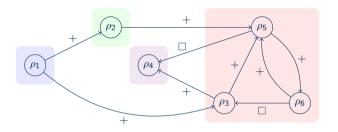


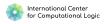
- Structure of $\mathcal{G}^{\oplus}(R)$ seams regular
- \rightarrow Is it sufficient to consider a finite subgraph?

Approaches?

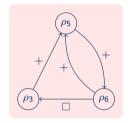
- Σ = R does not work, as the unifier can change internal structure in contractions
- Additionally tracking change of internal structure of component rules is not enough, as "surrounding" atoms in the contraction may prevent positive reliance to other rules
- $\Sigma = 2^{\mathcal{H}} \times 2^{\mathcal{H}}$

- Assign each (contracted) rule a set $\operatorname{orig}(\rho^\oplus)$ of sequences over alphabet Σ to track information regarding their formation
- Idea: Stop "lengthening" ρ^\oplus when all words in $\mathrm{orig}(\rho^\oplus)$ are of the form uwqwv
- Question: Which information must be tracked in letters of Σ ?

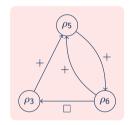




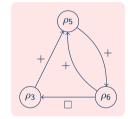
- The head pieces $\tilde{\mathcal{H}}$ are
 - $-\exists z_2. \frac{\mathsf{examiner}(y, z_2)}{\mathsf{examiner}(y, z_2)}$, professor(z_2)
 - $course(z_1, z_2)$
 - examiner (y, z_2)



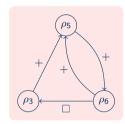
- The head pieces $\tilde{\mathcal{H}}$ are
 - $-\exists z_2. \frac{\mathsf{examiner}(y, z_2)}{\mathsf{professor}(z_2)}$
 - $course(z_1, z_2)$
 - examiner (y, z_2)
- Variables are $\{y, z_1, z_2\}$
 - Replace the existentials in $\tilde{\mathcal{H}}$ with fresh variables
 - Consider all mappings of frontier variables in $\tilde{\mathcal{H}}$ to other variables



- The head pieces $ilde{\mathcal{H}}$ are
 - $-\exists z_2.$ examiner (y, z_2) , professor (z_2)
 - $course(z_1, z_2)$
 - examiner (y, z_2)
- Variables are $\{y, z_1, z_2\}$
 - Replace the existentials in $\tilde{\mathcal{H}}$ with fresh variables
 - Consider all mappings of frontier variables in $\tilde{\mathcal{H}}$ to other variables
- The head images H are
 - examiner $(y, \tilde{z_2})$, professor $(\tilde{z_2})$
 - examiner $(z_1, \tilde{z_2})$, professor $(\tilde{z_2})$
 - examiner $(z_2, \tilde{z_2})$, professor $(\tilde{z_2})$
 - 9 options for $course(z_1, z_2)$
 - 9 options for examiner (y, z_2)



- The head pieces $ilde{\mathcal{H}}$ are
 - $-\exists z_2. \frac{\mathsf{examiner}(y, z_2)}{\mathsf{examiner}(y, z_2)}$, professor(z_2)
 - $course(z_1, z_2)$
 - examiner (y, z_2)
- Variables are $\{y, z_1, z_2\}$
 - Replace the existentials in $\tilde{\mathcal{H}}$ with fresh variables
 - Consider all mappings of frontier variables in $\tilde{\mathcal{H}}$ to other variables
- The head images ${\cal H}$ are
 - $examiner(y, \tilde{z_2}), professor(\tilde{z_2})$
 - examiner $(z_1, \tilde{z_2})$, professor $(\tilde{z_2})$
 - examiner $(z_2, \tilde{z_2})$, professor $(\tilde{z_2})$
 - 9 options for $course(z_1, z_2)$
 - 9 options for examiner (y, z_2)
- ightarrow The alphabet $oldsymbol{\Sigma}=2^{oldsymbol{\mathcal{H}}} imes2^{oldsymbol{\mathcal{H}}}$ tracks
 - ... the head images contributed to the head of the contracted rule by the second rule
 - ... the head images that are necessarily satisfied



(III)

