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Abstract
Conjunctive query answering over databases with constraints – also known as (tuple-generating)
dependencies – is considered a central database task. To this end, several versions of a construc-
tion called chase have been described. Given a set Σ of dependencies, it is interesting to ask
which constraints not contained in Σ that are initially satisfied in a given database instance are
preserved when computing a chase over Σ. Such constraints are an example for the more general
class of incidental constraints which when added to Σ as new dependencies do not affect the
certain answers and might even speed up query answering.

After formally introducing incidental constraints, we show that deciding incidentality is un-
decidable for tuple-generating dependencies, even when restricting to classes for which query
entailment is decidable. We find that for dependency sets admitting a finite universal model, the
core chase can be used to decide incidentality. For the infinite case, we propose the stable chase,
which is a generalisation of the core chase, and study its relation to incidental constraints.
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1 Introduction

The chase [7, 14, 23] is an essential family of algorithms used to solve entailment questions
in databases in the presence of constraints, such as computing certain answers to queries in
data integration scenarios. Given a database instance I and a set of dependencies Σ, chase
procedures compute an instance that extends I and satisfies all constraints in Σ, and that is
universal in the sense that it admits a homomorphism into any other model of I and Σ. In
particular, such a universal model can be used for query answering, as it entails exactly the
certain answers to conjunctive queries over I and Σ.

Now I might satisfy constraints that are not part of Σ, and it is a relevant question to ask
whether or not these constraints are preserved by the chase, i.e., whether they still hold in
the universal model that is computed. This can be viewed as an extension of integrity checks
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12:2 Preserving Constraints with the Stable Chase

to the virtual, possibly infinite views that are defined by a set of dependencies. Moreover,
constraints that are preserved in this sense can safely be assumed to hold, and hence be
used in algorithms. For instance, query rewriting algorithms can benefit from additional
constraints [22, 25].

For the case of Datalog rules (full dependencies) Σ, constraint preservation is a known
problem in databases [1, 28], which is typically further generalised by asking if some set of
constraints Γ is implied by Σ given arbitrary input instances I that merely satisfy certain input
constraints Γ′. Constraint preservation then is the special case where Γ = Γ′. Traditionally,
one is asking which constraints Γ are satisfied in the (unique, finite) least model of Σ, but
there have also been works that consider all (first-order) models [30].

Unfortunately, however, these simple notions of constraint preservation (or implication)
are no longer meaningful if we consider more general theories Σ that may contain tuple-
generating dependencies. Which constraints are preserved then becomes highly sensitive to
the details of the chase, since a constraint might be preserved in some universal models of I
and Σ but not in others. It is often possible to preserve a constraint even if it is not logically
entailed by I and Σ. How can we find out if any universal model preserves a particular
constraint, and how can we possibly compute such a model? The answer is not obvious,
especially in the general case where universal models are necessarily infinite.

To tackle this problem, we propose the notion of incidental constraints to capture the
intuitive idea of a constraint being “preservable” (possibly with some effort). Concretely, a
constraint ρ is incidental for I and Σ if adding ρ to Σ does not lead to any additional answer
to conjunctive queries over I (and thereby to many other positive queries). Constraints that
do not hold in I may therefore be incidental, too.

We only require conjunctive query equivalence rather than semantic equivalence, since
the primary use of the chase is positive query answering. As a result, incidentality is not the
same as logical entailment. For example, any constraint whose premise is not entailed (as a
Boolean conjunctive query, BCQ) is incidental, and is satisfied by all universal models, yet
may not be a entailed in general. Even dependencies that are violated in universal models
can be incidental:

I Example 1. Consider the dependency ρ = R(x, y)→ ∃z.R(y, z) and an instance I with
a single relation R(n0, n1) where n0 and n1 are nulls. Then I and ρ has a universal model
that is an infinite R-chain, starting at R(n0, n1). The dependency ρ′ = R(y, z)→ ∃x.R(x, y)
is not satisfied in this model, but is incidental for I and ρ. Indeed, I and {ρ, ρ′} has a
universal model that is a two-way infinite R-chain, which entails the same queries as the
one-way infinite chain, but is not a universal model of I and ρ.

We study incidentality and the related problem of recognising incidental constraints. This
problems turns out to be hard: it is on the second level of the arithmetic hierarchy, and
remains undecidable even in cases where conjunctive query answering is decidable. We give a
complete (and computable) characterisation for theories that admit a finite model. Even for
cases where a finitary computation procedure is impossible, we seek a deeper understanding
of models that preserve incidental constraints. This leads us to develop a new notion of chase,
which we use to establish the existence of core models that characterise both BCQ answers
and the entailed incidental relationships. In summary, our main contributions are as follows:

We formalise a new notion of constraint preservation based on incidental dependencies.
We show that incidentality is not recursively enumerable (RE) in general, and remains
undecidable even in restricted cases.
We show that the core chase [14] can be used to decide incidentality for cases where a
finite universal model exists.
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We develop the stable chase as a generalisation of the core chase to the infinite case.
We show that the stable chase produces a core that can be used both for query answering
and for characterising full incidental dependencies.

Finally, we combine our results to establish the existence of a model that entails the same
queries as a universal model and that satisfies exactly the tuple-generating depenencies that
are incidental. This model can no longer be universal, but it is a core.

2 Preliminaries

We consider countably infinite, disjoint sets of constants ∆c and of nulls ∆n. A schema S
is a finite set of relation symbols, where ar(R) is the arity of R ∈ S. An instance I over
S assigns to each relation symbol R ∈ S a (possibly infinite) ar(R)-ary relation RI over
∆c ∪∆n. Often, we do not explicitly mention that an instance I is defined over a schema S,
and simply assume that such a signature has been fixed. The active domain of I, denoted
by ∆I , is the set of all domain elements that occur in relations of I. We write a for a tuple
〈a1, . . . , an〉 of domain elements.

Morphisms Let I and J be instances over a schema S. A homomorphism h : I → J
is a function from ∆I to ∆J such that (i) h(c) = c for all c ∈ ∆I ∩∆c, and (ii) a ∈ RI
implies h(a) ∈ RJ for all R ∈ S and a = 〈a1, . . . , an〉 ∈ (∆I)ar(R), where h(a) is short for
tuple 〈h(a1), . . . , h(an)〉. It is strong if (ii) is strengthened to require a ∈ RI if and only if
h(a) ∈ RJ .1 An embedding is an injective strong homomorphism, and an isomorphism is a
bijective strong homomorphism (i.e., a surjective embedding). An endomorphism of I is a
homomorphism h : I → I.

