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Abstra
t

Re
ently, it has been shown that the small DL EL, whi
h allows for 
onjun
tion

and existential restri
tions, has better algorithmi
 properties than its 
ounterpart

FL

0

, whi
h allows for 
onjun
tion and value restri
tions. Whereas the subsumption

problem in FL

0

be
omes already intra
table in the presen
e of a
y
li
 TBoxes, it

remains tra
table in EL even w.r.t. general 
on
ept in
lusion axioms (GCIs). On the

one hand, we will extend the positive result for EL by identifying a set of expressive

means that 
an be added to EL without sa
ri�
ing tra
tability. On the other hand,

we will show that basi
ally all other additions of typi
al DL 
onstru
tors to EL with

GCIs make subsumption intra
table, and in most 
ases even ExpTime-
omplete. In

addition, we will show that subsumption in FL

0

with GCIs is ExpTime-
omplete.

1 Introdu
tion

The quest for tra
table (i.e., polynomial-time de
idable) des
ription logi
s (DLs), whi
h

started in the 1980s after the �rst intra
tability results for DLs were shown [6, 26℄,

was until re
ently restri
ted to DLs extending the basi
 language FL

0

, whi
h allows

for 
onjun
tion (u) and value restri
tions (8r:C). The main reason was that, when


larifying the logi
al status of property ar
s in semanti
 networks and slots in frames,

the de
ision was taken that ar
s/slots should be read as value restri
tions rather than

existential restri
tions (9r:C).

For subsumption between 
on
ept des
riptions, the tra
tability barrier was inves-

tigated in detail in the early 1990s [10℄. However, as soon as terminologies (TBoxes)

were taken into 
onsideration, tra
tability turned out to be unattainable: even with

the simplest form of a
y
li
 TBoxes, subsumption in FL

0

(and thus in all languages

extending it) is 
oNP-hard [27℄. Subsumption in FL

0

is PSpa
e-
omplete w.r.t. 
y
li


TBoxes [3, 21℄, and we show in this paper that it be
omes even ExpTime-
omplete in

the presen
e of general 
on
ept in
lusion axioms (GCIs), whi
h are supported by all

modern DL systems.

For these reasons, and also be
ause of the need for expressive DLs supporting GCIs

in appli
ations, from the mid 1990s on the DL 
ommunity has mainly given up on

the quest of �nding tra
table DLs. Instead, it investigated more and more expressive



DLs, for whi
h reasoning is worst-
ase intra
table. The goal was then to �nd pra
ti-


al subsumption algorithms, i.e., algorithms that are easy to implement and optimize,

and whi
h|though worst-
ase exponential or even worse|behave well in pra
ti
e (see,

e.g., [20℄). This line of resear
h has resulted in the availability of highly optimized DL

systems for expressive DLs [17, 14℄, and su

essful appli
ations: most notably the re
-

ommendation by the W3C of the DL-based language OWL [18℄ as the ontology language

for the Semanti
 Web.

Re
ently, the 
hoi
e of value restri
tions as a sine qua non of DLs has been re
on-

sidered. On the one hand, it was shown that the DL EL, whi
h allows for 
onjun
tion

and existential restri
tions, has better algorithmi
 properties than FL

0

. Subsumption

in EL stays tra
table w.r.t. both a
y
li
 and 
y
li
 TBoxes [4℄, and even in the presen
e

of GCIs [7℄. On the other hand, there are appli
ations where value restri
tions are not

needed, and where the expressive power of EL or small extensions thereof appear to be

suÆ
ient. In fa
t, SNOMED, the Systematized Nomen
lature of Medi
ine [9℄ employs

EL [30, 31℄ with an a
y
li
 TBox. Large parts of the Galen medi
al knowledge base 
an

also be expressed in EL with GCIs and transitive roles [28℄. Finally, the Gene Ontology

[32℄ 
an be seen as an a
y
li
 EL-TBox with one transitive role.

Motivated by the positive 
omplexity results 
ited above and the use of extensions

of EL in appli
ations, we start with the DL EL with GCIs, and investigate the ef-

fe
t on the 
omplexity of the subsumption problem that is 
aused by the addition of

standard DL 
onstru
tors available in ontology languages like OWL. We prove that the

subsumption problem remains tra
table when adding the bottom 
on
ept (and thus dis-

jointness statements), nominals (i.e., singleton 
on
epts), a restri
ted form of 
on
rete

domains (e.g., referen
es to numbers and strings), and a restri
ted form of role-value

maps (whi
h 
an express transitivity and the right-identity rule required in medi
al

appli
ations [30℄). We then prove that basi
ally, all other additions of standard DL


onstru
tors lead to intra
tability of the subsumption problem, and in most 
ases even

to ExpTime-hardness.

2 Des
ription Logi
s

In DLs, 
on
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names, a set N

R

of role names, and (possibly)

a set N

I

of individual names. In this se
tion, we introdu
e the extension EL

++

of EL,

whose 
on
ept des
riptions are formed using the 
onstru
tors shown in the upper part

of Table 1. There and in general, we use a and b to denote individual names, r and s

to denote role names, and C;D to denote 
on
ept des
riptions.

The 
on
rete domain 
onstru
tor provides an interfa
e to so-
alled 
on
rete domains,

whi
h permits referen
e to, e.g., strings and integers. Formally, a 
on
rete domain D is a

pair (�

D

;P

D

) with �

D

a set and P

D

a set of predi
ate names. Ea
h p 2 P is asso
iated

with an arity n > 0 and an extension p

D

� (�

D

)

n

. To provide a link between the

DL and the 
on
rete domain, we introdu
e a set of feature names N

F

. In Table 1, p

denotes a predi
ate of some 
on
rete domain D and f

1

; : : : ; f

k

are feature names. The

DL EL

++

may be equipped with a number of 
on
rete domains D

1

; : : : ;D

n

su
h that

2



Name Syntax Semanti
s

top > �

I

bottom ? ;

nominal fag fa

I

g


onjun
tion C uD C

I

\D

I

existential

restri
tion

9r:C fx 2 �

I

j 9y 2 �

I

: (x; y) 2 r

I

^ y 2 C

I

g


on
rete

domain

p(f

1

; : : : ; f

k

)

for p 2 P

D

j

fx 2�

I

j 9y

1

; : : : ; y

k

2 �

D

j

:

f

I

i

(x) = y

i

for 1 � i � k ^ (y

1

; : : : ; y

k

) 2 p

D

j

g

GCI C v D C

I

� D

I

RI r

1

Æ � � � Æ r

k

v r r

I

1

Æ � � � Æ r

I

k

� r

I


on
ept

assertion

C(a) a

I

2 C

I

role

assertion

r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semanti
s of EL

++

.

�

D

i

\ �

D

j

= ; for 1 � i < j � n. If we want to stress the use of parti
ular 
on
rete

domains D

1

; : : : ;D

n

, we write EL

++

(D

1

; : : : ;D

n

) instead of EL

++

.

The semanti
s of EL

++

(D

1

; : : : ;D

n

)-
on
ept des
riptions is de�ned in terms of an

interpretation I = (�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the

interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset A

I

of �

I

, ea
h

role name r 2 N

R

to a binary relation r

I

on �

I

, ea
h individual name a 2 N

I

to an

individual a

I

2 �

I

, and ea
h feature name f 2 N

F

to a partial fun
tion f

I

from �

I

to

S

1�i�n

�

D

i

. The extension of �

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned

as shown in the third 
olumn of Table 1.

An EL

++


onstraint box (CBox) is a �nite set of general 
on
ept in
lusions (GCIs)

and role in
lusions (RIs), whose syntax 
an be found in Table 1. Note that a �nite set

of GCIs would 
ommonly be 
alled a general TBox. We use the term CBox due to the

presen
e of RIs. An interpretation I is a model of a CBox C if, for ea
h GCI and RI in

C, the 
onditions given in the third 
olumn of Table 1 are satis�ed. In the de�nition of

the semanti
s of RIs, the symbol \Æ" denotes 
omposition of binary relations.

An EL

++

assertional box (ABox) is a �nite set of 
on
ept assertions and role as-

sertions , whose syntax 
an also be found in Table 1. ABoxes are used to des
ribe a

snapshot of the world. An interpretation I is a model of an ABox A if, for ea
h 
on
ept

assertion and role assertion in A, the 
onditions given in the third 
olumn of Table 1

are satis�ed.

The most relevant inferen
e problems for des
ription logi
s 
an be des
ribed as

follows:

� Con
ept satis�ability. A 
on
ept C is satis�able w.r.t. a CBox C if there exists a

model I of C su
h that C

I

6= ;.

3



� Con
ept subsumption. A 
on
ept C subsumes a 
on
eptD w.r.t. a CBox C (written

C v

C

D) if C

I

� D

I

in every model I of C.

� ABox 
onsisten
y. An ABox A is 
onsistent w.r.t. a CBox C if A and C have a


ommon model.

� The instan
e problem. An individual name a is an instan
e of a 
on
ept C in an

ABox A w.r.t. a CBox C if a

I

2 C

I

for every 
ommon model I of A and C.

In the remainder of this paper, we will 
on
entrate on subsumption as the basi
 reasoning

task. This is justi�ed by the fa
ts that, �rst, all of the above reasoning tasks 
an be

mutually polynomially redu
ed to one another, and se
ond, subsumption is the most

\traditional" reasoning servi
e in des
ription logi
s. We show mutual redu
ibility by

redu
ing all (other) reasoning tasks to subsumption, and vi
e versa:

� Satis�ability to (non-)subsumption: a 
on
ept C is satis�able w.r.t. a CBox C i�

C 6v

C

?.

� Instan
e problem to subsumption. We 
onvert an ABox A into a 
on
ept C

A

as

follows:

C

A

:= u

C(a)2A

9u:(fag u C) u u

r(a;b)2A

9u:(fag u 9r:fbg)

where u is a new role name not used in A. Then, an individual a is an instan
e

of a 
on
ept C in an ABox A w.r.t. a CBox C i� fag u C

A

v

C

C.

� Consisten
y to subsumption: A is 
onsistent w.r.t. C i� C

A

6v ?.

� Subsumption to satis�ability: C v

C

D i� C u fag is unsatis�able w.r.t. the CBox

C [ fD u fag v ?g, where a is an individual name not o

urring in C, D, and C.

� Subsumption to the instan
e problem: C v

C

D if a is an instan
e of D in the

ABox fa : Cg w.r.t. C.

� Subsumption to 
onsisten
y: C v

C

D i� the ABox fC(a)g is in
onsistent w.r.t.

the TBox C [ fD u fag v ?g.

Three remarks regarding the expressivity of EL

++

are in order. First, our RIs generalize

three means of expressivity important in ontology appli
ations: role hierar
hies r v s;

transitive roles, whi
h 
an be expressed by writing r Æ r v r; and so-
alled right-identity

rules r Æ s v s, whi
h are important in medi
al appli
ations [30, 19℄. Se
ond, the

bottom 
on
ept in 
ombination with GCIs 
an be used to express disjointness of 
omplex


on
ept des
riptions: C uD v ? says that C;D are disjoint. Finally, the unique name

assumption for individual names 
an be enfor
ed by writing fag u fbg v ? for all

relevant individual names a and b.