- The head pieces $ilde{\mathcal{H}}$ are
 - $-\exists z_2. \frac{\mathsf{examiner}(y, z_2)}{\mathsf{examiner}(y, z_2)}$, professor(z_2)
 - course(z_1, z_2)
 - examiner (y, z_2)

Repetition

```
\begin{aligned} \text{Orig}(\rho_{3565}) &= \{ \langle \{ \{\exists \tilde{z}_2. examiner(y, \tilde{z}_2), professor(\tilde{z}_2) \} \}, \{ \{\exists \tilde{z}_2. examiner(y, \tilde{z}_2), professor(\tilde{z}_2) \}, \{ examiner(y, z_2) \} \} \rangle \\ &\qquad \qquad \langle \{ \{examiner(y, z_2) \} \}, \{ \{\exists \tilde{z}_2. examiner(y, \tilde{z}_2), professor(\tilde{z}_2) \}, \{ examiner(y, z_2) \} \} \rangle \\ &\qquad \qquad \langle \{ course(z_1, z_2) \}, \{ course(z_1, z_2) \} \rangle \} \end{aligned}
```

- \rightarrow The alphabet $\Sigma = 2^{\mathcal{H}} \times 2^{\mathcal{H}}$ tracks
 - ... the head images contributed to the head of the contracted rule by the second rule
 - . . . the head images that are necessarily satisfied



Assumptions:

R is . . .

- · universally terminating and
- SCC-contraction core-stratified

Strategy:

Assumptions:

R is . . .

 Λ_i is the set of all triggers for rules from R in chase step i

- universally terminating and
- SCC-contraction core-stratified

Strategy:

Assumptions:

R is . . .

universally terminating and

• SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step $i \to \text{fixed-point computation}$

Strategy:

R is . . .

universally terminating and

· SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step i

 \rightarrow fixed-point computation

Strategy:

- 1. Apply triggers for datalog rules as early as possible
 - → This cannot cause (additional) alternative matches!

R is . . .

universally terminating and

· SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step i

 \rightarrow fixed-point computation

Strategy:

- 1. Apply triggers for datalog rules as early as possible
 - → This cannot cause (additional) alternative matches!
- Let R_1, \ldots, R_n be a topological sorting of the SCCs of the reliance graph $\mathcal{G}(R)$

R is . . .

universally terminating and

· SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step i

 \rightarrow fixed-point computation

Strategy:

1. Apply triggers for datalog rules as early as possible

 \rightarrow This cannot cause (additional) alternative matches!

• Let R_1, \ldots, R_n be a topological sorting of the SCCs of the reliance graph $\mathcal{G}(R)$

R
 is the union of SCCs without restraint edges

R is . . .

universally terminating and

· SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step $i \to \text{fixed-point computation}$

Strategy:

1. Apply triggers for datalog rules as early as possible

- ightarrow This cannot cause (additional) alternative matches!
- Let R_1, \ldots, R_n be a topological sorting of the SCCs of the reliance graph $\mathcal{G}(R)$
- \tilde{R} is the union of SCCs without restraint edges
- Only consider triggers for rules that belong to R_i , if there is no j < i, s.t. there are triggers for R_j

R is . . .

universally terminating and

· SCC-contraction core-stratified

 Λ_i is the set of all triggers for rules from R in chase step i

 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step $i \to \text{fixed-point computation}$

Strategy:

1. Apply triggers for datalog rules as early as possible

ightarrow This cannot cause (additional) alternative matches!

• Let R_1, \ldots, R_n be a topological sorting of the SCCs of the reliance graph $\mathcal{G}(R)$

• \tilde{R} is the union of SCCs without restraint edges

• Only consider triggers for rules that belong to R_i , if there is no j < i, s.t. there are triggers for R_j

2. In case $R_i \subseteq \tilde{R}$, select any of these triggers

ightarrow Like with core-stratified rulesets, no restraints are violated!