Dependencies and Queries We use a countably infinite set ∆v of variables, disjoint from
∆c ∪∆n. A term is an element t ∈ ∆v ∪∆c. We use letters x, y, z, u, v, w and expressions
such as x for tuples 〈x1, . . . , x`〉 of the corresponding elements. We treat such tuples as
sets when order is not relevant. An atom is a formula R(t) with R ∈ S and |t| = ar(R).
First-order formulae are defined as usual. We write ϕ[x] to emphasise that the free variables
in ϕ are a subset of x. A tuple generating dependency (TGD) is a formula of the form

∀x, z.(ϕ[x, z]→ ∃y.ψ[x,y]) (1)

where the body ϕ and the head ψ are conjunctions of atoms, and ψ contains at least one
conjunct. TGDs never contain free variables, hence we usually omit the universal quantifiers.
A TGD is full if it does not contain existentially quantified variables. A Boolean conjunctive
query (BCQ), or simply a query, is a formula of the form ∃y.ϕ[y] with ϕ a conjunction of
atoms. We allow TGDs with empty bodies to assert facts (possibly including existentials),
and we often omit → in this case. Throughout this paper, we assume that Σ denotes a finite
set of TGDs.

A conjunction of atoms ϕ (resp. a BCQ q = ∃y.ϕ[y]) gives rise to a finite instance Iϕ
(resp. Iq), obtained by treating ϕ as a set of relational tuples using a fresh null nx in place
of each variable x. Conversely, every finite instance I induces a conjunction ϕI that has an
atom for every relational tuple, using fresh variables xn in place of nulls n. The BCQ qI
then is the existential closure of ϕI . Note that TGDs can encode a given finite instance I

1 Strong homomorphisms were called full by Deutsch et al. [14].
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12:4 Preserving Constraints with the Stable Chase

using a dependency → qI . This is why we will generally state our results for sets Σ of TGDs
without mentioning an additional instance.

Universal Models and Cores Instances naturally correspond to first-order interpretations.
We let |= denote first-order modelhood and entailment. Note that, for an instance I and a
finite instance J , we have I |= qJ iff there exists a homomorphism h : J → I. The set of
all BCQs modelled (entailed) by an interpretation I or a set of TGDs Σ is denoted with
BCQ(I) and BCQ(Σ), respectively.

A model J |= Σ is universal if, for every model I |= Σ, there is a homomorphism
h : J → I. In this case, BCQ(J ) = BCQ(Σ), i.e., J and Σ are BCQ-equivalent [14]. Two
instances I and J are BCQ-equivalent if BCQ(I) = BCQ(J ).

I Definition 2. An instance I is a core if every endomorphism of I is an embedding. A core
I is called a core of J if there is an endomorphism h of J such that I is the restriction of
J to the image of h.

Definition 2 corresponds to Bauslaugh’s property IN [5], and has also been used, e.g.,
in studies of constraint satisfaction [8]. Bauslaugh favours a stronger definition based on
isomorphisms instead of endomorphisms (property ISN), but this forces cores to be unique
up to isomorphism, which is too restrictive for our needs. There are several further definitions
of cores, all of which differ only on infinite instances [5, 6]. For finite instances, Definition 2
agrees with the one in [14] and a unique core (up to isomorphism) always exists, whereas (for
Definition 2) infinite instances may have no core or several cores (see examples in Section 4).

Applying Rules A TGD ρ as in (1) is applicable to an instance I if there is a homomorphism
h : Iϕ → I. We then extend h to Iψ by defining, for all variables y ∈ y that are existentially
quantified, h(ny) = ny,ρ,h to be a null that is specific for y, ρ, and h, where we assume that
all nulls of the form ny,ρ,h exist and are mutually distinct. Let ρ(I) denote the union of I
with all sets of the form h(Iψ) for some extended homomorphism h : Iϕ → I. For a set Σ of
TGDs, we set Σ(I) =

⋃
ρ∈Σ ρ(I).

3 Incidental Dependencies

It is intuitive to ask whether a dependency ρ that holds for a finite instance I is “preserved”
by a given set Σ of TGDs. We formalise this as follows, where we omit I since it can be
captured by a TGD in Σ:

I Definition 3. A TGD ρ is incidental for a set Σ of TGDs if BCQ(Σ) = BCQ(Σ ∪ {ρ}).
The set of all incidental TGDs of Σ is denoted ICDT(Σ).

Clearly, Σ ⊆ ICDT(Σ). Indeed, every TGD that is logically entailed is also incidental.
However, the converse is not true, as illustrated in Example 1 (where the instance I can be
expressed by a TGD → ∃x, y.R(x, y)). In particular, incidental TGDs are not automatically
“preserved” in an arbitrary chase procedure, hence we avoid this terminology, though it was
used previously, e.g., related to constraint preservation under non-recursive full TGDs [28].

Note that our notion of incidental TGDs is not specific to BCQs. Indeed, BCQ-equivalent
sets of TGDs are also equivalent with respect to many other types of negation-free queries,
such as Datalog queries and its numerous fragments, including (unions of) conjunctive regular
path queries [18, 11], monadic [12] and linear [19] Datalog queries, (nested) monadically
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defined queries [27, 9] and many more. Queries with negation, however, are not preserved:
in Example 1, Σ |= ∃x.∀y.¬R(y, x) whereas Σ ∪ {ρ} 6|= ∃x.∀y.¬R(y, x).

A noteworthy property is that a TGD is incidental exactly if it does not lead to a newly
entailed BCQ in a single derivation step. To state this formally, we use ρ(p) to abbreviate
the BCQ qρ(Ip) for any BCQ p and TGD ρ.

I Theorem 4. For a TGD ρ and a set Σ of TGDs, ρ ∈ ICDT(Σ) iff ρ(q) ∈ BCQ(Σ) for
every q ∈ BCQ(Σ).

Proof. (⇒) For the contrapositive, assume that q ∈ BCQ(Σ) and ρ(q) /∈ BCQ(Σ). Then
ρ is applicable to Iq. Let J be any model of Σ. Since J |= q, there is a homomorphism
Iq → J , hence ρ is applicable to J . Therefore, any instance J ′ ⊇ J that satisfies ρ entails
ρ(q). Since J was arbitrary, we find that Σ ∪ {ρ} |= ρ(q). Hence ρ is not incidental for Σ.

(⇐) Assume that ρ(q) ∈ BCQ(Σ) for all q ∈ BCQ(Σ). Suppose for a contradiction that
Σ∪{ρ} |= q for some q /∈ BCQ(Σ). Then there is a finite derivation I = ρk(ρk−1(. . . ρ0(I∅) . . .))
with I∅ the empty instance and rules ρi ∈ Σ ∪ {ρ}, such that I |= q. Let q w.l.o.g. be such
that k is minimal. Then Σ |= qJ for J = ρk−1(. . . ρ0(I∅) . . .), and we have ρk = ρ. By the
assumption on ρ, also Σ |= ρ(qJ ). Therefore Σ |= qI , since Σ |= qI = qρ(J ) is isomorphic to
ρ(qJ ). Hence, since I |= q implies qI |= q, we get the desired contradiction Σ |= q. J

An important insight from the preceding theorem is that incidentality for some set Σ can
be established solely on BCQ(Σ).