3 De
iding Subsumption in EL

++

(D

1

; : : : ;D

k

)

We develop a polynomial time algorithm for subsumption in EL

++

. To this end, it is


onvenient to �rst introdu
e an appropriate normal form for CBoxes.

4



3.1 A Normal Form for CBoxes

Given a CBox C, we use BC

C

to denote the set of basi
 
on
ept des
riptions for C , i.e.,

the smallest set of 
on
ept des
riptions that 
ontains

� the top 
on
ept >;

� all 
on
ept names used in C;

� all (sub)
on
epts of the form fag or p(f

1

; : : : ; f

k

) appearing in C.

Now, a normal form for CBoxes 
an be de�ned as follows.

De�nition 1 (Normal Form for CBoxes). An EL

++

-CBox C is in normal form if

1. all 
on
ept in
lusions have one of the following forms, where C

1

; C

2

2 BC

C

and

D 2 BC

C

[ f?g:

C

1

v D

C

1

u C

2

v D

C

1

v 9r:C

2

9r:C

1

v D

2. all role in
lusions are of the form r v s or r

1

Æ r

2

v s.

By introdu
ing new 
on
ept and role names, any CBox C 
an be turned into a normalized

CBox C

0

that is a 
onservative extension of C, i.e., every model of C

0

is also a model

of C, and every model of C 
an be extended to a model of C

0

by appropriately the

interpretations of the additional 
on
ept and role names.

We now show that this transformation 
an a
tually be done in linear time, yielding

a normalized CBox C

0

whose size is linear in the size of C, where the size jCj of a CBox

C is the is the number of symbols needed to write down C.

Lemma 2. Subsumption w.r.t. CBoxes in EL

++


an be redu
ed in linear time to sub-

sumption w.r.t. normalized CBoxes in EL

++

.

Proof. A CBox 
an be 
onverted into normal form using the translation rules shown

in Figure 1 in two phases:

1. exhaustively apply rules NF1 to NF4;

2. exhaustively apply rules NF5 to NF7.

Here \rule appli
ation" means that the 
on
ept in
lusion on the left-hand side is repla
ed

with the set of 
on
ept in
lusions on the right-hand-side. In Phase 1, the rule NF2 is

applied modulo 
ommutativity of 
onjun
tion. It is easily veri�ed that the size of the

normalized CBox C

0


omputed by applying the normalization rules is linear in the size of

the original CBox C, and that C

0

is 
omputed using at most jCj rule appli
ations. ❏

5



NF1 r

1

Æ � � � Æ r

k

v s �! fr

1

Æ � � � Æ r

k�1

v u; u Æ r

k

v sg

NF2 C u

^

D v E �! f

^

D v A;C uA v E g

NF3 9r:

^

C v D �! f

^

C v A;9r:A v D g

NF4 ? v D �! ;

NF5

^

C v

^

D �! f

^

C v A;A v

^

D g

NF6 B v 9r:

^

C �! f B v 9r:A;A v

^

C g

NF7 B v C uD �! f B v C;B v D g

where

^

C;

^

D 62 BC

C

, u denotes a new role name, and A a new 
on
ept name.

Figure 1: Normalization Rules

Note that the CBox obtained by rule appli
ation is of linear size only sin
e we apply

normalization rules in two phases: if all rules are applied together in one phase, we

obtain a quadrati
 blowup in the worst 
ase due to the dupli
ation of the 
on
ept B by

Rule NF7.

3.2 The Algorithm

We now develop a polynomial-time algorithm for de
iding subsumption in EL

++

w.r.t.

CBoxes in normal form. Here and in the remainder of the paper, we 
an restri
t our

attention to subsumption between 
on
ept names. In fa
t, C v

C

D i� A v

C

0

B, where

C

0

= C [ fA v C;D v Bg with A and B new 
on
ept names. Our subsumption

algorithm not only 
omputes subsumption between two given 
on
ept names w.r.t. the

normalized input CBox C; it rather 
lassi�es C, i.e., it simultaneously 
omputes the

subsumption relationships between all pairs of 
on
ept names o

urring in C.

Now, let C be a CBox in normal form that is to be 
lassi�ed. We use R

C

to denote

the set of all role names used in C. The algorithm 
omputes

� a mapping S from BC

C

to a subset of BC

C

[ f>;?g, and

� a mapping R from R

C

to a binary relation on BC

C

.

The intuition is that these mappings make impli
it subsumption relationships expli
it

in the following sense:

(I1) D 2 S(C) implies that C v

C

D,

(I2) (C;D) 2 R(r) implies that C v

C

9r:D.

In the algorithm, these mappings are initialized as follows:

� S(C) := fC;>g for ea
h C 2 BC

C

,

6



CR1 If C

0

2 S(C), C

0

v D 2 C, and D 62 S(C)

then S(C) := S(C) [ fDg

CR2 If C

1

; C

2

2 S(C), C

1

uC

2

v D 2 C, and D 62 S(C)

then S(C) := S(C) [ fDg

CR3 If C

0

2 S(C), C

0

v 9r:D 2 C, and (C;D) =2 R(r)

then R(r) := R(r) [ f(C;D)g

CR4 If (C;D) 2 R(r), D

0

2 S(D), 9r:D

0

v E 2 C, and E =2 S(C)

then S(C) := S(C) [ fEg

CR5 If (C;D) 2 R(r), ? 2 S(D), and ? =2 S(C),

then S(C) := S(C) [ f?g

CR6 If fag 2 S(C) \ S(D), C  D, and S(D) 6� S(C)

then S(C) := S(C) [ S(D)

CR7 If 
on

j

(S(C)) is unsatis�able in D

j

and ? =2 S(C),

then S(C) := S(C) [ f?g

CR8 If 
on

j

(S(C)) implies p(f

1

; : : : ; f

k

) 2 BC

C

in D

j

and p(f

1

; : : : ; f

k

) =2 S(C),

then S(C) := S(C) [ fp(f

1

; : : : ; f

k

)g

CR9 If p(f

1

; : : : ; f

k

); p

0

(f

0

1

; : : : ; f

0

k

0

) 2 S(C), p 2 P

D

j

,

p

0

2 P

D

`

, j 6= `, f

s

= f

0

t

for some s; t, and ? =2 S(C),

then S(C) := S(C) [ f?g

CR10 If (C;D) 2 R(r), r v s 2 C, and (C;D) =2 R(s)

then R(s) := R(s) [ f(C;D)g

CR11 If (C;D) 2 R(r

1

), (D;E) 2 R(r

2

), r

1

Æ r

2

v r

3

2 C, and (C;E) =2 R(r

3

)

then R(r

3

) := R

i

(r

3

) [ f(C;E)g

Table 2: Completion Rules

� R(r) := ; for ea
h r 2 R

C

.

Then the sets S(C) and R(r) are extended by applying the 
ompletion rules shown in

Table 2 until no more rule applies.

Some of the rules use abbreviations that still need to be introdu
ed. First, CR6

uses the relation  � BC

C

� BC

C

, whi
h is de�ned as follows: C  D i� there are

C

1

; : : : ; C

k

2 BC

C

su
h that

� C

1

= C or C

1

= fbg for some individual name b,

� (C

j

; C

j+1

) 2 R(r

j

) for some r

j

2 R

C

(1 � j < k),

� C

k

= D.

7



Se
ond, rules CR7 and CR8 use the notion 
on

j

(S

i

(C)), and satis�ability and impli-


ation in a 
on
rete domain. If p is a predi
ate of the 
on
rete domain D

j

, then the

EL

++

-
on
ept des
ription p(f

1

; : : : ; f

n

) 
an be viewed as an atomi
 �rst-order formula

with variables f

1

; : : : ; f

n

. Thus, it makes sense to 
onsider Boolean 
ombinations of

su
h atomi
 formulae, and to talk about whether su
h a formula is satis�able in (the

�rst-order interpretation) D

j

, or whether in D

j

one su
h formula implies another one.

For a set � of EL

++

(D

1

; : : : ;D

n

)-
on
ept des
riptions and 1 � j � n, we de�ne


on

j

(�) :=

^

p(f

1

;:::;f

k

)2� with p2P

D

j

p(f

1

; : : : ; f

k

):

For the rules CR7 and CR8 to be exe
utable in polynomial time, satis�ability and im-

pli
ation in the 
on
rete domains D

1

; : : : ;D

n

must be de
idable in polynominal time.

However, for our algorithm to be 
omplete, we must impose an additional 
ondition on

the 
on
rete domains.

De�nition 3. The 
on
rete domain D is p-admissible if

1. satis�ability and impli
ation in D are de
idable in polynominal time;

2. D is 
onvex : if a 
onjun
tion of atoms of the form p(f

1

; : : : ; f

k

) implies a disjun
-

tion of su
h atoms, then it also implies one of its disjun
ts.

We investigate the property of p-admissibility in more detail in Se
tion 4, where we also

exhibit some useful 
on
rete domains that are p-admissible.

The next lemma shows how all subsumption relationships between 
on
ept names

o

urring in C 
an be determined on
e the 
ompletion algorithm has terminated.

Lemma 4. Let S be the mapping obtained after the appli
ation of the rules of Table 2

for the normalized CBox C has terminated, and let A;B be 
on
ept names o

urring

in C. Then A v

C

B i� one of the following two 
onditions holds:

� S(A) \ fB;?g 6= ;,

� there is an fag 2 BC

C

su
h that ? 2 S(fag).

Lemma 4 will be proved in the subsequent se
tion, where it is also shown that the algo-

rithm terminates after polynomially many rule appli
ations. Before going into formal

details, let us brie
y dis
uss soundness of the algorithm on an intuitive level. Soundness

immediately follows from the fa
t that (I1) and (I2) are satis�ed for the initial de�ni-

tion of S;R, and that appli
ation of the rules preserves (I1) and (I2). This is trivially

seen for most of the rules. However, it is worthwhile to 
onsider CR6 in more detail. If

fag 2 S(C)\S(D), then C;D v

C

fag. Now, C  D implies that C v

C

9r

1

: � � � 9r

k�1

:D

or fbg v

C

9r

1

: � � � 9r

k�1

:D for some individual name b. In the se
ond 
ase, this implies

that D 
annot be empty in any model of C, and in the �rst 
ase it implies that D is

non-empty in any model of C for whi
h C is non-empty. Together with C;D v

C

fag,

this implies that C v

C

D, whi
h shows that the rule CR6 is sound sin
e it preserves (I1).

When dropping the requirement C  D from this rule, (I1) is no longer preserved.
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3.3 Soundness, Completeness,and Termination

We start with proving termination after polynomially many rule appli
ations.

Lemma 5. For a normalized CBox C, the rules of Table 2 
an only be applied a poly-

nomial number of times, and ea
h rule appli
ation is polynomial.

Proof. It is readily 
he
ked that the 
ardinality of BC

C

and R

C

is linear in the size of C.

