
1Foundations of Logic Programming Unification

Chapter 2

Unification

2Foundations of Logic Programming Unification

Outline

Understanding the need for unification

Defining alphabets, terms, and substitutions

Introducing the Martelli-Montanari Algorithm for unification

Proving correctness of the algorithm

3Foundations of Logic Programming Unification

The Need to Perform Unification (I)

direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).

| ?- connection(frankfurt, maui).

yes

4Foundations of Logic Programming Unification

The Need to Perform Unification (II)

p(f(X),g(f(c),X)).

| ?- p(U,g(V,f(W))).

U = f(f(W)),
V = f(c)

| ?- p(U,g(c,f(W))).

no

| ?- p(U,g(V,U)).

U = f(f ...

5Foundations of Logic Programming Unification

Ranked Alphabeths and Term Universes

Variables

Ranked alphabet is a finite set ∑ of symbols; to every symbol a natural number  0
(its arity or rank) is assigned (∑(n) denotes the subset of ∑ with symbols of arity n)

Parentheses, commas

V set of variables, F ranked alphabet of function symbols:
Term universe TUF,V (over F and V) is smallest set T of terms with
1. V ⊆ T
2. f  T, if f  F(0) (also called a constant)
3. f(t1, ..., tn)  T, if f  F(n) with n  1 and t1, ..., tn  T

6Foundations of Logic Programming Unification

Ground Terms and Sub-Terms

Var(t) :Û set of variables in t

t ground term :Û Var(t) = ;

s sub-term of t :Û term s is sub-string of t

7Foundations of Logic Programming Unification

Substitutions (I)

V set of variables, finite set X ⊆ V, F ranked alphabet:

Substitution :Û function  : X → TUF,V with x  (x) for every x  X

We use notation  = {x1/t1, ..., xn /tn}, where
1. X = {x1, ..., xn}
2. (xi) = ti for every xi  X

8Foundations of Logic Programming Unification

Substitutions (II)

Consider a substitution  = {x1=t1, ..., xn =tn}.

empty substitution ² :Û n = 0

 ground substitution :Û t1, ..., tn ground terms

 pure variable substitution :Û t1, ..., tn variables

 renaming :Û {t1, ..., tn} = {x1, ..., xn}

Dom() :Û {x1, ..., xn}

Y ⊆ V: |Y :Û {y=t | y=t   and y  Y}

9Foundations of Logic Programming Unification

Applying Substitutions

If x is a variable and x  Dom(), then x :Û (x)

If x is a variable and x ∉ Dom(), then x :Û x

f(t1, ..., tn) :Û f(t1, ..., tn)

t instance of s :Û there is substitution  with s = t

s more general than t :Û t instance of s

t variant of s :Û there is renaming  with s = t

Lemma 2.5

t variant of s iff t instance of s and s instance of t

10Foundations of Logic Programming Unification

Composition
Let  and  be substitutions.

The composition  is defined by ()(x) :Û (x) for each variable x

Lemma 2.3

Let  = {x1=t1, ..., xn =tn},  = {y1=s1, ..., ym =sm}.

Then  can be constructed from the sequence

 x1=t1, ..., xn =tn, y1=s1, ..., ym =sm

 1. by removing all bindings xi=ti where xi =ti,

 and all bindings yj=sj where yj  {x1, ..., xn}

 2. by forming a substitution from the resulting sequence

Examples:

{x=y, z=x} • {y=7, x=z} = {x=7, y=7}

{y=7, x=z} • {x=y, z=x} = {y=7, z=x}

11Foundations of Logic Programming Unification

A Substitution Ordering

Definition 2.6

Let  and  be substitutions.

 more general than  :Û  =  for some substitution 

Examples:

 = {x=y} is more general than  = {x=a,y=a} (with  = {y=a})

 = {x=y} is not more general than  = {x=a}

since for every  with  = :
x=a  {x=y}  y=a    y  Dom() = Dom()

12Foundations of Logic Programming Unification

Unifiers

Definition 2.9

substitution  is unifier of terms s and t :Û s = t

s and t unifiable :Û a unifier of s and t exists

 most general unifier (MGU) of s and t :Û
 unifier of s and t that is more general than all unifiers of s and t

Let s1, ..., sn, t1, ..., tn be terms.