I Lemma 5. For every two BCQ-equivalent sets Σ,Σ′ of TGDs, ICDT(Σ) = ICDT(Σ′).

Proof. Let ρ ∈ ICDT(Σ) be an incidental TGD for Σ. Then, by Theorem 4, ρ(q) ∈ BCQ(Σ)
for every q ∈ BCQ(Σ). Due to BCQ equivalence, this means ρ(q) ∈ BCQ(Σ′) for every
q ∈ BCQ(Σ′), which, by the other direction of Theorem 4, implies that ρ ∈ ICDT(Σ′). The
converse follows by symmetry. J

Among others, this insight can be leveraged to show Theorem 6 below, which establishes
that individual incidental TGDs are also jointly incidental, i.e., do not entail any additional
BCQs together.

I Theorem 6. For every set Σ of TGDs, BCQ(Σ) = BCQ(ICDT(Σ)).

Proof. Let q ∈ BCQ(ICDT(Σ)) be a BCQ. Then, by compactness, there is a finite subset
Γ = {γ1, . . . , γk} ⊆ ICDT(Σ) such that q ∈ BCQ(Σ∪Γ). But then BCQ(Σ) = BCQ(Σ∪{γ1}) =
BCQ(Σ ∪ {γ1, γ2}) = · · · = BCQ(Σ ∪ Γ): Since γ1 is incidental for Σ, we have BCQ(Σ) =
BCQ(Σ ∪ {γ1}). By Lemma 5, γ2 is incidental for Σ ∪ {γ1}, i.e., BCQ(Σ ∪ {γ1}) = BCQ(Σ ∪
{γ1, γ2}). Further applications of Lemma 5 show that γk is incidental for Σ∪ {γ1, . . . , γk−1},
yielding the above equality. This shows q ∈ BCQ(Σ). Hence, BCQ(ICDT(Σ)) ⊆ BCQ(Σ), and
by monotonicity, we also have BCQ(Σ) ⊆ BCQ(ICDT(Σ)). J

I Definition 7. Incidental is the following decision problem. Given a set Σ of TGDs and
a TGD ρ, is ρ incidental for Σ?

Since BCQ entailment checking over a set of TGDs is already undecidable in general, it
is not surprising that the same is true for Incidental. However, the problem is actually on
the second level of the arithmetic hierarchy [26], i.e., strictly harder than query answering,
such that neither incidental dependencies nor non-incidental dependencies can be recursively
enumerated:

ICDT 2018



12:6 Preserving Constraints with the Stable Chase

I Theorem 8. Incidental is Π0
2-complete, and in particular neither RE nor coRE.

Proof. For membership note that we can characterise incidentality by quantifying over
(finite) derivations (or proofs) in some theory. Indeed, a TGD ρ is incidental for Σ if: for
all derivations that show Σ ∪ {ρ} |= q for some BCQ q, there is a derivation that shows
Σ |= q. Using Gödel numbers for representing derivations, this condition can be expressed as
a ∀∃-sentence in first-order arithmetic.

We show hardness by many-one reduction from the universal halting problem, which is as
follows: given a (deterministic) Turing machineM, doesM halt on all inputs? Universal
halting is known to be complete for Π0

2 (see [26, Theorem VIII], and apply Post’s Theorem).
For the reduction, we construct for a given TMM a set ΣM of TGDs and a full TGD ρ

such that ρ is incidental for Σ iffM halts universally. The rules of ΣM consist of three parts:
Σ1 ensures that each model contains representations of all possible inputs; Σ2 simulatesM
on a particular input; Σ3 marks elements of an accepting TM simulation with a specific
unary relation halted. The rule ρ then asserts that initial elements in TM simulations are
always marked by halted, which is incidental if all runs have indeed terminated. The detailed
constructions in each case are given in the appendix. J

There are many known classes of TGD sets for which query answering becomes decidable,
such as acyclic TGDs or guarded TGDs [15, 16, 2, 3, 21, 13], and Incidental does indeed
become coRE in this case.

I Theorem 9. Let C be a class of sets of TGDs over which BCQ entailment is decidable.
There is an algorithm that, given Σ ∈ C, enumerates all TGDs ρ such that ρ /∈ ICDT(Σ).

Proof. Let ρ be an arbitrary TGD. Then ρ is non-incidental iff there is some BCQ q such
that either Σ |= q but Σ ∪ {ρ} 6|= q, or Σ 6|= q but Σ ∪ {ρ} |= q. Due to monotonicity
of TGDs, only the second case can occur. Now, enumerating all q such that Σ 6|= q and
checking Σ ∪ {ρ} |= q yields a semi-decision procedure for non-incidentality. Using a suitable
diagonalisation, we can enumerate all ρ /∈ ICDT(Σ). J

By Theorem 9, establishing non-incidentality of a given rule ρ is RE, even in cases
where Σ ∪ {ρ} /∈ C. On the other hand, Incidental in general remains undecidable even if
BCQ-entailment is decidable, and even when asking only for the incidentality of one fixed
full dependency.

I Theorem 10. There is a class C of sets of TGDs for which BCQ answering is decidable,
and a full dependency ρ for which Σ ∪ {ρ} ∈ C for all Σ ∈ C, such that the following problem
is undecidable: given some Σ ∈ C, is ρ incidental for Σ?

Proof. We show undecidability by reducing the halting problem of deterministic Turing
machines when started on the empty tape. Consider a Turing machineM = 〈Q,Γ, δ, qs, qe〉
as in the proof of Theorem 8, which w.l.o.g. does not return to its initial state qs in any run.
We consider predicate symbols as used in the proof of Theorem 8, and define the set τ(M)
of TGDs to contain the rules Σ2 as in this proof, together with the additional rules (facts):

→ ∃v, w.headqs
(v) ∧ symbol�(v) ∧ right(v, w) ∧ symbol�(w) ∧ end(w) (2)

→ ∃v.right(v, v) ∧ right+(v, v) ∧ next(v, v) ∧ end(v) ∧
∧

q∈Q\{qs}

headq(v) ∧
∧
σ∈Γ

symbolσ(v) (3)

Here, (2) encodes the initial configuration of M on the empty tape, which is the start of
a Turing machine simulation as effected by Σ2; and (3) creates an element that stands in
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all possible relations not involving headqs . Let ρ = headqe(x)→ halted(x), and let C be the
class of all TGD sets of the form τ(M) or τ(M) ∪ {ρ}.

BCQ answering over TGD sets of C is decidable. Indeed, any BCQ that does not contain
headqs

is trivially entailed by any Σ ∈ C, due to (3). On the other hand, if a connected
component in a BCQ contains headqs , then it describes a property of a finite initial segment
of the simulation of a TM, which can be checked effectively.