Ea
h rule appli
ation performed by the algorithm adds a new element of BC

C

[f?g to a

set S(C), for some C 2 BC

C

, or a new tuple (C;D) 2 BC

C

�BC

C

to a relation R(r), for

some r 2 R

C

. Sin
e no rule removes elements of these sets/relations, the total number

of rule appli
ations is polynomial. It is readily 
he
ked that ea
h rule appli
ation 
an be

performed in polynomial time. In parti
ular, note that the relation 
an be 
omputed

using (polytime) graph rea
hability, ❏

We now prove Lemma 4. For 
onveniene, we treat the \if" dire
tion (soundness) and

the \only if" dire
tion (
ompleteness) separately. In the proofs, we will use the notion

of a solution for a 
onjun
tion 
on

i

(S(C)). Su
h a solution is a mapping Æ : N

F

! �

D

su
h that (Æ(f

1

); : : : ; Æ(f

k

)) 2 p

D

i

(hen
eforth denoted with Æ j= p(f

1

; : : : ; f

k

)) for ea
h


onjun
t p(f

1

; : : : ; f

k

) of 
. Clearly, a 
onjun
tion 
on

i

(S(C)) is satis�able i� there

exists a solution for it.

Lemma 6 (Soundness). Let S be the mapping obtained after the appli
ation of the

rules of Table 2 for the normalized CBox C has terminated, and let A;B be 
on
ept

names o

urring in C. Then A v

C

B if one of the following two 
onditions holds:

S1 S(A) \ fB;?g 6= ;,

S2 there is an fag 2 BC

C

su
h that ? 2 S(fag).

Proof. Assume that the algorithm is applied to a normalized CBox C yielding the

sequen
es of mappings S

0

; : : : ; S

m

and R

0

; : : : ; R

m

. Let A

0

and B

0

be two 
on
ept

names su
h that (at least) one of the Conditions S1 and S2 is satis�ed. To show that

A

0

v

C

B

0

, we prove the following 
laim.

Claim. For all n 2 N, models I of C, r 2 R

C

, and x 2 C

I

, the following holds:

(a) if D 2 S

n

(C) then x 2 D

I

; and

(b) if (C;D) 2 R

n

(r) then there is a y 2 �

I

with (x; y) 2 r

I

and y 2 D

I

.

The 
laim is proved by indu
tion on n. Let I be a model of C and x 2 C

I

. First for the

indu
tion start. For (a), n = 0 implies S

n

(C) = fC;>g. Thus, x 2 C

I

implies x 2 D

I

for all D 2 S

n

(C). Point (b) is immediate sin
e R

0

(r) = ; for all r 2 R

C

. Now for the

indu
tion step. For (a), we assume that D 2 S

n

(C) n S

n�1

(C) (for otherwise we are

done by the indu
tion hypothesis). We make a 
ase distin
tion a

ording to the rule

that was used to add the 
on
ept D to S

n

:

CR1 Then there exists a C

0

2 S

n�1

(C) and a 
on
ept in
lusion I = C

0

v D 2 C. By

Point (a) of the indu
tion hypothesis (IH), we have x 2 C

0

I

implying by I that

also x 2 D

I

.

9



CR2 Then there exist C

1

; C

2

2 S

n�1

(C) and a 
on
ept in
lusion I = C

1

uC

2

v D 2 C.

By Point (a) of IH, C

1

; C

2

2 S

n�1

(A) yields x 2 C

I

1

and x 2 C

I

2

, implying by I

that x 2 D

I

.

CR4 Then there exist E;E

0

2 BC

C

, a role name r 2 R

C

, and a 
on
ept in
lusion

I = 9r:E

0

v D 2 C su
h that (C;E) 2 R

n�1

(r) and E

0

2 S

n�1

(E). By Point (b)

of IH, there is a y 2 �

I

su
h that (x; y) 2 r

I

and y 2 E

I

. By Point (a) of IH, we

have y 2 E

0

I

. Thus I yields x 2 D

I

.

CR5 If this rule is used, then we have D = ? and there is an E 2 BC

C

su
h that

(C;E) 2 R(r) for some r 2 R

C

and ? 2 S

n�1

(E). By Point (b) of IH, there is a

y 2 �

I

su
h that (x; y) 2 r

I

and y 2 E

I

. By Point (a) of IH, we have y 2 ?

I

.

As this is impossible, we 
on
lude that there are no models I of C with C

I

6= ;.

Thus, adding ? to S(C) (trivially) preserves Point (a).

CR6 Then there exists an E 2 BC

C

and an individual name a su
h that fag 2 S

n�1

(C)\

S

n�1

(E), D 2 S

n�1

(E), and there are C

1

; : : : ; C

k

2 BC

C

su
h that

(i) C

1

= C or C

1

= fbg for some individual name b;

(ii) C

k

= E;

(iii) (C

i

; C

i+1

) 2 R

n�1

(r

j

) for some r

j

2 R

C

(1 � i < k).

By Point (b) of IH and (iii), there are y

1

; : : : ; y

k

2 �

I

s.t. y

1

2 fxg [ fb

I

jb 2 N

I

g,

y

k

2 C

I

k

= E

I

, and (y

i

; y

i+1

) 2 r

I

j

for some r

j

2 R

C

(1 � i < k). By Point (a) of

IH, x 2 C

I

and fag 2 S

n�1

(C)\S

n�1

(E) implies x = a

I

= y

k

. Also by Point (a),

D 2 S

n�1

(E) implies y

k

2 D

I

. Thus, x 2 D

I

as required.

CR7 If this rule is used, then we have D = ? and 
on

i

(S

n�1

(C)) is unsatis�able

for some i. De�ne a fun
tion Æ : N

F

! �

D

i

by setting Æ(f) := f

I

(x). Using

Part (a) of IH, we get that x 2 p(f

1

; : : : ; f

k

)

I

for every 
onjun
t p(f

1

; : : : ; f

k

) of


on

i

(S

n�1

(C)). Thus, Æ is a solution for 
on

i

(S

n�1

(C)), 
ontradi
ting its unsat-

is�ability. Thus, there 
an be no model I of C with C

I

6= ;. Thus, adding ? to

S(C) (trivially) preserves Point (a).

CR8 Then D is of the form p(f

1

; : : : ; f

k

) with p 2 P

D

i

for some i, and 
on

i

(S

n�1

(C))

implies D. As in the previous 
ase, we have x 2 p(f

1

; : : : ; f

k

)

I

for every 
onjun
t

p(f

1

; : : : ; f

k

) of 
on

i

(S

n�1

(C)) by Part (a) of IH. Sin
e 
on

i

(S

n�1

(C)) implies D,

we thus have x 2 D

I

as required.

CR9 If this rule is used, then we have D = ? and there are p(f

1

; : : : ; f

k

) 2 S

n�1

(C)

and p

0

(f

0

1

; : : : ; f

0

k

0

) 2 S

n�1

(C) su
h that p 2 P

D

i

and p

0

2 P

D

j

with i 6= j.

By Point (a) of IH, we have x 2 p(f

1

; : : : ; f

k

)

I

\ p

0

(f

0

1

; : : : ; f

0

k

0

)

I

. Thus f

I

i

2

�

D

i

\ �

D

j

, 
ontradi
ting the disjointness of �

D

i

and �

D

j

. Again, Point(a) is

trivially preserved.

For (b), we assume (C;D) 2 R

n

(r) n R

n�1

(r) and make a 
ase distin
tion a

ording to

the rule that was used to add (C;D) to R

n

(r):
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CR3 Then there is a C

0

2 BC

C

with C

0

2 S

n�1

(C) and a 
on
ept in
lusion I = C

0

v

9r:D 2 C. By Point (a) of IH, x 2 C

I

implies x 2 C

0

I

. By I, there is a y su
h

that (x; y) 2 r

I

and y 2 D

I

as required.

CR10 Then (C;D) 2 R

n�1

(s) for some s with s v r 2 C. By Point (b) of IH, there is a

y 2 �

I

su
h that (x; y) 2 s

I

and y 2 D

I

. Sin
e s v r 2 C, we have (x; y) 2 r

I

and are done.

CR11 Then there is an E 2 BC

C

su
h that (C;E) 2 R

n�1

(r

1

) and (E;D) 2 R

n�1

(r

2

)

for some r

1

; r

2

with r

1

Æ r

2

v r 2 C. By Point (b) of IH, there is a y 2 �

I

su
h

that (x; y) 2 r

I

1

and y 2 E

I

. Another appli
ation of Point (b) yields the existen
e

of a z 2 �

I

su
h that (y; z) 2 r

I

2

and z 2 D

I

. Sin
e r

1

Æ r

2

v r 2 C, we have

(x; z) 2 r

I

and are done.

This �nishes the proof of Claim 1.

Using the 
laim, it is now easy to prove that A

0

v

C

B

0

. We make a 
ase distin
tion

a

ording to whether 
ondition S1 or S2 is satis�ed.

S1 Let B

0

2 S

m

(A

0

). By Point (a) of Claim 1, we have x 2 B

I

0

for all models I of C

and all x 2 A

I

0

. In other words, A

0

v

C

B

0

. Now let ? 2 S

m

(A

0

). By Point (a)

of Claim 1, we have x 2 ?

I

for all models I of C and all x 2 A

I

0

. In other words,

there are no models I of C with A

I

0

6= ;. Thus A

0

v

C

B

0

.

S2 Let ? 2 S

m

(fag) for some individual name a. By Point (a) of Claim 1, we have

a

I

2 ?

I

for all models I of C. In other words, there are no models of C. Thus

A

0

v

C

B

0

.

❏

Lemma 7 (Completeness). Let S be the mapping obtained after the appli
ation of

the rules of Table 2 for the normalized CBox C has terminated, and let A;B be 
on
ept

names o

urring in C. Then A v

C

B implies that one of the following two 
onditions

holds:

S1 S(A) \ fB;?g 6= ;,

S2 there is an fag 2 BC

C

su
h that ? 2 S(fag).

Proof. We show the 
ontrapositive. Thus assume that the algorithm does not satisfy

S1 and S2 after termination. We show that this implies A

0

6v

C

B

0

by 
onstru
ting a

model I of C su
h that a 2 A

I

0

nB

I

0

for some a 2 �

I

.

Assume that the algorithm 
omputed the sequen
es of mappings S

0

; : : : ; S

m

and

R

0

; : : : ; R

m

. For 
onvenien
e, denote S

m

with S and R

m

with R. Set BC

�

C

:= fC 2

BC

C

j A

0

 Cg. Then de�ne a relation � on BC

�

C

as follows:

C � D i� C = D or fag 2 S(C) \ S(D) for some individual name a:

Using Rule CR6, it is readily 
he
ked that \�" is an equivalen
e relation. We use [C℄ to

denote the equivalen
e 
lass of C 2 BC

�

C

w.r.t. \�". The equivalen
e 
lasses of \�" will
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be used to de�ne the domain elements of the model to be 
onstru
ted. Before a
tually

de�ning this model, we prove two 
laims:

Claim 1. For all C;C

0

2 BC

�

C

with C � C

0

and all r 2 R

C

, we have

1. S(C) = S(C

0

);

2. (C;D) 2 R(r) implies (C

0

;D) 2 R(r).