R is . . .

universally terminating and

· SCC-contraction core-stratified

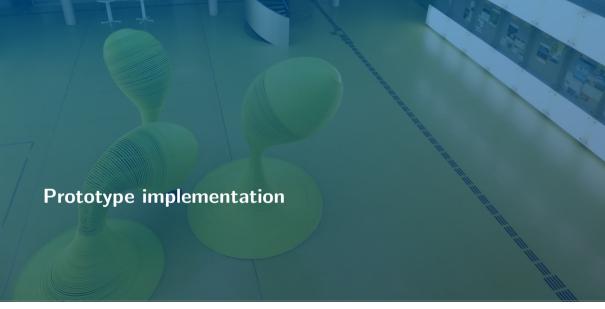
 Λ_i is the set of all triggers for rules from R in chase step i

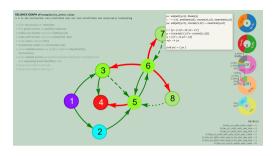
 Λ_i^{\oplus} is the set of all triggers for rules from Comp(R) in chase step $i \to \text{fixed-point computation}$

Strategy:

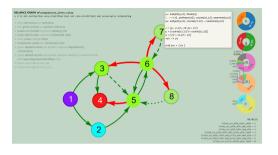
1. Apply triggers for datalog rules as early as possible

- \rightarrow This cannot cause (additional) alternative matches!
- Let R_1, \ldots, R_n be a topological sorting of the SCCs of the reliance graph $\mathcal{G}(R)$
- \tilde{R} is the union of SCCs without restraint edges
- Only consider triggers for rules that belong to R_i , if there is no j < i, s.t. there are triggers for R_j
 - 2. In case $R_i \subseteq \tilde{R}$, select any of these triggers
 - ightarrow Like with core-stratified rulesets, no restraints are violated!
 - 3. Otherwise, select only the triggers of R_i that are leader of contracted triggers whose rules are not restrained by other contracted triggers
 - $\rightarrow \text{Applying such a trigger will } \underline{\text{not}} \text{ lead to future appearance of new triggers that restrain the selected trigger!}$
 - As the restraint relation of $\mathcal{G}^{\oplus}(R)$ is acyclic by assumption, at least one selection is always possible!



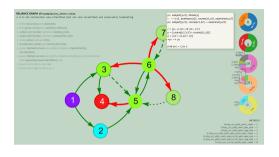


- 1,913 lines of Python code
- Prototypical
 (Not fully optimized for efficiency yet)
- Interactive visualization of the finite contracted reliance graph



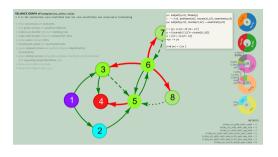
- 1,913 lines of Python code
- Prototypical
 (Not fully optimized for efficiency yet)
- Interactive visualization of the finite contracted reliance graph

- 1. Compute $\mathcal{G}(R)$ like the prior VLog implementation [Ivliev, 21]
 - local optimization: depth-first exploration of atom mappings with early backtracking,
 - global optimization: rule pairs are discarded when head/body don't share predicates, and reliances are memoized (disregarding concrete predicate and variable names)



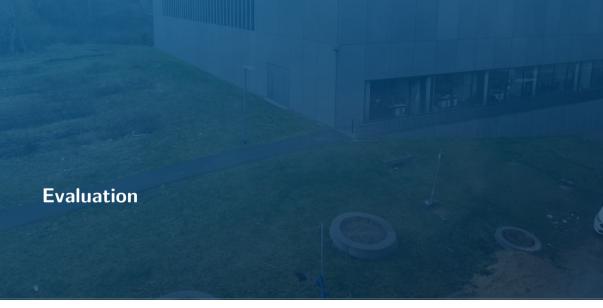
- 1,913 lines of Python code
- Prototypical
 (Not fully optimized for efficiency yet)
- Interactive visualization of the finite contracted reliance graph

- 1. Compute $\mathcal{G}(R)$ like the prior VLog implementation [Ivliev, 21]
 - local optimization: depth-first exploration of atom mappings with early backtracking,
 - global optimization: rule pairs are discarded when head/body don't share predicates, and reliances are memoized (disregarding concrete predicate and variable names)
- 2. Tarjan's linear-time SCC decomposition



- 1,913 lines of Python code
- Prototypical (Not fully optimized for efficiency yet)
- Interactive visualization of the finite contracted reliance graph