For a Turing machine M, the full TGD ρ is incidental for τ(M) iff M does not halt
on the empty input. Indeed, if M does not halt, then the only occurrence of headqe in a
universal model of τ(M) is in the element created due to (3), and ρ is already satisfied by
this element. Conversely, ifM halts, then headqe occurs for an element that is connected
to the starting sequence a created due to (2). Hence, there is a BCQ of the form q =
∃x.headqs

(x0)∧ p1(x0, x1)∧ . . .∧ pn(xn−1, xn)∧halting(xn) with pi ∈ {right, next}, such that
τ(M) 6|= q and τ(M) ∪ {ρ} |= q. J

The previous result is particularly interesting since it only considers situations where
query answering is decidable, both for the TGDs with and without the candidate dependency
ρ. In spite of this general result, concrete classes of TGD sets with decidable BCQ entailment
may allow us to decide Incidental, as discussed in the next section.

4 Cores and Incidentals

In this section we relate incidental dependencies with the notion of a core of an instance.
Theorem 11 shows that if a set of TGDs has a finite universal model I then all incidental
dependencies follow from the core of I. It then follows from Theorem 11 that if the core
chase [14] (also, see Definition 19) terminates then Incidental is decidable. In the following,
let core(I) denote the core of a finite instance I.

I Theorem 11. Let Σ be a set of TGDs with a finite universal model I and let ρ be a TGD.
Then, ρ ∈ ICDT(Σ) iff core(I) |= ρ.

Proof. (⇒) Consider ρ = ϕ[x, z] → ∃y.ψ[x,y] with ρ ∈ ICDT(Σ). Let h : Iϕ → core(I)
be some homomorphism, and assume that it is extended to Iψ using new nulls to map
to as defined before. Then set J := core(I) ∪ h(Iψ), i.e. the core with the consequence
of ρ under h added (possibly by adding new elements). J is finite since core(I) is, and
clearly ρ(core(I)) |= qJ . Therefore Σ ∪ {ρ} |= qJ , and hence Σ |= qJ by incidentality.
So core(I) |= qJ since core(I) is a universal model, and we obtain a homomorphism
g : J → core(I). But then the restriction of g to elements of ∆core(I) is an endomorphism,
and therefore an embedding since core(I) is a core. Every embedding on a finite core is an
isomorphism [20, 5], so g has an inverse g− : core(I)→ core(I). For K = g(h(Iψ ∪ Iψ)) we
have K ⊆ core(I) and hence g−(K) ⊆ core(I). Since g−(g(h(Iψ))) = h(Iψ), we can find a
homomorphism h′ such that h′(Iϕ) = h(Iϕ) and h′(Iψ) ⊆ g−(K) ⊆ core(I) (h′ may differ
from h in the choice of null values for existentially quantified variables). This shows that ρ is
satisfied by core(I) for the particular match h. Since h was arbitrary, we obtain core(I) |= ρ.

(⇐) This follows by direct application of the definitions. J

Given this connection between finite cores and incidental dependencies, one may ask
whether it extends to cases where the set of TGDs does not admit a finite universal model.
Unfortunately, this it not the case: Example 1 shows a case where an incidental dependency
does not hold in a universal model that is in fact a core (the one-way infinite chain).

ICDT 2018
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(a)

. . .

(b)

. . .. . .

(c)

. . .

Figure 1 Universal models that have (a) two non-isomorphic cores, (b) no core, and (c) a core
that is not a model, where R is black and S is orange (grey)

This discrepancy between incidentals and cores goes together with a general loss of good
properties of the core on infinite models. Finite instances (i) always have a core, which is (ii)
unique up to isomorphism [17, 20], and (iii) the core of a finite universal model of a set of
TGDs is also a universal model [14]. Examples 12, 13, and 14 show that we no longer have
any of these properties when dealing with infinite universal models.

I Example 12. Let Σ consist of the following TGDs:

∃x, y.R(x, y) ∃x, y.S(z, w) R(x, y)→ ∃z.S(y, z) S(x, y)→ ∃z.R(y, z)

Figure 1a illustrates a universal model I of Σ. The upper and the lower chain of relations
each by itself is a core of I, but the chains are not isomorphic, so property (ii) does not hold.

I Example 13. Let Σ consist of the following three TGDs:

∃x, y.R(x, y)∧S(x, y) R(x, y)∧S(x, y)→ ∃z.R(y, z)∧S(y, z) R(y, z)→ ∃x.R(x, y)

Figure 1b illustrates a universal model of Σ, which is not a core, since there are non-embedding
endomorphisms that map parts of the single chain into the double chain. In fact, one can see
that this instance does not have a core.

I Example 14. Let Σ consist of the following TGDs:

∃x, y.R(x, y)∧S(x, y) R(x, y)∧S(x, y)→ ∃z.R(y, z)∧S(y, z) S(y, z)→ ∃x.R(x, y)

Figure 1c shows a universal model I of Σ. It is not a core, since there is a non-embedding
endomorphism that maps each element to its right neighbour. This results in an instance
that is isomorphic to I with the left-most node and its R-relation removed, which is a core
of I but not a model for the third rule in Σ.

Nevertheless, cores can be relevant in finding instances that satisfy incidental dependencies.
To this end, we consider a particularly well-behaved type of core that can be obtained as a
limit of a growing sequence of finite cores.

I Definition 15 (Core Cover). An instance J has a core cover if there are finite subinstances
J0 ⊆ J1 ⊆ J2 ⊆ . . . with J =

⋃
i≥0 Ji such that, for all Ji, every homomorphism h : Ji → J

is an embedding.

I Theorem 16. If an instance has a core cover then it is a core.

Proof. Consider an instance J with core cover (Ji)i≥0, and an endomorphism h : J → J .
By Definition 15, the restriction hi : Ji → J is an embedding for all i ≥ 0. With J =

⋃
i≥0 Ji

and Ji ⊆ Ji+1 it follows that h is an embedding, otherwise, since injectivity and being strong
both are finitary conditions, there would be a non-embedding hi : Ji → J . J

We remark that the condition that Ji ⊆ Ji+1 is needed for Theorem 16 to hold. Figure 2
illustrates an instance that satisfies the remaining conditions of Definition 15 for a set of
disjoint instances (Ji)i≥0, but which is not a core.
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. . .
J0 J1 J2 J3

Figure 2 An instance that satisfies most conditions of Definition 15 but is not a core

. . .. . .

Figure 3 A core without a core cover, using two relations R (black) and S (orange/grey)

I Example 17. Having a core cover is a sufficient but not a necessary condition for an instance
to be a core. Figure 3 illustrates an instance I that is a core. Indeed, any endomorphism
must preserve the adjacency in this two-way infinite chain. But since one pair of elements is
not S-related, only this very same pair can be mapped to this position in the chain, so the
only endomorphism is the identity mapping.

However, I has no core cover, since any finite subset of I that contains the pair without
the S connection can be mapped by a non-strong endomorphism into a sufficiently long fully
R-S-connected segment of I.

The next theorem shows that cores with core covers can characterise the set of full
incidental dependencies for a set of TGDs.