Proof: Point 1 is an immediate 
onsequen
e of non-appli
ability of CR6. The proof of

Point 2 is by indu
tion on the smallest i su
h that (C;D) 2 R

i

(r). As R

0

(r) = ;

for all role names r, the indu
tion start is trivial. Now for the indu
tion step. Let

(C;D) 2 R

i

(r) n R

i�1

(r) with i > 0. We make a 
ase distin
tion a

ording to the rule

applied:

CR3 Then there is an E 2 S

i�1

(C) and a 
on
ept in
lusion I = E v 9r:D 2 C. Sin
e

C � C

0

, CR6 ensures that E 2 S

j

(C

0

) for some j � 0. Thus CR3 ensures that

(D;E) 2 R(r).

CR10 Then we have (C;D) 2 R

i�1

(s) for some role name s with s v r 2 C. By IH, this

implies (C

0

;D) 2 R

j

(s) for some j � 0. Thus, CR12 ensures that (C

0

;D) 2 R(r).

CR11 Then there is an E 2 BC

C

su
h that (C;E) 2 R

i�1

(r

1

) and (E;D) 2 R

i�1

(r

2

)

for some role names r

1

; r

2

with r

1

Æ r

2

v r 2 C. By de�nition of \ ", C 2 BC

�

C

implies D 2 BC

�

C

. Thus, the IH yields (C;E) 2 R

i�1

(r

1

), whi
h implies (C

0

; E) 2

R

j

(r

1

) for some j � 0. CR13 will eventually be applied to (C

0

; E) 2 R

`

(r

1

) and

(E;D) 2 R

`

(r

2

) for some ` � 0, yielding (C

0

;D) 2 R

`+1

(r) � R(r).

This �nishes the proof of Claim 1. Point (1) allows us to unambigously identify a given

equivalen
e 
lass [C℄ of \�" with a set of 
on
epts S(C). This will be used impli
itly

in what followows.

Claim 2. For ea
h C 2 BC

�

C

and ea
h i 2 f1; : : : ; ng, we 
an �nd a solution Æ([C℄; i) for


on

i

(S(C)) su
h that, for all 
on
epts D 2 BC

C

of the form p(f

1

; : : : ; f

k

) with p 2 P

D

i

,

we have Æ([C℄; t) j= D i� D 2 S(C):

Proof: By Conditions S1 and S2, we have ? =2 S(A

0

) and ? =2 S(fag) for all fag 2 BC

C

.

Due to Rule CR5 and by de�nition of BC

�

C

, it follows that ? =2 S(C). Thus, by Rule CR7

there exists a solution for 
on

i

(S(C)). It remains to be shown that this solution 
an be


hosen su
h that it does not satisfy any 
on
ept p(f

1

; : : : ; f

k

) 2 BC

C

n S(C). Let � be

the set of all solutions for 
on

i

(S(C)). Moreover, assume to the 
ontrary of what is to

be shown that there exists a set 	 � BC

C

n S(C) of 
on
epts of the form p(f

1

; : : : ; f

k

)

with p 2 P

D

i

su
h that ea
h solution from � satis�es a 
on
ept from 	, i.e., 
on

i

(S(C))

implies the disjun
tion of all 
on
epts in 	. By Property 2 of p-admissibility, 
on

i

(S(C))

implies a single 
on
ept X from 	. By rule CR8, this implies X 2 S(C) in 
ontradi
tion

to X 2 	.

This �nishes the proof of Claim 2. For ea
h C 2 BC

�

C

and ea
h i 2 f1; : : : ; ng, �x a

solution Æ([C℄; i) for 
on

i

(S(C)) as in Claim 2. We now de�ne an interpretation I as
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follows:

�

I

:= f[C℄ j C 2 BC

�

C

g;

A

I

:= f[C℄ 2 �

I

j A 2 S(C)g for all A 2 N

C

\ BC

C

;

a

I

:= [fag℄ for all fag 2 BC

C

;

r

I

:= f([C℄; [D℄) 2 �

I

��

I

j 9D

0

2 [D℄ : (C;D) 2 R(r)g for all r 2 R

C

;

f

I

([C℄) := Æ([C℄; i) if there exists a p(f

1

; : : : ; f

m

) 2 S(C) with p 2 P

�

i

and

f

j

= f for some j 2 f1; : : : ;mg, for all f 2 N

F

and [C℄ 2 �

I

:

All 
on
ept names not in BC

C

and all role names not in R

C

are mapped to the empty

set. Ea
h individual name a with fag =2 BC

C

is interpreted as a

I

:= [A

0

℄ (this 
hoi
e is

arbitrary). Note the following:

� the use of the equivalen
e relation \�" ensures that, for ea
h individual name a,

a

I

is well-de�ned;

� the interpretation of roles is well-de�ned due to Point 2 of Claim 1.

� the interpretation of features is well-de�ned sin
e ? =2 S(C) for all C 2 BC

�

C

and

due to Rule CR9.

We now erstablish an additional, 
entral 
laim.

Claim 3. For all [C℄ 2 �

I

and D 2 BC

C

[ f?g, we have [C℄ 2 D

I

i� D 2 S(C).

The proof makes a 
ase distin
tion a

ording to the form of D:

� D = >. Easy sin
e > 2 S(C) for all C 2 BC

�

C

.

� D = ?. Easy sin
e, in the proof of Claim 2, we already argued that ? =2 S(C) for

all C 2 BC

�

C

.

� D is a 
on
ept name. Then [C℄ 2 D

I

i� D 2 S(C) is immediate by de�nition

of I.

� D = fag. Then [C℄ 2 fag

I

implies a

I

= [C℄ and thus [C℄ = [fag℄ by de�nition

of fag

I

. This yields fag 2 S(C) sin
e fag 2 S

0

(fag). Conversely, fag 2 S(C)

implies [C℄ = [fag℄ by de�nition of \�" and thus a

I

= [C℄ implying [C℄ 2 fag

I

by the semanti
s.

� D = p(f

1

; : : : ; f

k

) with p 2 P

D

i

for some i. Then [C℄ 2 D

I

i� Æ([C℄; i) j= D i�

D 2 S(C). The �rst \i�" is by de�nition of I and the semanti
s and the latter

by 
hoi
e of Æ([C℄; i).

This �nishes the proof of Claim 3. We now show that I is a model of C with x 2 (A

I

0

nB

I

0

)

for some x 2 �

I

. Sin
e A

0

2 BC

�

C

by de�nition of BC

�

C

, we have [A

0

℄ 2 �

I

. By S1,

we have B

0

=2 S(A

0

). By de�nition of S

0

, we have A

0

2 S(A

0

). Thus, Claim 3 yields

[A

0

℄ 2 (A

I

0

n B

I

0

). It remains to be shown that I is a model of C. We make a 
ase

distin
tion a

ording to the form of 
on
ept and role in
lusions:

13



� C v D. Let [C

0

℄ 2 C

I

. By Claim 3, we have C 2 S(C

0

). Due to Rule CR1, this

implies D 2 S(C

0

) and thus [C

0

℄ 2 D

I

by Claim 3.

� C uD v E. Similar to the previous 
ase using Rule CR2.

� C v 9r:D. Let [C

0

℄ 2 C

I

. Then C 2 S(C

0

) by Claim 3. By Rule CR3, we thus

have (C

0

;D) 2 R(r). By de�nition of r

I

, this implies ([C

0

℄; [D℄) 2 r

I

. Moreover,

D 2 S

0

(D) implies D 2 S(D). Thus, Claim 3 yields [D℄ 2 D

I

. Together, this

yields [C

0

℄ 2 (9r:D)

I

as required.

� 9r:C v D. Let [E℄ 2 (9r:C)

I

. Hen
e there is an [F ℄ 2 �

I

su
h that ([E℄; [F ℄) 2 r

I

and [F ℄ 2 C

I

. By de�nition of I, this means that there is F

0

2 [F ℄ su
h that

(E;F

0

) 2 R(r). Moreover, [F

0

℄ = [F ℄ 2 C

I

implies C 2 S(F

0

) by Claim 3. By

Rule CR4, we thus have D 2 S(E). Thus [E℄ 2 D

I

by Claim 3 as required.

� r v s. Let ([C℄; [D℄) 2 r

I

. Then there is a D

0

2 [D℄ su
h that (C;D

0

) 2 R(r).

By CR10, we obtain (C;D

0

) 2 R(s). By de�nition of I, we thus have ([C℄; [D

0

℄) =

([C℄; [D℄) 2 s

I

as required.

� r

1

Æ r

2

v s. Let ([C℄; [D℄) 2 r

I

1

and ([D℄; [E℄) 2 r

I

2

. Then there are D

0

2 [D℄ and

E

0

2 [E℄ su
h that (C;D

0

) 2 R(r) and (D;E

0

) 2 R(r). By Point 2 of Claim 1,

the latter yields (D

0

; E

0

) 2 R(r). By CR10, we thus obtain (C;E

0

) 2 R(s). By

de�nition of I, we thus have ([C℄; [E

0

℄) = ([C℄; [E℄) 2 s

I

as required.

❏

We obtain the following result as a 
onsequen
e of Lemmas 2, 5, and 4, and the redu
tion

of satis�ability, 
onsisten
y, and the instan
e problem to subsumption given in Se
tion 2.

Theorem 8. Satis�ability, subsumption, ABox 
onsisten
y, and the instan
e problem

in EL

++


an be de
ided in polynomial time.

It is not hard to see that, taken together, the proofs of Lemma 6 and 7 yield a small

model property for EL

++

. To formulate it, let the size jCj of a 
on
ept C and the

site jAj of an ABox A be de�ned analogously to the size of CBoxes: it is simply the

number of symbols needed to write down C and A, respe
tively. Via the redu
tions of

satis�ability and ABox 
onsisten
y to subsumption, we obtain the following.

Theorem 9. Let C and D be 
on
epts, A an ABox, and C a CBox. Then the following

holds:

1. If C is satis�able w.r.t. C, then C and C have a 
ommon model of size linear in

jCj+ jCj;

2. if C is not subsumed by D w.r.t. C, then there exists a model I of C of size linear

in jCj+ jDj+ jCj su
h that a 2 C

I

nD

I

for some a 2 �

I

;

3. If A is 
onsistent w.r.t. C, then A and C have a 
ommon model of size linear in

jAj+ jCj;

4. if an individual a is not an instan
e of C in A w.r.t. C, then there exists a model

I of A and C of size linear in jCj+ jAj+ jCj su
h that a

I

=2 C

I

.
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4 P-admissible and Non-admissible Con
rete Domains

In order to obtain 
on
rete DLs of the form EL

++

(D

1

; : : : ;D

n

) for n > 0 to whi
h

Theorem 8 applies, we need 
on
rete domains that are p-admissible. In the following,

we introdu
e two 
on
rete domains that are p-admissible, and show that small extensions

of them are no longer p-admissible. To simplify notation, we 
all every �nite 
onjun
tion

of atomi
 formulae p(f

1

; : : : ; f

k

) from a 
on
rete domain D a D-
onjun
tion.

