
1Foundations of Logic Programming Unification

Chapter 2

Unification



2Foundations of Logic Programming Unification

Outline

Understanding the need for unification 

Defining alphabets, terms, and substitutions

Introducing the Martelli-Montanari Algorithm for unification

Proving correctness of the algorithm



3Foundations of Logic Programming Unification

The Need to Perform Unification (I)

direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).

| ?- connection(frankfurt, maui).

yes
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The Need to Perform Unification (II)

p(f(X),g(f(c),X)).

| ?- p(U,g(V,f(W))).

U = f(f(W)),
V = f(c)

| ?- p(U,g(c,f(W))).

no

| ?- p(U,g(V,U)).

U = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f ...
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Ranked Alphabeths and Term Universes

Variables

Ranked alphabet is a finite set ∑ of symbols; to every symbol a natural number  0 
(its arity or rank) is assigned (∑(n) denotes the subset of ∑ with symbols of arity n)

Parentheses, commas

V set of variables, F ranked alphabet of function symbols:
Term universe TUF,V (over F and V) is smallest set T of terms with
1. V ⊆ T
2. f  T, if f  F(0) (also called a constant)
3. f(t1, ..., tn)  T, if f  F(n) with n  1 and t1, ..., tn  T
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Ground Terms and Sub-Terms

Var(t) :Û set of variables in t

t ground term :Û Var(t) = ;

s sub-term of t :Û term s is sub-string of t
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Substitutions (I)

V set of variables, finite set X ⊆ V, F ranked alphabet:

Substitution :Û function  : X → TUF,V with x  (x) for every x  X

We use notation  = {x1/t1, ..., xn /tn}, where
1. X = {x1, ..., xn}
2. (xi) = ti for every xi  X
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Substitutions (II)

Consider a substitution  = {x1=t1, ..., xn =tn}.

empty substitution ² :Û n = 0

 ground substitution :Û t1, ..., tn ground terms

 pure variable substitution :Û t1, ..., tn variables

 renaming :Û {t1, ..., tn} =  {x1, ..., xn}

Dom() :Û {x1, ..., xn}

Y ⊆ V: |Y :Û {y=t  |  y=t   and y  Y}
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Applying Substitutions

If x is a variable and x  Dom(), then x  :Û (x)

If x is a variable and x ∉ Dom(), then x  :Û x

f(t1, ..., tn) :Û f(t1, ..., tn)

t instance of s  :Û there is substitution  with s = t

s more general than t :Û t instance of s

t variant of s :Û there is renaming  with s = t

Lemma 2.5

t variant of s iff t instance of s and s instance of t
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Composition
Let  and  be substitutions.

The composition  is defined by ()(x) :Û (x) for each variable x

Lemma 2.3

Let  = {x1=t1, ..., xn =tn},  = {y1=s1, ..., ym =sm}.

Then  can be constructed from the sequence

 x1=t1, ..., xn =tn, y1=s1, ..., ym =sm

 1. by removing all bindings xi=ti where xi =ti, 

 and all bindings yj=sj where yj  {x1, ..., xn}

 2. by forming a substitution from the resulting sequence 

Examples:

{x=y, z=x} • {y=7, x=z} = {x=7, y=7}

{y=7, x=z} • {x=y, z=x} = {y=7, z=x}
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A Substitution Ordering

Definition 2.6

Let  and  be substitutions.

 more general than  :Û  =  for some substitution 

Examples:

 = {x=y} is more general than  = {x=a,y=a} (with  = {y=a})

 = {x=y} is not more general than  = {x=a} 

since for every  with  = :
x=a  {x=y}  y=a    y  Dom() = Dom()
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Unifiers

Definition 2.9

substitution  is unifier of terms s and t :Û s = t

s and t unifiable :Û a unifier of s and t exists

 most general unifier (MGU) of s and t :Û
 unifier of s and t that is more general than all unifiers of s and t

Let s1, ..., sn, t1, ..., tn be terms.

Let si U ti denote the (ordered) pair (si, ti) and let E = {s1 U t1, ..., sn U tn}.

 is unifier E :Û si = ti for every i  [1, n]

 most general unifier (MGU) of E :Û
 unifier of E that is more general than all unifiers of E
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Unifying Sets of Pairs of Terms

Sets E and E' of pairs of terms equivalent
:Û E and E' have the same set of unifiers

{x1 U t1, ..., xn U tn} solved
:Û xi, xj pairwise distinct variables (1  i  j  n) and no xi occurs in tj (1  i, j  n)

Lemma 2.15

If E = {x1 U t1, ..., xn U tn} is solved, then  = {x1=t1, ..., xn =tn} is an MGU of E.

Proof: (i) xi = ti = ti and

 (ii) for every unifier  of E: xi = ti = xi for every i  [1, n]

 and x = x for every x ∉ {x1, ..., xn}; thus  = .
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Martelli-Montanari Algorithm

Let E be a set if pairs of terms.

As long as possible choose nondeterministically a pair of a form below and 
perform the associated action.

(1) f(s1, ..., sn) U f(t1, ..., tn) replace by s1Ut1, ..., snUtn
(2) f(s1, ..., sn) U g(t1, ..., tm) where f  g halt with failure

(3) xUx delete the pair

(4) tUx where t is not a variable replace by xUt

(5) xUt where x  ∉ Var(t) and perform substitution {x/t}

 x occurs in some other pair      on all other pairs

(6) xUt where x  Var(t) and x  t halt with failure

The algorithm terminates with success when no action can be performed.

 (2) ≙ “clash”, (6) ≙ “occur check”-failure
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Martelli-Montanari (Theorem)

Theorem 2.16

If the original set E has a unifier, then the algorithm successfully terminates 
and produces a solved set E' that is equivalent to E; otherwise the algorithm 
terminates with failure.