I Theorem 18. Let Σ be a set of TGDs and let I be an instance. Assume that BCQ(I) =
BCQ(Σ) and I has a core cover. Then, ρ ∈ ICDT(Σ) iff I |= ρ, for any full dependency ρ.

Proof. (⇒) Let (Ii)i≥0 be a core cover for I, and consider a full dependency ρ : ϕ → ψ

that is incidental for Σ. If I |= ϕ for some homomorphism h : Iϕ → I, then there is Ii such
that h can be considered as a homomorphism Iϕ → Ii. Let J := Ii ∪ h(Iψ), where we note
that h does not introduce new nulls since ρ is full. Similar to the proof of Theorem 11, we
find that Σ ∪ {ρ} |= qJ . Therefore I |= qJ as ρ is incidental, and there is a corresponding
homomorphism g : J → I. Since ∆J = ∆Ii , g is a homomorphism g : Ii → I, and therefore
an embedding (Definition 15). This shows that h(Iϕ ∪ Iψ) ⊆ Ii as required. Since h and Ii
was arbitrary, we conclude that I |= ρ.

(⇐) This follows by direct application of the definitions. J

Given Theorem 18 and the observation that a core cover is closely related to a bottom-up
construction of a core, one naturally wonders if a chase-like procedure could be used to
obtain a suitable model. The prime candidate is the core chase of Deutsch et al. [14]:

I Definition 19. The core chase sequence for a set Σ of TGDs is a sequence I0, I1, . . . of
instances, where I0 is the empty instance, and, for each i > 0, Ii is the core of Σ(Ii−1). A
finite core chase sequence I0, . . . , I` is terminating if I` |= Σ, and in this case, I` is called
the core chase.

Intuitively, the procedure defined by Deutsch et al. consists on applying the rules and
taking the core of the resulting instance in each step. Deutsch et al. do not define the core
chase for cases where Σ require infinite models, and indeed the limit of infinite core chase
sequences is not defined here. While this issue can be repaired by using a more sophisticated
definition, the deeper problem is that the result of applying the rules and then taking the
core in each step may not be a core. This can be seen, e.g., from the TGDs in Example 12,
on which an infinite core chase would simply produce the universal model shown in Figure 1b,
which is not a core.
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5 The Stable Chase

In the following section, we show that all sets of TGDs admit a BCQ-equivalent model that is
a core and that characterises full incidental dependencies. To this end, we introduce the stable
chase, a novel variant of the chase. Our approach can be viewed as a generalisation of the core
chase where core computation is performed by looking for non-embedding homomorphisms
of an instance into any future instance along a chase sequence. If such a homomorphism is
found, all instances in the current chase sequence are rewritten as follows:

I Definition 20. Consider a homomorphism h : I → J on finite instances over S, and let ≺
be a strict total order on ∆I . The h-rewriting of an instance K is obtained as follows:

1. For all R ∈ S and a ∈ (∆K ∩∆I)ar(R), with h(a) ∈ RJ , insert a ∈ RK.
2. Replace all a ∈ ∆K ∩∆I by the ≺-least element b ∈ ∆K ∩∆I for which h(a) = h(b).
The h-rewriting of a sequence of instances is the sequence of h-rewritings of its members.

I Example 21. Let Ii,j be the instance occurring in the i-th row, j-th column of Figure
4. Moreover, let h : I3,2 → I3,3 be the homomorphism that maps ni to ni+1 for every
−1 ≤ i ≤ 2. Then, I4,2 is the h-rewriting of I3,2, and (the sequence) I4,1, I4,2, I4,3 is the
h-rewriting of (the sequence) I3,1, I3,2, I3,3.

We proceed with the definition of a stabilising chase sequence for a set of TGDs, which
is a chase sequence that evolves in the sense that also previously derived instances may be
modified at a later stage. The limit of this construction will yield a chase sequence from
which we can obtain the potentially infinite core we are looking for.

I Definition 22 (Stabilising Chase Sequence). A stabilising chase sequence for a set Σ of
TGDs is a series Q = Q0,Q1, . . . of chase sequences. Each Qk = Qk,0 · · ·Qk,`(k) is a finite
chase sequence of length `(k) + 1 consisting of instances Qk,i, such that the following hold:

1. Q0 is the singleton sequence containing the empty instance;
2. for all k ≥ 0, either

(2.a) Qk+1 = Qk,0, · · · ,Qk,`(k),Σ(Qk,`(k)) is Qk extended by Σ(Qk,`(k)), or
(2.b) Qk+1 is the h-rewriting of Qk for some homomorphism h : Qk,i → Qk,j with

0 ≤ i ≤ j that is not an embedding,
where we require that the order ≺ from Definition 20 is an extension of the (partial) order in
which new nulls are introduced, and that all possible rewritings will eventually be applied: if
there is a homomorphism h : Qk,i →Qk,j as in (2.b), then there is k′ > k such that h is an
embedding from the sub-structure of Qk′,i on which h is defined to Qk,j .

Our requirement on ≺ ensures that in cases where two elements are merged by a
homomorphism in step (2.b), we will always pick one as a representative that has the longest
history in the chase sequence. This ensures monotone growth of the domain within a sequence.

While we define the stabilising chase sequence Q = Q0,Q1, . . . to be infinite, it may
happen that neither new derivations nor core constructions are possible at some stage. The
process can still continue with step (2.a), appending copies of the last instance of the chase
sequence, even if they contain no new derivations. Finite termination of the chase is therefore
captured in the sequence becoming constant at some point.

I Example 23. Figure 4 illustrates a stabilising chase sequence Q for the set of TGDs from
Example 13. Q4 is the h-rewriting of Q3 for the non-strong homomorphism h denoted with
dotted arrows in the figure.
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Q1

Q2

Q3

Q4

Q5

Q6

n0 n1 n-1 n0 n1 n2 n-2 n-1 n0 n1 n2 n3 n-3 n-2 n-1 n0 n1 n2 n3 n4

Figure 4 Stabilising chase sequence Q of Example 13 without the initial sequence Q0; relations
R and S are denoted in black and orange (grey), respectively; domain elements are named below
each column of instances

I Example 24. A stabilising chase sequence might not be unique. For the set Σ of TGDs
from Example 12, parallel chase steps as in (2.a) of Definition 22 yield instances that contain
finite initial segments R(a0, a1), S(a1, a2), . . . and S(b0, b1), R(b1, b2), . . . of parallel chains as
in Figure 1a. Non-embedding homomorphisms collapse the lower chain into (a longer future
version of) the upper, or vice versa. In each case, the chase will produce initial segments
of a single infinite chain, which might begin with either R or S depending on the chosen
homomorphism.

For a particular stabilising chase sequence, however, the instances occurring in the i-th
positions of the sequence will eventually stabilise to a unique structure.

I Definition 25. An instance I is stable for position i in a stabilising chase sequence Q if
there is k ≥ 0 such that I = Qk′,i for all k′ ≥ k.

I Lemma 26. There is a unique stable instance for every stabilising chase sequence Q and
position i ≥ 0. This stable instance is a core.