Let si U ti denote the (ordered) pair (si, ti) and let E = {s1 U t1, ..., sn U tn}.

 is unifier E :Û si = ti for every i  [1, n]

 most general unifier (MGU) of E :Û
 unifier of E that is more general than all unifiers of E

13Foundations of Logic Programming Unification

Unifying Sets of Pairs of Terms

Sets E and E' of pairs of terms equivalent
:Û E and E' have the same set of unifiers

{x1 U t1, ..., xn U tn} solved
:Û xi, xj pairwise distinct variables (1  i  j  n) and no xi occurs in tj (1  i, j  n)

Lemma 2.15

If E = {x1 U t1, ..., xn U tn} is solved, then  = {x1=t1, ..., xn =tn} is an MGU of E.

Proof: (i) xi = ti = ti and

 (ii) for every unifier  of E: xi = ti = xi for every i  [1, n]

 and x = x for every x ∉ {x1, ..., xn}; thus  = .

14Foundations of Logic Programming Unification

Martelli-Montanari Algorithm

Let E be a set if pairs of terms.

As long as possible choose nondeterministically a pair of a form below and
perform the associated action.

(1) f(s1, ..., sn) U f(t1, ..., tn) replace by s1Ut1, ..., snUtn
(2) f(s1, ..., sn) U g(t1, ..., tm) where f  g halt with failure

(3) xUx delete the pair

(4) tUx where t is not a variable replace by xUt

(5) xUt where x ∉ Var(t) and perform substitution {x/t}

 x occurs in some other pair on all other pairs

(6) xUt where x  Var(t) and x  t halt with failure

The algorithm terminates with success when no action can be performed.

 (2) ≙ “clash”, (6) ≙ “occur check”-failure

15Foundations of Logic Programming Unification

Martelli-Montanari (Theorem)

Theorem 2.16

If the original set E has a unifier, then the algorithm successfully terminates
and produces a solved set E' that is equivalent to E; otherwise the algorithm
terminates with failure.

Lemma 2.15 implies that in case of success E' determines an MGU of E.

16Foundations of Logic Programming Unification

Proof Steps

1. Prove that the algorithm terminates.

2. Prove that each action replaces the set of pairs by an equivalent one.

3. Prove that if the algorithm terminates successfully, then the final set of
pairs is solved.

4. Prove that if the algorithm terminates with failure, then the set of pairs at
the moment of failure does not have a unifier.

17Foundations of Logic Programming Unification

Relations

R relation on a set A :Û R ⊆ A  A

R reflexive :Û (a, a)  R for all a  A

R irreflexive :Û (a, a) ∉ R for all a  A

R antisymmetric :Û (a, b)  R and (b, a)  R implies a = b

R transitive :Û (a, b)  R and (b, c)  R implies (a, c)  R

18Foundations of Logic Programming Unification

Well-founded Orderings

(A, m) (reflexive) partial ordering
:Û m reflexive, antisymmetric, and transitive relation on A

(A, l) (irreflexive) partial ordering
:Û l irreflexive and transitive relation on A

irreflexive partial ordering (A, l) well-founded
:Û there is no infinite descending chain
 ... l a2 l a1 l a0

of elements a0, a1, a2, ...  A

Examples:

(ℕ, ), (ℤ, ), (P({1, 2, 3}), ⊆) are partial orderings;
(ℕ, <), (ℤ, <), (P({1, 2, 3}), ) are irreflexive partial orderings;
(ℕ, <), (P({1, 2, 3}), ) are well-founded, whereas (ℤ, <) is not.

19Foundations of Logic Programming Unification

Lexicographic Ordering

The lexicographic ordering Án (n  1) is defined inductively on the set ℕn of n-tuples
of natural numbers:

(a1) Á1 (b1) :Û a1 < b1

(a1, ..., an+1) Án+1 (b1, ..., bn+1) (for n  1)

:Û

 (a1, ..., an) Án (b1, ..., bn)

 or (a1, ..., an) = (b1, ..., bn) and an+1 < bn+1

Examples:

(3, 12, 7) Á3 (4, 2, 1) and (8, 4, 2) Á3 (8, 4, 3).