Lemma 2.15 implies that in case of success E' determines an MGU of E.
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Proof Steps

1. Prove that the algorithm terminates.

2. Prove that each action replaces the set of pairs by an equivalent one.

3. Prove that if the algorithm terminates successfully, then the final set of 
pairs is solved.

4. Prove that if the algorithm terminates with failure, then the set of pairs at 
the moment of failure does not have a unifier.
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Relations

R relation on a set A :Û R ⊆ A  A

R reflexive  :Û (a, a)  R for all a  A

R irreflexive  :Û (a, a) ∉ R for all a  A

R antisymmetric  :Û (a, b)  R and (b, a)  R implies a = b

R transitive  :Û (a, b)  R and (b, c)  R implies (a, c)  R
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Well-founded Orderings

(A, m) (reflexive) partial ordering 
:Û m reflexive, antisymmetric, and transitive relation on A

(A, l) (irreflexive) partial ordering 
:Û l irreflexive and transitive relation on A

irreflexive partial ordering (A, l) well-founded
:Û there is no infinite descending chain
                 ... l a2 l a1 l a0

of elements a0, a1, a2, ...  A

Examples:

(ℕ, ), (ℤ, ), (P({1, 2, 3}), ⊆) are partial orderings;
(ℕ, <), (ℤ, <), (P({1, 2, 3}), ) are irreflexive partial orderings;
(ℕ, <), (P({1, 2, 3}), ) are well-founded, whereas (ℤ, <) is not.
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Lexicographic Ordering

The lexicographic ordering Án (n  1) is defined inductively on the set ℕn of n-tuples 
of natural numbers:

(a1) Á1 (b1) :Û a1 < b1  

(a1, ..., an+1) Án+1 (b1, ..., bn+1) (for n  1)

:Û

 (a1, ..., an) Án (b1, ..., bn)

 or (a1, ..., an) = (b1, ..., bn) and an+1 < bn+1

Examples:

(3, 12, 7) Á3 (4, 2, 1) and (8, 4, 2) Á3 (8, 4, 3).

 

Theorem. (ℕn, Án) is well-founded



20Foundations of Logic Programming Unification

Step 1

 The MM-algorithm terminates.

Variable x solved in E

:Û xUt  E, and this is the only occurrence of x in E

 uns(E) :Û number of variables in E that are unsolved

 lfun(E) :Û number of occurrences of function symbols in the first 

 components of pairs in E

 card(E) :Û number of pairs in E 

Each successful MM-action reduces (uns(E), lfun(E), card(E)) wrt. Á3. 
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Proof

For every u, l, c  ℕ the reduction is as follows:

(1) (u, l, c) Â3 (u – k, l – 1, c + n – 1) for some k  [0, ..., n]

(3) (u, l, c) Â3 (u – k, l, c – 1) for some k  {0, 1}

(4) (u, l, c) Â3 (u – k1, l – k2, c) for some k1  {0, 1} and k2  1

(5) (u, l, c) Â3 (u – 1, l + k, c) for some k  0

Termination is now a consequence of (ℕ3, Á  3) being well-founded.
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Step 2

Each action replaces the set of pairs by an equivalent one.

This is obviously true for MM-actions (1), (3), and (4).

Regarding MM-action (5), consider E  {xUt} and {x=t}  {xUt}.

Then

  is a unifier of E  {xUt}

 iff ( is a unifier of E) and x = t

 iff ( is a unifier of E{x=t}) and x = t

 iff   is a unifier of E{x=t}  {xUt}
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Step 3

If the algorithm successfully terminates, then the final set of pairs is solved.

If the algorithm successfully terminates, then MM-actions (1), (2), and (4) do 
not apply, so each pair in E is of the form xUt with x being a variable.

Moreover, MM-actions (3), (5), and (6) do not apply, so the variables in the 
first components of all pairs in E are pairwise disjoint and do not occur in the 
second component of a pair in E.
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Step 4

If the algorithm terminates with failure, then the set of pairs at the moment of failure 
does not have a unifier.

If the failure results by MM-action (2), then some

 f(s1, ..., sn) U g(t1, ..., tm)

(where f  g) occurs in E, and for no substitution  we have

 f(s1, ..., sn) = g(t1, ..., tm).

If the failure results by MM-action (6), then some xUt (where x is a proper subterm 
of t) occurs in E, and for no substitution  we have x = t.
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Unifiers may be Exponential

f(x1) U f(g(x0, x0))

1 = {x1=g(x0, x0)}

f(x1, x2) U f(g(x0, x0), g(x1, x1))

2 = 1  {x2=g(g(x0, x0), g(x0, x0))}

f(x1, x2, x3) U f(g(x0, x0), g(x1, x1), g(x2, x2))

3 = 2  {x3=g(g(g(x0, x0), g(x0, x0)), g(g(x0, x0), g(x0, x0)))}

⋮
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Implementation of the MM-Algorithm

In most PROLOG systems the occur check does not apply, for the sake of 
efficiency. As for the Martelli-Montanari Algorithm this amounts to drop action (6).

Then the algorithm terminates with success, e.g., for {x U f(x)}, despite x and f(x) 
not being unifiable.

Also, for the sake of efficiency, action (5) is normally not implemented in PROLOG 
systems.

Then the algorithm may terminate with a set that only implicitly represents an MGU, 
e.g., {x = f(y), y = g(a)}.
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Objectives

Understanding the need for unification 

Defining alphabets, terms, and substitutions

Introducing the Martelli-Montanari Algorithm for unification

Proving correctness of the algorithm
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