Proof. There are three ways in which the finite structure Q`,i may evolve for some ` ≥ 0:
(1) Q`,i = Q`+1,i; (2) ∆Q`,i ⊃ ∆Q`+1,i ; or (3) RQ`,i ⊂ RQ`+1,i for some relational symbol R.
The (not mutually exclusive) cases (2) and (3) can only occur for a finite number of times.
For (2), it is clear that the finite domain cannot decrease in size infinitely often. Moreover,
domain elements are only ever renamed if two of them are merged by a homomorphism
during rewriting. The finite bound for (3) follows since there can only be at most finitely
many relations over a finite domain. Therefore, there is some k for which Qk,i is stable.

Stable instances are cores since otherwise they would admit a non-embedding endo-
morphism, which would eventually be used in step (2.b) of Definition 22, contradicting
stability. J

We may therefore denote the stable instance for position i in Q by st(Q, i), and use the
sequence of stable instances to define an infinite structure:

I Definition 27 (Stable Chase). If Q is a stabilising chase sequence for some set Σ of TGDs,
then (st(Q, i))i≥0 is a stable chase sequence for Σ, and

⋃
i≥0 st(Q, i) is a stable chase for Σ.

ICDT 2018
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I Example 28. In Figure 4, all instances below the dashed line are stable in the stabilising
chase sequence Q from Example 23 (using the TGDs Σ from Example 13). The corresponding
stable chase sequence is (Si)i≥0 where, for every i ≥ 0, Si is a chain of length 2i of elements
sequentially connected by R and S. The stable chase for Σ is a two-way infinite chain of
elements sequentially connected by R and S. The stable chase S is unique up to isomorphism
in this case.

6 Properties of the Stable Chase

We start by showing that every set of TGDs admits a stable chase. We then show that
the stable chase algorithm yields a model of Σ (Theorem 30) that is BCQ-equivalent to Σ
(Theorem 31), and that is a core (Theorem 32). We show that it satisfies all full incidental
dependencies (Theorem 33) and that it coincides with the result of the core chase in finite
cases (Theorem 34). Nevertheless, we observe that the stable chase is neither unique nor a
universal model. Finally, we show the existence of another BCQ-equivalent model that is a
core and entails all incidental dependencies.

I Theorem 29. Every set of TGDs has a stable chase sequence.

Proof. We show that every set of TGDs admits a stabilising chase sequence Q. Indeed, let
Q = Q0,Q1, . . . be a stabilising chase sequence constructed as follows:

1. Set Q0 as the singleton sequence containing the empty instance.
2. For every k ≥ 0: If every homomorphism h : Qk,i → Qk,j for every 0 ≤ i ≤ j is

an embedding, then let Qk+1 = Qk,0 · · ·Qk,`(k)Σ(Qk,`(k)). Otherwise, Qk+1 is the
h-rewriting of Qk with h some (arbitrarily chosen) non-embedding homomorphism from
some instance of Qk to another.

It is clear that the resulting series Q satisfies 1 and 2 from Definition 22.
It remains to verify the fairness condition on the application of step (2.b). Consider some

k ≥ 0, some 0 ≤ i ≤ j, and some non-embedding homomorphism h : Qk,i → Qk,j . Then,
let Qk′ be the sequence in Q with the same length as Qk such that k′ is maximal (note
that, k′ ≥ k). By item (2) and Definition 22, every homomorphism from Qk′′,i to Qk′′,j with
k′′ ≥ k′ is an embedding. Moreover, we can show via induction that there is a homomorphism
h′ : Qk,j → Qk′′,j for every k′′ ≥ k′. Note that, given some k′′ ≥ k, the existence of a
non-embedding homomorphism h′′ : Qk′′,i → Qk,j would imply the existence of another
homomorphism from Qk′′,i to Qk′′,j which is not an embedding either (namely, h′ ◦ h′′).
Hence, for every k′′ ≥ k′, every homomorphism h′′ : Qk′′,i →Qk,j is an embedding. J

I Theorem 30. If C is a stable chase for Σ, then C |= Σ.

Proof. Let Q be the stabilising chase sequence from which C was extracted. Consider any
rule ϕ→ ∃y.ψ ∈ Σ that is applicable to C based on some homomorphism h : Iϕ → C. Since
Iϕ is finite, there is i ≥ 0 such that h restricts to a homomorphism Iϕ → st(Q, i). Let k be
the least number such that Qk,i = st(Q, i). By Definition 22, we find that Qk,i ⊆Qk,j for all
i ≤ j ≤ `(k). Moreover, there is k′ > k with `(k′) = `(k) + 1 and Qk′,`(k)+1 = Σ(Qk′−1,`(k))
(step 2.a). Since st(Q, i) = Qk,i = Qk′−1,i ⊆ Qk′−1,`(k), rule ϕ → ∃y.ψ is applicable to
Qk′−1,`(k) under h. Therefore, Qk′,`(k)+1 contains the result of this rule application, and by
Definition 20 this remains true (possibly for some renaming of new nulls) in st(Q, `(k) + 1)
and hence in C. J

I Theorem 31. If C is a stable chase for Σ, then C and Σ are BCQ-equivalent.
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Proof. By Theorem 30 and the definition of BCQ entailment, Σ |= q implies C |= q for all
BCQs q.

For the converse, let Q be some stabilising chase sequence for C. We show that C |= q

implies Σ |= q for every BCQ q. By compactness, it suffices to show that st(Q, i) |= q implies
Σ |= q for all for any i ≥ 0. We show the stronger claim Qk,i |= q implies Σ |= q for all i ≥ 0
by induction on k.

For the base case, Q0,0 is the empty instance, and the claim is immediate. Now assume
the claim holds for all instances of Qk. Definition 22 has two ways for constructing Qk+1:

2.a Then the only new instance is Σ(Qk,`(k)). Since the claim holds for I = Qk,`(k), we
find that Σ |= qI for the corresponding BCQ qI . Therefore, any rule application that is
possible on I is possible (up to isomorphism) in any model of Σ, and hence Σ |= qΣ(I),
which entails the claim.

2.b Let h : Qk,i →Qk,j be the homomorphism used for the rewriting. Then h restricts to a
homomorphism Qk+1,i →Qk,j . By Definition 22, we find that Qk+1,i′ ⊆ Σ(Qk+1,i′−1)
for all i′ > i. Therefore, Qk+1,`(k) ⊆ Σ`(k)−i(Qk+1,i) (‡). It suffices to consider BCQs
q that are entailed by Qk+1,`(k) (where `(k) = `(k + 1)), since they subsume all BCQ
entailment in any instance of Qk+1. By (‡), Qk+1,`(k) |= q implies Qk+1,i,Σ |= q. Using
the homomorphism h : Qk+1,i →Qk,j , we conclude Qk,j ,Σ |= q and hence Σ |= q.

J

I Theorem 32. If C is a stable chase for Σ, then C is a core.