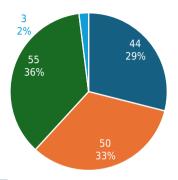
- 1. Compute $\mathcal{G}(R)$ like the prior VLog implementation [Ivliev, 21]
 - local optimization: depth-first exploration of atom mappings with early backtracking,
 - global optimization: rule pairs are discarded when head/body don't share predicates, and reliances are memoized (disregarding concrete predicate and variable names)
- 2. Tarjan's linear-time SCC decomposition
- 3. Add contractions for. . . restrained rules → contraction core-stratified?
 - ... existential cyclic positive reliances
 - → detect absence of **unbounded contractions** ⇒ universal termination



Evaluation (I)

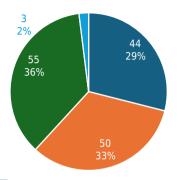
- Prototypical Python implementation to perform static analysis
 - 1) Build the initial reliance graph and decompose it into SCCs
 - 2) For each SCC with restraint, add appropriate contracted rules and check for restraint cycles
 - 3) For each positive-reliance-SCC with existentials, add contractions until either we are sure that the completion is finite or a full "cycle" was traversed

- Dataset: Oxford Ontology Repository
 - https://www.cs.ox.ac.uk/isg/ontologies/
 - same rulesets that were previously used to evaluate core-stratification [Ivliev, 21 & González et al., ISWC'22]
 - 201 of 787 ontologies were translated into existential rules
- Experiments:
 - on Wille server
 - with 25min timeout
 - 49 timeouts (during reliance graph computation)
 - mostly for rulesets with over 12,000 rules



- core-stratified
 - SCC-contraction core-stratified
 - not SCC-contraction core-stratified
 - may have unbounded contractions

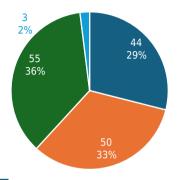
- Roughly 1/3 are core-stratified.
 - This is consistent with prior observations [Ivliev, 21 & González et al., ISWC'22]
- Roughly an additional 1/3 are SCC-contraction core-stratified.
 - New static analysis covers a significant portion of the evaluated real-world rulesets!
- Of the 55 not SCC-contraction core-stratified rulesets,
 - 87% have restraint cycles and
 - 11% have self-restraining rules.
 - → Identifiable before starting to add contractions!



- core-stratified
 - SCC-contraction core-stratified
- not SCC-contraction core-stratified
 - may have unbounded contractions

- Roughly 1/3 are core-stratified.
 - This is consistent with prior observations [Ivliev, 21 & González et al., ISWC'22]
- Roughly an additional 1/3 are SCC-contraction core-stratified.
 - New static analysis covers a significant portion of the evaluated real-world rulesets!
- Of the 55 not SCC-contraction core-stratified rulesets,
 - 87% have restraint cycles and
 - 11% have self-restraining rules.
 - → Identifiable before starting to add contractions!

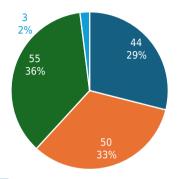
Evaluation: prevalence of contraction core-stratification



- core-stratified
- SCC-contraction core-stratified
- not SCC-contraction core-stratified
 - may have unbounded contractions

- Roughly 1/3 are core-stratified.
 - This is consistent with prior observations [Ivliev, 21 & González et al., ISWC'22]
- Roughly an additional 1/3 are SCC-contraction core-stratified.
 - New static analysis covers a significant portion of the evaluated real-world rulesets!
- Of the 55 not SCC-contraction core-stratified rulesets,
 - 87% have restraint cycles and
 - 11% have self-restraining rules.
 - ightarrow Identifiable before starting to add contractions!

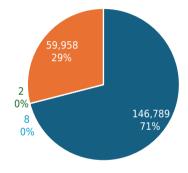
Evaluation: prevalence of contraction core-stratification



- core-stratified
 - SCC-contraction core-stratified
 - not SCC-contraction core-stratified
 - may have unbounded contractions

- Roughly 1/3 are core-stratified.
 - This is consistent with prior observations [Ivliev, 21 & González et al., ISWC'22]
- Roughly an additional 1/3 are SCC-contraction core-stratified.
 - New static analysis covers a significant portion of the evaluated real-world rulesets!
- Of the 55 not SCC-contraction core-stratified rulesets,
 - 87% have restraint cycles and
 - 11% have self-restraining rules.
 - \rightarrow Identifiable before starting to add contractions!

