Review: Query Complexity

Query answering as decision problem
\(\sim \) consider Boolean queries

Various notions of complexity:
- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

\[
L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSpace} \subseteq \text{ExpTime}
\]

Review: FO Combined Complexity

Theorem 4.1 The evaluation of FO queries is PSpace-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem 4.2 The evaluation of FO queries is PSpace-complete with respect to query complexity.

This also holds true when restricting to domain-independent queries.

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
\(\sim \) can we do any better?

What could be better than L?

\[
? \subseteq L \subseteq \text{NL} \subseteq P \subseteq \ldots
\]

\(\sim \) we need to define circuit complexities first
Boolean Circuits

Definition 5.1: A Boolean circuit is a finite, directed, acyclic graph where
- each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes

→ we will only consider Boolean circuits with exactly one output

→ propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

Example

A Boolean circuit over an input string x_1, x_2, \ldots, x_n of length n

Corresponds to formula $(x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)$

→ accepts all strings with at least two 1s

Circuits as a Model for Parallel Computation

Previous example:

→ n^2 processors working in parallel
→ computation finishes in 2 steps

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation

→ circuits as a refinement of polynomial time that takes parallelizability into account

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
→ each circuit only has a finite number of different inputs
→ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition 5.2: A uniform family of Boolean circuits is a set of circuits C_n ($n \geq 0$) that can easily\(^a\) be computed from n.

A language $L \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \geq 0}$ of Boolean circuits if for each word w of length $|w|$:

$$w \in L \text{ if and only if } C_{|w|}(w) = 1$$

\(^a\)We don’t discuss the details here; see course Complexity Theory.
Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:
- **size** of the circuit: overall number of gates (as function of input size)
- **depth** of the circuit: longest path of gates (as function of input size)
- **fan in**: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition 5.3: \((C_n)_{n \geq 0} \) is a family of small-depth circuits if
- the size of \(C_n \) is polynomial in \(n \),
- the depth of \(C_n \) is poly-logarithmic in \(n \), that is, \(O(\log^k n) \).

Example

We can eliminate arbitrary fan-ins by using more layers of gates:

![Diagram](image_url)

The Complexity Classes NC and AC

Two important types of small-depth circuits:

Definition 5.4: \(NC^k \) is the class of problems that can be solved by uniform families of circuits \((C_n)_{n \geq 0} \) of fan-in \(\leq 2 \), size polynomial in \(n \), and depth in \(O(\log^k n) \).

The class \(NC \) is defined as \(NC = \bigcup_{k \geq 0} NC^k \).

(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition 5.5: \(AC^k \) and \(AC \) are defined like \(NC^k \) and \(NC \), respectively, but for circuits with arbitrary fan-in.

(A is for “Alternating”: AND-OR gates alternate in such circuits)

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

\[
NC^0 \subseteq AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq \ldots \subseteq AC^k \subseteq NC^{k+1} \subseteq \ldots
\]

Only few inclusions are known to be proper: \(NC^0 \not\subset AC^0 \not\subset NC^1 \)

Direct consequence of above hierarchy: \(NC = AC \)

Interesting relations to other classes:

\[
NC^0 \subseteq AC^0 \subseteq NC^1 \subseteq L \subseteq NL \subseteq AC^1 \subseteq \ldots \subseteq NC \subseteq P
\]

Intuition:
- Problems in \(NC \) are parallelisable (known from definition)
- Problems in \(P \setminus NC \) are inherently sequential (educated guess)

However: it is not known if \(NC \not= P \)
Theorem 5.6: The evaluation of FO queries is complete for (logtime uniform) AC^0 with respect to data complexity.

Proof:
- **Membership:** For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database.
- **Hardness:** Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM . . . not in this lecture).

Example

We consider the formula

$$\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$$

Over the database instance:

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Active domain: $\{a, b, c\}$
Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$

Example: $\exists z. (\exists x. \exists y. R(x, y) \land S(y, z)) \land \neg R(a, z)$

Summary and Outlook

The evaluation of FO queries is
- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC^0-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:
- Are there query languages with lower complexities? (next lecture)
- Which other computing problems are interesting?
- How can we study the expressiveness of query languages?