Proof. By Definition 27, there is some rewritten chase sequence S = S0,S1, . . . with
C =

⋃
i≥0 Si. Moreover, for every i ≥ j ≥ 0 and every homomorphism h : Si → Sj , h is an

embedding. Since every element of S is finite, every homomorphism h mapping such element
to C is also an embedding. Since Si−1 ⊆ Si for every i ≥ 1, we conclude that S is a core
cover for C. Therefore, we can apply Theorem 16 to show that the theorem follows. J

The previous observation that the stable chase sequence yields a core cover, together
with the BCQ-equivalence of stable chase and Σ (Theorem 31), lets us apply Theorem 18 to
conclude that the stable chase does indeed characterise the full incidental dependencies:

I Theorem 33. Every stable chase of Σ entails exactly those full dependencies that are
incidental for Σ.

As one would expect in the light of Theorem 8, the stable chase does not constitute a
semi-decision procedure for incidentality or non-incidentality. On the one hand, the stable
chase may not terminate, on the other hand we cannot even decide if a given finite instance
in a stabilising chase sequence is already stable.

The core chase can be viewed as a special case of the stable chase procedure, since it
can be obtained by prioritising step (2.b) in Definition 22, while applying it only to the
last instance in a chase sequence Qk (this forces the homomorphism that is used to be an
endomorphism). For finite models, this does not change the outcome, and indeed the stable
chase coincides with the core chase whenever the latter is defined:

I Theorem 34. If a set Σ of TGDs has a finite universal model, then the stable chase over
Σ is equal to the result of the core chase, up to isomorphism.

Proof. Deutsch et al. showed that the core chase yields a finite universal model in this
case [14, Theorem 7]. Let U be this model, and let C be a stable chase of Σ. Since U is
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v1

v2

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

v1

v2

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

v1

v2

b1 b2 b3 b4

c1 c2 c3 c4

Figure 5 Instances I (left), J (middle), and K (right). Roles U, V, R, and S are represented
with dashed and black, dashed and orange (possibly grey), black, and orange (possibly grey) arrows,
respectively; dotted edges indicate the continuation of a sequence of elements up to some length

universal, there is a homomorphism h : C → U , since C is a model (Theorem 30). Moreover,
since U is finite, U |= qU , and since U and C are BCQ-equivalent (Theorem 31), there is a
homomorphism h′ : U → C. Therefore, the function h ◦ h′ is an endomorphism over C with a
finite range. Since C is a core (Theorem 32), every endomorphism (including h ◦ h′) must be
injective and hence, C must be finite. Since C is finite, BCQ-equivalent to U , and a core, we
conclude that C is equal to U up to isomorphism. J

We continue with some limitations of the stable chase: it may not yield a universal
model, it may admit uncountably many non-isomorphic results, and it cannot be used to
characterise non-full incidental TGDs. As already pointed out in Section 4, there are sets of
TGDs that only admit universal models which are not cores (e.g., see the set of TGDs from
Example 14). Hence, since the stable chase is guaranteed to yield a core (Theorem 32), it
may not always produce a universal model. To illustrate the other limitations, consider the
following example.

I Example 35. Consider a set Σ of TGDs containing the following dependencies.

∃x, y.V (x, y) U(x, y) ∧R(y, z)→ U(x, z)
V (x, y)→ ∃z.V (y, z) U(x, y) ∧ S(y, z)→ U(x, z)
V (x, y)→ ∃z, w.U(x, z) ∧R(z, w) R(x, y)→ ∃z.S(y, z)
V (x, y)→ ∃z, w.U(x, z) ∧ S(z, w) S(x, y)→ ∃z.R(y, z)

Moreover, let I, J , and K be the instances depicted in Figure 5.
By iteratively applying the chase step (2.a) from Definition 22 during the computation of

some stabilising chase sequence Q of Σ, we can produce an instance such as I containing an
arbitrarily long V chain, and two alternating R and S chains linked to every element vi of
such V -chain. Applying step (2.b) from Definition 22, we can, for each pair of chains in I
linked to the same vi, collapse the lower chain into the upper, or vice versa. In each case, the
chase will produce initial segments of a single alternating infinite chain, which might begin
with R or S. Applying such h-rewritings, we can produce instances such as J and K.

The h-rewritings discussed above are somehow similar to the rewriting discussed in
Example 24. However, in the current example, we have an infinite number of rewritings to
consider–one for each element vi in the infinite V chain. Taking into account all of these
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choices, we can generate uncountably many different stable chase sequences which can in
turn be used to define uncountably many non-isomorphic stable chases.

Finally, note that there are (non-full) incidental TGDs for Σ, such as V (x, y)→ ∃z.V (z, x),
which are not entailed by any stable chase of Σ.

As highlighted by the previous example, instances resulting from the stable chase sequence
may not be used to characterise non-full TGDs. Nevertheless, we can show that, for a set of
TGDs, there is an instance that satisfies all incidentals. While this result shows the existence
of a suitable structure, it does not offer a constructive way of approximating it, since it relies
on the (infinite) set of all incidentals to be given.

I Theorem 36. Given a set Σ of TGDs, there is an instance I such that:

1. I is a core;
2. I |= Σ;
3. BCQ(I) = BCQ(Σ); and
4. ρ ∈ ICDT(Σ) iff I |= ρ, for any TGD ρ.

Proof. To show this theorem we sketch how one can adapt the stable chase so that it can
deal with infinite sets of TGDs. In this case infinite instances may occur in a stabilising chase
of ICDT(Σ) and hence, the stable chase is not well-defined. To avoid this, we slightly modify
Definition 22: In (2.a), instead of setting Qk+1 as the extension of Qk with ICDT(Σ)(Qk,`(k)),
we define this sequence as the extension of Qk with ρ(Qk,`(k)) for some ρ ∈ ICDT(Σ).
Moreover, we must also ensure fairness of the application of the rules in ICDT(Σ); i.e., each
rule in ICDT(Σ) must be applied after the computation of a finite amount of sequences. With
this modified version of the stable chase, one can show that it maintains its main properties.
Then, by Theorem 29 there is some stable chase I of ICDT(Σ) which, by Theorem 32,
I is a core; by Theorem 30, I |= ICDT(Σ) and hence, I entails all subsets of ICDT(Σ),
including Σ; and by Theorem 31, BCQ(I) = BCQ(Σ). Also, if ρ ∈ ICDT(Σ), then I |= ρ since
I |= ICDT(Σ). Conversely, if I |= ρ then ρ(q) ∈ BCQ(Σ) for every q ∈ BCQ(Σ). Therefore,
by Theorem 4, ρ ∈ ICDT(Σ). J

7 Conclusion

To the best of our knowledge, this is the first study on constraint implication in the presence
of arbitrary theories of tuple-generating dependencies. This idea is embodied in our new
notion of incidental dependencies, which correspond to constraints that can be safely assumed
to hold when checking BCQ entailment, despite not being a consequence of the given TGD
set. Even for a single, fixed instance, finding incidental dependencies remains a challenging
problem which is highly undecidable.