The 
on
rete domain Q = (Q;P

Q

) has as its domain the set Q of rational numbers,

and its set of predi
ates P

Q


onsists of the following predi
ates:

� a unary predi
ate >

Q

with (>

Q

)

Q

= Q;

� unary predi
ates =

q

and >

q

for ea
h q 2 Q;

� a binary predi
ate =;

� a binary predi
ate +

q

, for ea
h q 2 Q, with

(+

q

)

Q

= f(q

0

; q

00

) 2 Q

2

j q

0

+ q = q

00

g.

The 
on
rete domain S is de�ned as (�

�

;P

S

), where � is the ISO 8859-1 (Latin-1)


hara
ter set and P

S


onsistes of the following predi
ates:

� a unary predi
ate >

S

with (>

S

)

S

= �

�

;

� a unary predi
ate =

w

, for ea
h w 2 �

�

;

� a binary predi
ate =;

� a binary predi
ate 
on


w

, for ea
h w 2 �

�

, with


on


Q

w

= f(w

0

; w

00

) j w

00

= w

0

wg.

We now show that both Q and S are p-admissible.

Proposition 10. The 
on
rete domain Q is p-admissible.

Proof. First for Point 1 of p-admissibility. Assume that, in Q-
onjun
tions, we admit

the following additional predi
ates:

� a unary predi
ate <

q

for ea
h q 2 Q with (P

<

)

Q

= fq

0

2 Q j q

0

< qg;

� a binary predi
ate < with the obvious extension.

If this extended set of predi
ates is available, we 
an redu
e Q-impli
ation to Q-satis-

�ability: assume that we want to de
ide whether a Q-
onjun
tion 
 implies a formula

p(f

1

; : : : ; f

k

) with p 2 P

Q

. We make a 
ase distin
tion a

ording to p:

=

q

the impli
ation holds if neither 
 ^<

q

(f

1

) nor 
 ^>

q

(f

1

) is satis�able;

>

q

the impli
ation holds if neither 
 ^<

q

(f

1

) nor 
 ^=

q

(f

1

) is satis�able;

= the impli
ation holds if neither 
 ^<(f

1

; f

2

) nor 
 ^<(f

2

; f

1

) is satis�able;
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+

q

the impli
ation holds if neither 
^+

q

(f

1

; f)^<(f; f

2

) nor 
^+

q

(f

1

; f)^<(f

2

; f)

is satis�able, where f is a feature name not appearing in 
.

Using a straightforward redu
tion to linear programming, it is shown in [24℄ that satis�-

ability of Q-
onjun
tions using the extended set of predi
ates is de
idable in polynomial

time.

Now for Point 2 of p-admissibility. First, let 
 be a Q-
onjun
tion, and let � be a

�nite set of formulae of the form p(f

1

; : : : ; f

k

) su
h that 
 implies no formula from �.

Obviously, 
 must be satis�able. Assume that 
 implies the disjun
tion over all formulae

in �. W.l.o.g, we may assume that 
 does not 
ontain 
onjun
ts of the form >

Q

(f) sin
e

the 
onjun
tion that is obtained from 
 by dropping su
h 
onjun
ts is equivalent to 
.

Moreover, the fa
t that 
 does not imply any formula from � means that � also 
ontains

no 
on
epts of the form >

Q

(f). Our aim is to 
onstru
t a solution Æ for 
 su
h that

Æ 6j= C for all C 2 �, in 
ontradi
tion to our assumption. The 
onstru
tion is done in

two steps: �rst, we de�ne a solution for 
 that does not satisfy any formula >

q

(f) 2 �,

and then we tweak this solution su
h that no other formulae from � are satis�ed. For

the �rst step, we start with de�ning a relation � on the set of features N

F

as follows:

f � f

0

i� f = f

0

or f and f

0

o

ur jointly in a 
onjun
t of 
:

Clearly, the transitive 
losure �

�

of � is an equivalen
e relation. We now de�ne, for

ea
h equivalen
e 
lass � of �

�

, a distan
e fun
tion d

�

that takes ea
h pair of features

f; f

0

2 � to a rational number as follows:

� d

�

(f; f) = 0;

� d

�

(f; f

0

) = 0 if =(f; f

0

) 2 
 or =(f

0

; f) 2 
;

� d

�

(f; f

0

) = q if +

q

(f; f

0

) 2 
;

� d

�

(f; f

0

) = �q if +

q

(f

0

; f) 2 
;

� d

�

(f; f

0

) = d

�

(f; f

00

) + d

�

(f

00

; f

0

).

Note that d

�

is total on � due to the de�nition of� and well-de�ned sin
e 
 is satis�able.

We say that a feature f is �xed by 
 if there exists a feature f

0

with f �

�

f

0

and =

q

(f

0

) 2 


for some q 2 Q. Observe that, for a given �

�

-equivalen
e 
lass, either all the features in

the 
lass are �xed or all are not �xed. Thus we 
an also talk about equivalen
e 
lasses

to be �xed.

Let �

1

; : : : ;�

k

be the equivalen
e 
lasses of �

�

. We de�ne a solution Æ

0

for 
. This

is done separately for ea
h �

i

, 1 � i � k:

1. If �

i

is �xed, then take a feature f 2 �

i

with =

q

(f) 2 
 and set Æ

0

(f) = q. For

all other features f

0

2 �

i

, set Æ

0

(f

0

) = Æ

0

(f) + d

�

i

(f; f

0

).

2. If �

i

is not �xed, then 
hoose a feature f 2 �

i

. Next, 
hoose a value Æ

0

(f) 2 Q

su
h that the following 
onditions are satis�ed:

� Æ

0

(f) + d

�

i

(f; f

0

) > q for all f

0

2 �

i

and all q with >

q

(f

0

) 2 
.
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� Æ

0

(f) + d

�

i

(f; f

0

) � q for all f

0

2 �

i

and all q with >

q

(f

0

) 2 �.

For all other f

0

2 �

i

, set Æ

0

(f

0

) = Æ

0

(f) + d

�

i

(f; f

0

).

To verify that a rational number Æ

0

(f) as required above indeed exists, let us

assume the opposite. Then there is a >

q

(f

0

) 2 
 and a >

q

0

(f

00

) 2 � su
h that

d

�

i

(f; f

0

) � d

�

i

(f; f

00

) = d

�

i

(f

0

; f

00

) � q � q

0

. By de�nition of d

�

i

, there is thus

no solution Æ

0

for 
 that does not satisfy >

q

0

(f

00

) 2 �. This 
ontradi
ts the fa
t

that 
 does not imply any element of �.

Using the de�nition of d

�

and of Æ

0

, it is readily 
he
ked that Æ

0

is a solution for 


satisfying none of the formulae >

q

(f) in �. The latter is obvious if Æ(f) has been

de�ned in Point 2 above. If it has been de�ned in Point 1, then Æ(f) > q 
learly yields

that 
 implies >

q

(f), and thus >

q

(f) =2 �.

Now for the se
ond step, whi
h deals with formulae =

q

(f), =(f; f

0

), and +

q

(f; f

0

) in

� that may be \a

identally" satis�ed by Æ

0

. We destroy su
h satisfa
tions by 
arefully

\shifting down" values of Æ

0

. To this end, 
hoose a b 2 Q su
h that the following


onditions are satis�ed:

1. b > 0;

2. for all 
onjun
ts >

q

(f) of 
, b < Æ

0

(f)� q;

3. for all =

q

(f) 2 � with Æ

0

(f) 6= q, b < jÆ

0

(f)� qj;

4. for all =(f; f

0

) 2 � with Æ

0

(f) 6= Æ

0

(f

0

), b < jÆ

0

(f)� Æ

0

(f

0

)j;

5. for all +

q

(f; f

0

) 2 � with Æ

0

(f

0

) 6= Æ

0

(f) + q, b < jÆ

0

(f

0

)� (Æ

0

(f) + q)j;

We de�ne a new solution Æ of 
 as follows:

Æ(f) :=

(

Æ

0

(f)� b if f is not �xed by 


Æ

0

(f) otherwise

It is not hard to show that Æ is indeed a solution of 
: 
onjun
ts >

q

(f) are satis�ed

by 
hoi
e of b (Point 2); 
onjun
ts =

q

(f) are satis�ed sin
e they are satis�ed by Æ

0

and their presen
e implies that f is �xed by 
; and 
onjun
ts =

(

f; f

0

) and +

q

(f; f

0

) are

satis�ed sin
e they are satis�ed by Æ

0

and their presen
e implies that f is �xed by 
 i�

f

0

is �xed by 
.

Moreover, the new solution Æ does not satisfy any formula in �: formulae >

q

(f)

have not been satis�ed by Æ

0

, and we only shifted down when moving to Æ; formulae of

the other form are not satis�ed by de�nition of Æ and 
hoi
e of b. ❏

Proposition 11. The 
on
rete domain S is p-admissible.
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Proof. First for Point 1 of p-admissibility. Consider the 
on
rete domain S

0

= (�

�

;P

S

0

),

with P

S

0


ontaining the following properties:

1. a unary predi
ate >

S

as in S;

2. a unary predi
ate =

"

as in S (but only for the empty word), and it's negation 6=

"

with the obvious extension;

3. binary predi
ates = and 6= with the obvious extension;

4. binary predi
ate 
on


w

and 
on


w

for ea
h w 2 �

�

, where the extension of 
on


w

is as in S, and the extension of S

0

is 
omplementary.

We 
laim that satis�ability and impli
ation in S 
an be polynomially redu
ed to satis-

�ability in S

0

:

� To 
he
k satis�ability of an S-
onjun
tion 
, �rst extend 
 with the 
onjun
t =

"

(e),

where e is a feature name not o

urring in 
, and then repla
e ea
h 
onjun
t =

w

(f)

in 
 with w 6= " by the 
onjun
t 
on


w

(e; f). Finally, 
he
k satis�ability of the

resulting 
onjun
tion 


0

in S

0

.

� To 
he
k whether an S-
onjun
tion 
 implies a formula p(f

1

; : : : ; f

n

), �rst trans-

form 
 into 


0

as in the satis�ability 
ase above. If p is of the form =

"

, =, or


on


w

, then simply 
he
k whether 


0

extended with the 
onjun
t p(f

1

; : : : ; f

n

) is

unsatis�able. If p is of the form =

w

with w 6= ", then 
he
k whether 


0

extended

with the 
onjun
t 
on


w

(e; f

1

) is unsatis�able.

Sin
e it is shown in [22℄ that satis�ability in S

0

are de
idable in polynomial time, we

thus obtain the same result for satis�ability and impli
ation in S.

Now for Point 2 of p-admissibility. First, let 
 be an S-
onjun
tion, and let � be

a �nite set of formulae of the form p(f

1

; : : : ; f

k

) su
h that 
 implies no formula from

�. Again, in this 
ase 
 is satis�able. Assume that 
 implies the disjun
tion over all

formulae in �. As in the 
ase of the 
on
rete domain Q, we may assume that the

predi
ate >

S

(f) does not o

ur in 
 and �. Our aim is to 
onstru
t a solution Æ for 


su
h that Æ 6j= C for all C 2 �, in 
ontradi
tion to the assumption.