Theorem. (ℕn, Án) is well-founded

20Foundations of Logic Programming Unification

Step 1

 The MM-algorithm terminates.

Variable x solved in E

:Û xUt  E, and this is the only occurrence of x in E

 uns(E) :Û number of variables in E that are unsolved

 lfun(E) :Û number of occurrences of function symbols in the first

 components of pairs in E

 card(E) :Û number of pairs in E

Each successful MM-action reduces (uns(E), lfun(E), card(E)) wrt. Á3.

21Foundations of Logic Programming Unification

Proof

For every u, l, c  ℕ the reduction is as follows:

(1) (u, l, c) Â3 (u – k, l – 1, c + n – 1) for some k  [0, ..., n]

(3) (u, l, c) Â3 (u – k, l, c – 1) for some k  {0, 1}

(4) (u, l, c) Â3 (u – k1, l – k2, c) for some k1  {0, 1} and k2  1

(5) (u, l, c) Â3 (u – 1, l + k, c) for some k  0

Termination is now a consequence of (ℕ3, Á 3) being well-founded.

22Foundations of Logic Programming Unification

Step 2

Each action replaces the set of pairs by an equivalent one.

This is obviously true for MM-actions (1), (3), and (4).

Regarding MM-action (5), consider E  {xUt} and {x=t}  {xUt}.

Then

  is a unifier of E  {xUt}

 iff ( is a unifier of E) and x = t

 iff ( is a unifier of E{x=t}) and x = t

 iff  is a unifier of E{x=t}  {xUt}

23Foundations of Logic Programming Unification

Step 3

If the algorithm successfully terminates, then the final set of pairs is solved.

If the algorithm successfully terminates, then MM-actions (1), (2), and (4) do
not apply, so each pair in E is of the form xUt with x being a variable.

Moreover, MM-actions (3), (5), and (6) do not apply, so the variables in the
first components of all pairs in E are pairwise disjoint and do not occur in the
second component of a pair in E.

24Foundations of Logic Programming Unification

Step 4

If the algorithm terminates with failure, then the set of pairs at the moment of failure
does not have a unifier.

If the failure results by MM-action (2), then some

 f(s1, ..., sn) U g(t1, ..., tm)

(where f  g) occurs in E, and for no substitution  we have

 f(s1, ..., sn) = g(t1, ..., tm).

If the failure results by MM-action (6), then some xUt (where x is a proper subterm
of t) occurs in E, and for no substitution  we have x = t.

25Foundations of Logic Programming Unification

Unifiers may be Exponential

f(x1) U f(g(x0, x0))

1 = {x1=g(x0, x0)}

f(x1, x2) U f(g(x0, x0), g(x1, x1))

2 = 1  {x2=g(g(x0, x0), g(x0, x0))}

f(x1, x2, x3) U f(g(x0, x0), g(x1, x1), g(x2, x2))

3 = 2  {x3=g(g(g(x0, x0), g(x0, x0)), g(g(x0, x0), g(x0, x0)))}

⋮

26Foundations of Logic Programming Unification

Implementation of the MM-Algorithm

In most PROLOG systems the occur check does not apply, for the sake of
efficiency. As for the Martelli-Montanari Algorithm this amounts to drop action (6).

Then the algorithm terminates with success, e.g., for {x U f(x)}, despite x and f(x)
not being unifiable.

Also, for the sake of efficiency, action (5) is normally not implemented in PROLOG
systems.

Then the algorithm may terminate with a set that only implicitly represents an MGU,
e.g., {x = f(y), y = g(a)}.

27Foundations of Logic Programming Unification

Objectives

Understanding the need for unification

Defining alphabets, terms, and substitutions

Introducing the Martelli-Montanari Algorithm for unification

Proving correctness of the algorithm

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