Our work reveals close connections between incidental dependencies and cores. If a
finite universal model exists, its unique core perfectly characterises the incidentals. The
correspondence breaks down if models become infinite, but we can still find cases where cores
characterise at least all full incidental dependencies. However, one then has to be content
with cores that are BCQ-equivalent to the universal models, but that are not universal
themselves. To obtain such cores, we presented the stable chase as a generalisation of the
core chase that can be used to build infinite models, and which is interesting in its own right.

On the theoretical level, several questions remain for future work: Is there a construction
alike the stable chase which produces a BCQ-equivalent model which is indicative of all
incidental TGDs (not just the full ones), without knowing all incidentals beforehand? What
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are the computational characteristics of Incidental for restricted classes of TGDs (such
as guarded [4], sticky [10], etc.)? Obviously, all classes that warrant a finite universal
model (such as diverse versions of acyclic TGDs [16, 24, 21, 13] and full TGDs) guarantee
decidability, but the exact complexity of checking incidentality of individual TGDs would
still be of interest. Further questions arise when considering equality-generating dependencies
in addition to TGDs. Finally, it is of great importance to understand how known incidentals
can be exploited toward more efficient practical query answering, as already suggested in
some previous works [22, 25].
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8 Appendix: Proof of Theorem 8

I Theorem 8. Incidental is Π0
2-complete, and in particular neither RE nor coRE.
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12:18 Preserving Constraints with the Stable Chase

Proof. For membership note that we can characterise incidentiality by quantifying over
(finite) derivations (or proofs) in some theory. Indeed, a TGD ρ is incidental for Σ if: for
all derivations that show Σ ∪ {ρ} |= q for some BCQ q, there is a derivation that shows
Σ |= q. Using Gödel numbers for representing derivations, this condition can be expressed as
a ∀∃-sentence in first-order arithmetic.

We show hardness by many-one reduction from the universal halting problem, which is as
follows: given a (deterministic) Turing machineM, doesM halt on all inputs? Universal
halting is known to be complete for Π0

2 (see [26, Theorem VIII], and apply Post’s Theorem).
For the reduction, we construct for a given TMM a set ΣM of TGDs and a full TGD ρ

such that ρ is incidental for Σ iffM halts universally. The rules of ΣM consist of three parts:
Σ1 ensures that each model contains representations of all possible inputs; Σ2 simulatesM
on a particular input; Σ3 marks elements of an accepting TM simulation with a specific
unary relation halted. The rule ρ then asserts that initial elements in TM simulations are
always marked by halted, which is incidental if all runs have indeed terminated.

In detail, let Q be the set of states, Γ be the tape alphabet with blank symbol �, and
δ : Q× Γ→ Q× Γ×{r, l} the (total, deterministic) transition function ofM. Let qs, qe ∈ Q
be the starting and halting state, respectively. We assume without loss of generality thatM
never returns to qs during a run. Our encoding uses the following unary relation symbols:

symbolσ: marks tape positions with symbol σ ∈ Γ
headq: marks tape position of head with TM in state q ∈ Q
end: marks last (explicitly represented) tape position
halted: used to mark halting configurations

as well as binary relations g, f (used to generate inputs), right, right+ (right tape neighbour
and its transitive closure), and next (tape cell in next configuration).

Now Σ1 contains the followig rules

→ ∃y.symbol�(y) (4)
symbolσ(x)→ ∃y.g(x, y) ∧ symbolσ′(y) (5)
symbolσ(x)→ ∃y.f(x, y) ∧ symbolσ(y) ∧ headqs

(y) (6)
symbolσ(x) ∧ g(x, y) ∧ f(y, z)→ ∃v.f(x, v) ∧ right(z, v) (7)

symbol�(x) ∧ f(x, y)→ end(y) (8)

each instantiated for all σ, σ′ ∈ Γ. Models of Σ1 projectively contain an infinite g-tree
with root labelled symbol� (4) and other nodes labeled by symbols symbolσ (5). Each node
f -relates to the start of an initial sequence (6), which continues as a parallel copy of the
finite path up until the root of the tree (7). The last cell of each initial tape is marked with
end (8).

The set Σ2 that simulatesM is defined as follows. The following rules generate an infinite
grid of TM tapes, with each tape one cell longer than the previous:

end(x)→ ∃v, w.next(x, v) ∧ right(v, w) ∧ end(w) ∧ symbol�(w) (9)
right(x, y) ∧ next(y, z)→ ∃v.next(x, v) ∧ right(v, z) (10)

For every transition δ(q, σ) = 〈q′, σ′, r〉, Σ2 contains a rule:

headq(x) ∧ symbolσ(x) ∧ right(x, y) ∧ next(x, x′) ∧ next(y, y′)
→ symbolσ′(x′) ∧ headq′(y′)

(11)
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and for every transition δ(q, σ) = 〈q′, σ′, l〉 the rule

headq(x) ∧ symbolσ(x) ∧ right(y, x) ∧ next(x, x′) ∧ next(y, y′)
→ symbolσ′(x′) ∧ headq′(y′).

(12)

Finally, Σ2 also contains the following rules for all σ ∈ Γ and q ∈ Q:

right(x, y)→ right+(x, y) (13)
right(x, y) ∧ right+(y, z)→ right+(x, z) (14)

symbolσ(x) ∧ right+(x, y) ∧ headq(y) ∧ next(x, x′)→ symbolσ(x′) (15)
symbolσ(x) ∧ right+(y, x) ∧ headq(y) ∧ next(x, x′)→ symbolσ(x′) (16)

Rules (13) and (14) define right+ to be (a superset of) the transitive closure of right, used by
rules (15) and (16) to preserve tape contents at positions different from the head position. It is
not hard to see that rules (9)–(16) create a simulatation ofM for each starting configuration.

Finally, Σ3 contains the rules

headqe
(x)→ halting(x) (17)

right(x, y) ∧ halting(y)→ halting(x) (18)
next(x, y) ∧ halting(y)→ halting(x) (19)

which propagate halting back to the first position of the first tape if the TM ever reaches qe.
We claim that ρ is incidental for ΣM = Σ1 ∪Σ2 ∪Σ3 iffM is universally halting. Indeed,

ifM is universally halting, then any universal model of ΣM will have halting propagated
back to the first cell of the first tape in each TM simulation, so that the rule is already
satisfied in this model.

Conversely, if M is not universally halting, then there is an input w = w1 · · ·wn on
which it does not halt. Any universal model of ΣM contains an initial tape for w, with the
first position not marked by halting. The BCQ ∃x.halting(x1) ∧ headqs

(x1) ∧ symbolw1(x1) ∧
right(x1, x2) ∧ . . . ∧ symbolwn

(xn) ∧ right(xn, xn+1) ∧ end(xn) is not entailed by ΣM but by
ΣM ∪ {ρ}. J
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