To this end, let Æ

0

be an arbitrary solution for 
. Let us tweak this solution su
h

that no formula from � is satis�ed. We start with de�ning a relation � on the set of

features N

F

as follows:

f � f

0

i� f = f

0

or f and f

0

o

ur jointly in a 
onjun
t of 
:

The transitive 
losure �

�

of � is an equivalen
e relation. We say that a feature f

is �xed by 
 if there exists a feature f

0

with f �

�

f

0

and =

w

(f

0

) 2 
 for some w 2

�

�

. Observe that, for a given �

�

-equivalen
e 
lass, either all the features in the 
lass

are �xed or all are not �xed. Thus we 
an also talk about equivalen
e 
lasses to be

(non-)�xed. Let �

1

; : : : ; �

n

denote the non-�xed equivalen
e 
lasses of �

�

. Then �x

words w

1

; : : : ; w

n

2 �

�

su
h that the following 
onditions are satis�ed:

1. w

i

is not a pre�x of w, for 1 � i � n and =

w

a predi
ate o

urring in �;
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2. w

i

is not a pre�x of w

j

, for 1 � i; j � n and i 6= j;

3. w

i

is not a pre�x of Æ(f) for 1 � i � n and ea
h f 2 N

F

o

urring in 
.

Now de�ne a new solution Æ of 
 as follows:

Æ(f) :=

(

w

i

� Æ

0

(f) if f 2 �

i

Æ

0

(f) if there is no su
h �

i

:

It remains to show that Æ j= 
 and Æ 6j= C for all C 2 �. For the former, we argue as

follows:

� For all predi
ates in 
 of the form =

w

(f), f is, by de�nition, non-�xed. Thus

Æ(f) = Æ

0

(f) = w.

� All predi
ates in 
 of the form =(f; g) remain satis�ed be
ause their existen
e

implies that f and g are in the same equivalen
e 
lass and thus Æ(f) = w � Æ

0

(f)

and Æ(g) = w � Æ

0

(g) for some w 2 �

�

.

� All predi
ates 
on


w

(f; g) remain satis�ed for the same reason.

Now for the latter.

� Consider some =

w

(f) 2 �. If f is is �xed and Æ

0

j= =

w

(f), then 
 implies =

w

(f)

in 
ontradi
tion to the assumption that 
 does not imply any element of �. Thus,

either f is not �xed or Æ

0

6j= =

w

(f). If f is not �xed, then Æ 6j= =

w

(f) be
ause of

Property 1 of the words w

1

; : : : ; w

n

. If f is �xed and Æ

0

6j= =

w

(f), then we 
learly

also have Æ 6j= =

w

(f).

� Now 
onsider =(f; g) 2 �. If f and g are in the same equivalen
e 
lass and

Æ

0

j= =(f; g) then 
 implies =(f; g) 
ontradi
ting our assumption. Thus either f

and g are not in the same equivalen
e 
lass or Æ

0

6j= =(f; g). In f and g are not

in the same equivalen
e 
lass, we have Æ 6j= =(f; g) due to Properties 2 and 3 of

the words w

1

; : : : ; w

n

. If they are in the same equivalen
e 
lass and Æ

0

6j= =(f; g),

then we 
learly also have Æ 6j= =(f; g).

� The 
ase 
on


w

(f; g) 2 � is analogous.

❏

Note that p-admissibility of 
on
rete domains is easily broken. Consider e.g. the follow-

ing examples:

� The 
on
rete domain Q

<

q

;>

q

with domainQ that has the predi
ates (>

q

)

q2Q

from

Q and, additionally, unary predi
ates (<

q

)

q2Q

with

(<

q

)

Q

<

q

;>

q

:= fq

0

2Q j q

0

< qg:

Then the Q

<

q

;>

q

-
onjun
tion 
 := >

0

(f

0

) does not imply any 
on
ept from � :=

f<

0

(f);=

0

(f); >

0

(f)g, but every solution of 
 satis�es some 
on
ept of �.
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Name Syntax Semanti
s

negation :C �

I

n C

I

disjun
tion C tD C

I

[D

I

value restri
tion 8r:C fx 2 �

I

j 8y 2 �

I

: (x; y) 2 r

I

! y 2 C

I

g

at-least restri
tion (> n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng

at-most restri
tion (6 n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng

inverse roles 9r

�

:C fx j 9y 2 �

I

: (y; x) 2 r

I

^ y 2 C

I

g

role negation 9:r:C fx j 9y 2 �

I

: (y; x) =2 r

I

^ y 2 C

I

g

role union 9r [ s:C fx j 9y 2 �

I

: (y; x) 2 r

I

[ s

I

^ y 2 C

I

g

transitive 
losure 9r

�

:C fx j 9y 2 �

I

: (y; x) 2 (r

I

)

+

^ y 2 C

I

g

Table 3: The additional 
onstru
tors.

� Any 
on
rete domain S

�

with domain �

�

for some �nite alphabet � and the unary

predi
ates pref

s

and su�

s

for every s 2 �

�

with

pref

S

�

s

:= fs

0

j s is a pre�x of s

0

g

su�

S

�

s

:= fs

0

j s is a suÆx of s

0

g

Assume a 2 �. Then the S

�

-
onjun
tion 
 := su�

a

(f) implies no formula from

� := fpref

�

(f) j � 2 �g, but every solution of 
 satis�es some formula from �.

� Any 
on
rete domain S

�

with domain �

�

for some �nite alphabet �, the unary

predi
ates >

S

�

and =

"

with the obvious semanti
s, and the unary predi
ates pref

s

,

s 2 �

�

, as in the previous example. Then the S

�

-
onjun
tion 
 := >

S

�

(f) implies

no 
on
ept from � := f=

"

(f)g[fpref

�

(f) j � 2 �g, but every solution of 
 satis�es

some 
on
ept from �.

5 Lower Bounds

The purpose of this se
tion is to justify our 
hoi
e of 
onstru
tors in the language

EL

++

. To this end, we 
onsider the sublanguage EL of EL

++

and restri
t the attention

to general TBoxes, i.e., �nite sets of GCIs. Re
all that EL is obtained from EL

++

by dropping all 
on
ept 
onstru
tors ex
ept 
onjun
tion, existential restri
tion, and

top. We will show that the extension of EL with basi
ally any typi
al DL 
onstru
tor

not present in EL

++

results in intra
tability of subsumption w.r.t. general TBoxes.

Syntax and semanti
s of the additional 
onstru
tors used in this se
tion 
an be found in

Table 3, where #S denotes the 
ardinality of a set S and (r

I

)

+

denotes the transitive


losure of the relation r

I

. As in the previous se
tion, we 
an restri
t the attention to

satis�ability/subsumption of 
on
ept names w.r.t. general TBoxes.

Before 
onsidering 
on
ept and role 
onstru
tors, we brie
y dis
uss a natural ex-

tension of CBoxes: role in
lusions 
an be strengthened to so-
alled role-value-maps

(RVMs), i.e., to in
lusions r

1

Æ � � � Æ r

k

v s

1

Æ � � � Æ s

`

whose right-hand side is a 
ompo-

sition of role names. The semanti
s of RVMs is de�ned in analogy with the semanti
s

of EL

++

's role in
lusions. By a result of Baader [4℄, subsumption in EL is unde
idable

already if only RVMs, but no 
on
ept in
lusions are admitted in CBoxes.
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Theorem 12 (Baader). Subsumption of EL-
on
epts w.r.t. RVMs is unde
idable.

In the following, we walk through the 
onstru
tors listed in Table 3 and, for ea
h of

them, prove that subsumption w.r.t. general TBoxes is not tra
table.

Atomi
 negation

Let EL

:

be the extension of EL with negation, and let EL

(:)

be obtained from EL

:

by restri
ting the appli
ability of negation to 
on
ept names (atomi
 negation). Sin
e

EL

:

is a notational variant of the DL ALC, ExpTime-
ompleteness of satis�ability

and subsumption in ALC w.r.t. general TBoxes [29℄ 
arries over to EL

:

. ExpTime-


ompleteness even 
arries over to EL

(:)

sin
e :C with C 
omplex 
an be repla
ed with

:A for a new 
on
ept name A if we add the two GCIs A v C and C v A.

Theorem 13. In EL

(:)

, satis�ability and subsumption w.r.t. general TBoxes is ExpTime-


omplete.

For many other extensions of EL presented in this se
tion, satis�ability is trivial in the

sense that every 
on
ept is satis�able w.r.t. every TBox. In the following, we will only

expli
itly mention satis�ability if it is not trivial.

Disjun
tion

Let ELU be the extension of EL with disjun
tion. Our aim is to show that subsumption

in ELU w.r.t. general TBoxes is ExpTime-
omplete. The upper bound follows from ELU

being a fragment of ALC. For the lower bound, we redu
e satis�ability of EL

(:)

-
on
epts

w.r.t. general TBoxes to subsumption of ELU -
on
epts. The former is ExpTime-hard

by Theorem 13.

Let A

0

be an EL

(:)


on
ept name and T a general EL

(:)

TBox. To de
ide satis�a-

bility of A

0

w.r.t. T , take a new (i.e. distin
t from A

0

and not o

urring in T ) 
on
ept

name A

0

for ea
h 
on
ept name A o

urring in T . Also �x an additional new 
on
ept

name L. Then the TBox T

�

is obtained from T by �rst repla
ing ea
h sub
on
ept :A

with A

0

, and then adding the following GCIs:

� > v A tA

0

and A uA

0

v L for ea
h 
on
ept name A o

urring in T ;

� 9r:L v L.

Note that the 
on
ept in
lusion 9r:L v L is equivalent to :L v 8r::L. It thus ensures

that L a
ts as the bottom 
on
ept in (
onne
ted) 
ountermodels of the subsumption

A

0

v

T

�

L. Using this observation, it is not hard to verify that C is satis�able w.r.t. T

if, and only if, A

0

6v

T

�

L.

Theorem 14. In ELU, subsumption w.r.t. general TBoxes is ExpTime-
omplete.
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This theorem improves upon the result of Brandt that subsumption of ELU 
on
epts

w.r.t. general TBoxes is NP-hard [7℄, and it improves upon the result of Hladik and

Sattler that satis�ability of ELU 
on
epts extended with fun
tional roles and the bottom


on
ept w.r.t. general TBoxes is ExpTime-hard [15℄.

At-Least Restri
tions

Let EL

�

2

be the extension of EL with at-least restri
tions of the form (> 2 r). Sub-

sumption in EL

�

2

w.r.t. general TBoxes is in ExpTime sin
e EL

�

2

is a fragment of

ALC extended with number restri
tions [12℄. We establish a mat
hing lower bound by

redu
ing subsumption in ELU w.r.t. general TBoxes. Let A

0

and B

0

be 
on
ept names

and T a general ELU TBox. We assume that all 
on
ept in
lusions in T have one of

the following forms:

C v D

C

1

u C

2

v C

C v C

1

t C

2

C v 9r:D

9r:C v D

where C, D, C

1

, and C

2

are 
on
ept names or>. It is easily veri�ed that this assumption


an be made without loss of generality sin
e every general TBox 
an be 
onverted into

normal form using normalization rules similar to the one presented in Figure 1. Note

in parti
ular that C

1

t C

2

v C 
an be repla
ed by the two rules C

1

v C and C

2

v C.