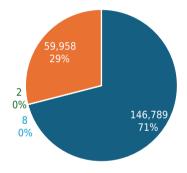
• (Only considering rulesets requiring ≥ 1 contracted rule.)



- reliance graph build time [ms]
- contraction time [ms]

- In average, most of the analysis time is needed to build the initial reliance graph.
- Trend is not uniform: some rulesets require significantly more contractions:

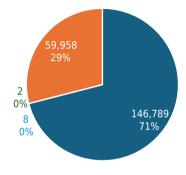
• (Only considering rulesets requiring ≥ 1 contracted rule.)



- reliance graph build time [ms]
- contraction time [ms]

- In average, most of the analysis time is needed to build the initial reliance graph.
- Trend is not uniform: some rulesets require significantly more contractions:

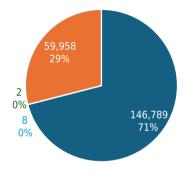
• (Only considering rulesets requiring ≥ 1 contracted rule.)



- reliance graph build time [ms]
- contraction time [ms]

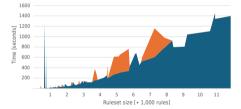
- In average, most of the analysis time is needed to build the initial reliance graph.
- Trend is not uniform: some rulesets require significantly more contractions:

(Only considering rulesets requiring ≥ 1 contracted rule.)



- reliance graph build time [ms]
- contraction time [ms]

 Trend is not uniform: some rulesets require significantly more contractions:



Conclusion

Summary

- · SCCs of the reliance graph with restraints prevent core-stratification
- Contractions deputize the combined effect of applying positively relying rules
- Look ahead by adding contractions ⇒ absence of restraint cycles

Future work

- Continue working out proof details for $\mathcal{G}^{[\oplus]}(R)$
- Study use of contractions to detect universal termination in detail
- Evaluation
 - conduct more targeted experiments to clarify runtime behavior
- Implementation
 - Improve efficiency
 - Possible Nemo integration

Pro

- + Generality
 - not restricted to special cases
- + Covers ²/₃ of evaluated rulesets
 - ightarrow find core with restricted chase

Con

- Additional analysis effort
 - worst-case: 2Exp
 - Complicated selection strategy
 - fixed-point computation

Conclusion

Summary

- · SCCs of the reliance graph with restraints prevent core-stratification
- Contractions deputize the combined effect of applying positively relying rules
- Look ahead by adding contractions ⇒ absence of restraint cycles

Future work

- Continue working out proof details for $\mathcal{G}^{[\oplus]}(R)$
- Study use of contractions to detect universal termination in detail
- Evaluation
 - conduct more targeted experiments to clarify runtime behavior
- Implementation
 - Improve efficiency
 - Possible Nemo integration

Pro

- + Generality
 - not restricted to special cases
- + Covers 2/3 of evaluated rulesets
 - ightarrow find core with restricted chase

Con

- Additional analysis effort
 - worst-case: 2Exp
- Complicated selection strategy
 - fixed-point computation

Conclusion

Summary

- · SCCs of the reliance graph with restraints prevent core-stratification
- Contractions deputize the combined effect of applying positively relying rules
- Look ahead by adding contractions ⇒ absence of restraint cycles

Future work

- Continue working out proof details for $\mathcal{G}^{[\oplus]}(R)$
- Study use of contractions to detect universal termination in detail
- Evaluation:
 - conduct more targeted experiments to clarify runtime behavior
- Implementation:
 - Improve efficiency
 - Possible Nemo integration

Pro

- + Generality
 - not restricted to special cases
- + Covers 2/3 of evaluated rulesets
 - ightarrow find core with restricted chase

Con

- Additional analysis effort
 - worst-case: 2Exp
- Complicated selection strategy
 - fixed-point computation

Thank you for your attention!

Errata

- There is a mistake in the implementation of the CHECK function, that causes certain self-restraints of rules with multiple pieces to be missed
 - like: $a(x) \longrightarrow \exists v.b(x), r(x, v), c(v)$