To 
onvert T into an EL

�

2

CBox, we only need to rephrase 
on
ept impli
ations of the

form C v C

1

tC

2

. This is done as follows: introdu
e two new 
on
ept names A and B

and a new role name r, and repla
e the mentioned impli
ation with

C v 9r:A u 9r:B

C u 9r:(A uB) v C

1

C u (> 2 r) v C

2

Call the resulting TBox T

�

. It is easily seen that A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Theorem 15. In EL

�

2

, subsumption w.r.t. general TBoxes is ExpTime-
omplete.

Role Constru
tors :, [, �

�

We 
onsider the extension EL

R:

of EL with role negation, EL

[

with role union, and

EL

�

with transitive 
losure. For these three DLs, subsumption w.r.t. general TBoxes


an be proved ExpTime-hard using a te
hnique similar to the one employed for at-

least restri
tions in the previous se
tion: the lower bounds are established by redu
ing

subsumption in ELU w.r.t. general TBoxes. Thus, let A

0

and B

0

be 
on
ept names

and T a general ELU TBox. As in the proof of Theorem 15, we assume that T is in

normal form. We 
onvert T into a new IBox T

�

by repla
ing ea
h 
on
ept in
lusion

C v C

1

t C

2

as follows:
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� In EL

R:

, we introdu
e a new 
on
ept name A and two new role names r and s.

Then we repla
e the above in
lusion by the following:

C v 9r:A

C u 9s:A v C

1

C u 9:s:A v C

2

� In EL

[

, we introdu
e a new 
on
ept name A and two new role names r and s.

Then we repla
e the above in
lusion by the following:

C v 9r [ s:A

C u 9r:A v C

1

C u 9s:A v C

2

� In EL

�

, we introdu
e a new 
on
ept name A and a new role name r. Then we

repla
e the above in
lusion by the following:

C v 9r

+

:A

C u 9r:A v C

1

C u 9r:9r

+

:A v C

2

The ExpTime upper bound is obtained from the fa
t that in ALC extended with the

Boolean operators on roles, subsumption w.r.t. general TBoxes is in ExpTime [25℄, and

the same holds for the des
ription logi
 ALC

reg

[11, 29, 2℄.

Theorem 16. In ELR:, EL

[

, and EL

�

, subsumption w.r.t. general TBoxes is ExpTime-


omplete.

Non-p-admissible Con
rete Domains

We now show that p-admissibility of the 
on
rete domains is not only a suÆ
ient 
on-

dition for polynomiality of reasoning in EL

++

, but also a ne
essary one: if D is a non-


onvex 
on
rete domain, then subsumption in EL(D) is ExpTime-hard, where EL(D)

is the extension of EL with the 
on
rete domain D, i.e., with features f that are mapped

to partial fun
tions from �

I

to �

D

, and with a 
on
ept 
onstru
tor p(f

1

; : : : ; f

k

) for

ea
h k-ary predi
ate p 2 P

D

.

To prove ExpTime-hardness, we �rst strengthen Theorem 14 as follows. Let a single-

disjun
tion TBox (sd-TBox) be a general EL TBox that, additionally, 
ontains zero or

one 
on
ept impli
ation of the form A v B

1

t B

2

with A, B

1

, and B

2


on
ept names.

We show that subsumption of EL-
on
epts w.r.t. sd-TBoxes is ExpTime-
omplete.

The lower bound is proved by redu
tion of subsumption in ELU w.r.t. general TBoxes,

whi
h is ExpTime-hard by Theorem 14. Thus, let A

0

and B

0

be 
on
ept names and T

a general ELU TBox. We again assume that T is in the usual normal form introdu
ed

above. For the redu
tion, introdu
e new 
on
ept names U and U

0

and a new role name

r

A;B;B

0

for ea
h 
on
ept impli
ation A v B tB

0

2 T . We 
onvert T into a sd-TBox T

�
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by adding the 
on
ept impli
ation > v U t U

0

: and repla
ing ea
h 
on
ept impli
ation

A v B tB

0

with

> v 9r

A;B;B

0

:>

A u 9r

A;B;B

0

:U v B

A u 9r

A;B;B

0

:U

0

v B

0

It is easy to 
he
k that A

0

v

T

B

0

i� A

0

v

T

�

B

0

. Together with the upper bound from

Theorem 13, we thus obtain the following:

Theorem 17. Subsumption of EL-
on
epts w.r.t. sd-TBoxes is ExpTime-
omplete.

Now ba
k to the ExpTime-hardness of subsumption in EL(D), where D is a non-


onvex 
on
rete domain. We redu
e subsumption in EL w.r.t. sd-TBoxes. Let A

0

and

B

0

be 
on
ept names and T an sd-TBox. Sin
e D is not 
onvex, there is a satis�able


onjun
tion 
 of atoms of the form p(f

1

; : : : ; f

k

) that implies a disjun
tion a

1

_ : : :_ a

m

of su
h atoms, but none of its disjun
ts. If we assume that this is a minimal su
h


ounterexample (i.e., m is minimal), then we also know that 
 does not imply a

2

_: : :_a

m

,

and that ea
h of the a

i

is sati�able. Then we have

(i) ea
h assignment of values from D that satis�es 
 satis�es a

1

or a

2

_ : : : _ a

m

;

(ii) there is an assignment satisfying 
 and a

1

, but not a

2

_ : : : _ a

m

;

(iii) there is an assignment satisfying 
 and a

2

_ : : : _ a

m

, but not a

1

.

Now, let T

�

be obtained from T by repla
ing the single GCI A v B t B

0

by A v 
,

a

1

v B, and a

i

v B

0

for i = 2; : : : ;m. It is easy to see that A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Theorem 18. For any non-
onvex 
on
rete domain D, subsumption in EL(D) w.r.t.

general TBoxes is ExpTime-hard.

For example, this theorem applies to the 
on
rete domains introdu
ed at the end of

Se
tion 4. We obtain the following 
orollary.

Corollary 19. For the following 
on
rete domains D, subsumption in EL(D) w.r.t.

general TBoxes is ExpTime-hard:

� the 
on
rete domain Q

<

q

;>

q

;

� any 
on
rete domain S

�

with domain �

�

for some �nite alphabet � and the unary

predi
ates pref

s

and su�

s

for every s 2 �

�

;

� any 
on
rete domain S

�

with domain �

�

for some �nite alphabet �, the unary

predi
ates >

S

�

and =

"

, and the unary predi
ates pref

s

, for ea
h s 2 �

�

.
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Using results from [23℄, a mat
hing upper bound 
an be obtainted for the 
ase where

D-satis�ability is in ExpTime. This is e.g. the 
ase for the �rst item of Corollary 19 [24℄.

Inverse Roles

Let ELI be the extension of EL with inverse roles. We show that subsumption in ELI

w.r.t. general TBoxes is PSpa
e-hard by redu
ing satis�ability in the des
ription logi


ALE w.r.t. so-
alled primitive TBoxes:

� ALE is obtained by extending EL

8

with atomi
 negation;

� primitive TBoxes are general TBoxes whose 
on
ept in
lusions have the form

A v C, with A a 
on
ept name.

It has been shown by Calvanese that satis�ability in ALE w.r.t. primitive TBoxes is

PSpa
e-
omplete [8℄.

Let A

0

be a 
on
ept name, and T a primitive ALE TBox. We assume that T is in

normal form: every 
on
ept in
lusion is of one of the following forms:

A v B

A v :B

A v B uB

0

A v 9r:B

A v 8r:B

where A, B, and B

0

are 
on
ept names. It is easily veri�ed that this assumption 
an

be made without loss of generality sin
e every primitive TBox 
an be 
onverted into

normal form using normalization rules similar to the one presented in Figure 1.

For the redu
tion, we take a new 
on
ept name L and de�ne a general ELI TBox

T

�


ontaining the following 
on
ept in
lusions:

� A v D for all A v D 2 T if D is a 
on
ept name or of the form 9r:B;

� 9r

�

:A v B for all A v 8r:B 2 T ;

� A uB v L for all A v :B 2 T ;

� 9r:L v L.

As in the 
ase of ELU , the 
on
ept in
lusion 9r:L v L is equivalent to :L v 8r::L

and ensures that L a
ts as the bottom 
on
ept in 
onne
ted 
ountermodels of the

subsumption A

0

v

T

�

L. Additionally, 9r

�

:A v B is 
learly equivalent to A v 8r:B.

Thus, it is not hard to verify that A

0

is satis�able w.r.t. T if, and only if, A

0

6v

C

L.

Theorem 20. in ELI, subsumption w.r.t. general TBoxes is PSpa
e-hard.
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The exa
t 
omplexity of this problem is still open (the best upper bound we know of is

ExpTime, stemming from results for the DL ALCI [12℄).

At-Most Restri
tions

Let EL

�

1

be the extension of EL with at-most restri
tions of the form (6 1 r). As

in the 
ase of EL

�

2

, subsumption in EL

�

1

w.r.t. general TBoxes is in ExpTime sin
e

EL

�

1

is a fragment of ALC with number restri
tions. We prove a mat
hing lower

bound by redu
ing subsumption in the DL FL

tf

0

w.r.t. general TBoxes. FL

tf

0

o�ers

only the 
on
ept 
onstru
tors 
onjun
tion and value restri
tion and requires all roles to

be interpreted as total fun
tions. Subsumption in this DL w.r.t. general TBoxes was

proved ExpTime-
omplete by Toman and Wedell: as noted below Corollary 12 of [33℄,

this is an immediate 
onsequen
e of the proof of Theorem 11 in the same paper. Note

that FL

0

is often assumed to additionally o�er the >-
on
ept. For our purposes, it is

simpler to exlude it. This is justi�ed by the fa
t that ExpTime-hardness of subsumption

in FL

tf

0

also does not presuppose the presen
e of the >-
on
ept as well.

Let A

0

and B

0

be 
on
ept names and T a general FL

tf

0

TBox. We 
onvert T into a

general EL

�

1

TBox T

�

by repla
ing ea
h sub
on
ept 8r:C appearing on the left-hand

side of a GCI with 9r:C, and ea
h sub
on
ept 8r:C appearing on the right-hand side of

a GCI with (6 1 r) u 9r:C. Then the following holds:

Lemma 21. A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Proof. We show the 
ontrapositives of both dire
tions. First assume that A

0

6v

T

�

B

0

,

i.e., there is an EL

�

1

model I of T

�

and an x

0

2 A

I

0

nB

I

0

. First modify I to a model I

0

as follows: for ea
h x 2 �

I

and ea
h role name r su
h that jfy 2 �

I

j (x; y) 2 r

I

gj > 1,

delete all out-going r-edges starting at x. To show that I

0

is still a model of T

�

, it

suÆ
es to prove that C

I

0

� C

I

for 
on
epts C appearing on the left-hand side of

GCIs, and C

I

0

= C

I

for 
on
epts C

0

appearing on the right-hand side of GCIs. The

former is easy sin
e left-hand sides of GCIs are EL 
on
epts, and the latter is easy

sin
e existential restri
tions 9r:C on right-hand sides of GCIs are always 
onjoined with

(6 1 r). Clearly, all role names are interpreted as partial fun
tions in I

0

. We now

extend these interpretations to total fun
tions: Let �

I

00

be de�ned as follows:

�

I

00

:= �

I

0

℄ fx

?

g

A

I

00

:= A

I

0

for all 
on
ept names A

r

I

00

:= r

I

0

[ f(x; x

?

) j (x; y) =2 r

I

0

for all y 2 �

I

0

g for all role names r:

Observe that the new domain element x

?

is in the extension of no 
on
ept name. It is

readily 
he
ked that x 2 C

I

0

i� x 2 C

I

00

for all x 2 �

I

and EL 
on
epts C not using

the > 
on
ept. Thus, I

00

is still a model of T

�

. Sin
e role names are interpreted as total

fun
tions, it is easy to show by stru
tural indu
tion that

C

I

00

= (C

y

)

I

00

= (C

z

)

I

00

(�)

for every FL

tf

0


on
ept C, where C

y

denotes the result of repla
ing ea
h sub
on
ept

8r:C with 9r:C, and C

z

denotes the result of repla
ing ea
h sub
on
ept 8r:C with
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(6 1 r)u9r:C. Sin
e I

00

is a model of T

�

, this 
learly yields that I

00

is a model of T as

well. Sin
e x

0

2 A

I

00

0

n B

I

00

0

, we have A

0

6v

T

B

0

as required.

Now for the other dire
tion. Assume that A

0

6v

T

B

0

, i.e., there is an FL

tf

0

model I

of T and an x

0

2 A

I

0

nB

I

0

. As in the dire
tion 
onsidered �rst, the fa
t that all relations

are interpreted as total fun
tions implies that we have x 2 (9r:C)

I

i� x 2 (8r:C)

I

for

all x 2 �

I

, EL 
on
epts C, and role names r. Sin
e I is a model of T , it is thus also a

model of T

�

yielding A

0

6v

T

�

B

0

as required. ❏

We thus obtain the following theorem:

Theorem 22. Subsumption in EL

�

1

w.r.t. general TBoxes is ExpTime-
omplete.

Ana analogous result 
an be proved if the 
on
ept 
onstru
tor (6 1 r) is repla
ed by

CBox assertions Fun
t(r), whi
h are satis�ed by an interpretation I if r

I

is a partial

fun
tion.

6 Comparison with FL

0

The purpose of this paper is to investigate the 
omplexity of reasoning w.r.t. general

TBoxes in extensions of the basi
 des
ription logi
 EL. To fully appre
iate the result

from [7℄ that subsumption in EL w.r.t. general TBoxes is polynomial and the results

from this paper that polynomiality is even preserved for several extensions of EL, it

is worthwhile to 
ompare the 
omputational 
omplexity of EL with that of it's sibling

DL FL

0

providing only for the 
on
ept 
onstru
tors u and 8r:C. Su
h a 
omparison is

performed in this se
tion yielding the result that, although looking just as harmless as

EL, FL

0

is mu
h less robust than EL w.r.t. the addition of TBox formalisms: we prove

that subsumption in FL

0

with general TBoxes is ExpTime-
omplete.

Summing up the work on EL 
arried out in this and previous papers, we obtain the

following pi
ture:

� Subsumption of EL 
on
epts without referen
e to a TBox is of polynomial 
om-

plexity [5℄.

� Subsumption in EL w.r.t. standard TBoxes is still of polynomial 
omplexity, where

a standard TBox is a �nite set of 
on
ept de�nitions A

:

= C with A a 
on
ept

name. Su
h a 
on
ept de�nition is satis�ed by an interpretation I if A

I

= C

I

[4℄.

� Subsumption in EL w.r.t. general TBoxes is still of polynomial 
omplexity [7℄.

� Even for several extensions of EL, subsumption w.r.t. general TBoxes remains

polynomial (
urrent paper).

When we summarize the work on FL

0

, we obtain a dramati
ally di�erent pi
ture: in

this 
ase, adding a more powerful TBox formalism usually results in an in
rease of the


omplexity of reasoning:

� Subsumption of FL

0


on
epts without referen
e to a TBox is of polynomial 
om-

plexity [6℄.
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� Subsumption in FL

0

w.r.t. a
y
li
 TBoxes is 
o-NP-
omplete, where an a
y
li


TBox is a standard TBox that does not 
ontain 
on
ept de�nitions

A

0

:

= C

0

; : : : ; A

k

1

:

= C

k�1

su
h that A

i+1 mod k

is used in C

i

for all i < k [27℄.

� Subsumption in FL

0

w.r.t. (possibly 
y
li
) standard TBoxes is PSpa
e-
omplete

[1, 3, 21℄.

To 
omplete the pi
ture for FL

0

and to illustrate that the robust 
omputational be-

havior of EL is rather surprising, in the following we prove that subsumption in FL

0

w.r.t. general TBoxes is ExpTime-
omplete. As 
ontainment in ExpTime follows from

the fa
t that subsumption in ALC w.r.t. general TBoxes is in ExpTime, it remains to

establish the lower bound.

The proof is by a redu
tion of subsumption in FL

tf

0

w.r.t. general TBoxes. As has

already been mentioned, this problem is ExpTime-
omplete by results from [33℄. Let

A

0

and B

0

be 
on
ept names and T a general FL

tf

0

TBox. For simpli
ity, we assume

that T is in normal form, i.e., it only 
ontains 
on
ept de�nitions of the following forms:

A v B

A v 8r:B

A uA

0

v B

8r:A v B

where A, A

0

, B, and B

0

are 
on
ept names. It is not hard to verify that every general

FL

tf

0

TBox 
an be 
onverted into normal form in polynomial time by using normaliza-

tion rules similar to the one presented in Figure 1. Then we have the following:

Lemma 23. A

0

v

T

B

0

in FL

0

i� A

0

v

T

B

0

in FL

tf

0

.

Proof. The \only if" dire
tion is trivial: 
onsider the 
ontrapositive, i.e., A

0

6v

T

B

0

in

FL

tf

0

implies A

0

6v

T

B

0

in FL

0

. As every interpretation witnessing the former is also

a witness for the latter, there is nothing to be done.

Now for the (
ontrapositive of the) \if" dire
tion. Assume that A

0

6v

T

B

0

, i.e.,

there is an FL

0

model I of T and an x

0

2 A

I

0

n B

I

0

. We show how to 
onvert I into

an FL

tf

0

interpretation witnessing A

0

6v

T

B

0

in FL

tf

0

. Let R

T

denote the set of role

names o

urring in T , and S the set of all sequen
es of role names from R

T

, in
luding

the empty sequen
e ". For ea
h S 2 S and x 2 �

I

, we use S

I

(x) to denote the set

fy 2 �

I

j (x; y) 2 S

I

g, where S

I

is de�ned in the obvious way using 
omposition of

relations (and "

I

(x) = fxg). Now we 
onstru
t a FL

tf

0

interpretation J as follows:

� �

J

= S.

� A

J

:= fS j S

I

(x

0

) � A

I

g;

� r

J

:= f(S; S

0

) j S

0

= Srg for all r 2 R

T

;
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By de�nition of J , we have that " 2 A

J

0

nB

J

0

. It is readily 
he
ked that all role names

are interpreted as total fun
tions. To show that A

0

6v

T

B

0

, it thus remains to show

that J satis�es all 
on
ept in
lusions in T :

1. A v B. Let S 2 A

J

. Then S

I

(x

0

) � A

I

. Sin
e I satis�es A

:

= B, this yields

S

I

(x

0

) � B

I

and thus S 2 B

J

as required.

2. A uA

0

v B. Similar to the previous 
ase.

3. 8r:A v B. Let S 2 (8r:A)

J

. Then Sr 2 A

J

. Thus, Sr

I

(x

0

) � A

I

implying

S

I

(x

0

) � (8r:A)

I

. Hen
e, S

I

(x

0

) � B

I

sin
e I satis�es 8r:A v B. It follows that

S 2 B

J

as required.

4. A v 8r:B. Let S 2 A

J

. Then S

I

(x

0

) � A

I

, and, sin
e I satis�es A v 8r:B, we

have Sr

I

(x

0

) � B

I

. It follows that Sr 2 B

J

implying S 2 (8r:B)

J

sin
e Sr is

the only r-su

essor of S in J .

❏

We thus obtain the following theorem, improving a result from [13℄ whi
h states that

subsumption in EL extended with value restri
tions is ExpTime-
omplete.

Theorem 24. Subsumption in FL

0

w.r.t. general TBoxes is ExpTime-
omplete.

Thus, subsumption w.r.t. general TBoxes is polynomial in the fragment EL of ALC,

but it is ExpTime-
omplete in the equally harmless looking fragment FL

0

|and thus

just as hard as subsumption in full ALC. In parallel to our work, Theorem 24 was

independently proved by Martin Hofmann using a redu
tion of (the existen
e of winning

stratiegies in) pushdown games [16℄.

7 Con
lusion

We believe that the results of this paper show that|in 
ontrast to the negative 
on-


lusions drawn from early 
omplexity results in the area|the quest for tra
table DLs

that are expressive enough to be useful in pra
ti
e 
an be su

essful. Our DL EL

++

is tra
table even w.r.t. GCIs, and it o�ers many 
onstru
tors that are important in

ontology appli
ations.

Referen
es

[1℄ F. Baader. Terminologi
al 
y
les in KL-ONE-based knowledge representation lan-

guages. In Pro
eedings of the Eighth National Conferen
e on Arti�
ial Intelligen
e

(AAAI-90), pages 621{626, Boston, MA, USA, 1990.

[2℄ F. Baader. Augmenting 
on
ept languages by transitive 
losure of roles: An alter-

native to terminologi
al 
y
les. In Pro
eedings of the Twelfth International Joint

Conferen
e on Arti�
ial Intelligen
e (IJCAI-91), pages 446{451, Sydney, Australia,

1991.

29



[3℄ F. Baader. Using automata theory for 
hara
terizing the semanti
s of terminologi
al


y
les. Annals of Mathemati
s and Arti�
ial Intelligen
e, 18(2{4):175{219, 1996.

[4℄ F. Baader. Terminologi
al 
y
les in a des
ription logi
 with existential restri
tions.

In G. Gottlob and T. Walsh, editors, Pro
eedings of the 18th International Joint

Conferen
e on Arti�
ial Intelligen
e, pages 325{330. Morgan Kaufmann, 2003.

[5℄ F. Baader, R. K�usters, and R. Molitor. Computing least 
ommon subsumers in

des
ription logi
s with existential restri
tions. In T. Dean, editor, Pro
eedings of

the 16th International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI'99), pages

96{101. Morgan Kaufmann, 1999.

[6℄ R. J. Bra
hman and H. J. Levesque. The tra
tability of subsumption in frame-

based des
ription languages. In Pro
. of the 4th Nat. Conf. on Arti�
ial Intelligen
e

(AAAI'84), pages 34{37, 1984.

[7℄ S. Brandt. Polynomial time reasoning in a des
ription logi
 with existential re-

stri
tions, GCI axioms, and|what else? In R. L. de Mant�aras and L. Saitta, edi-

tors, Pro
eedings of the 16th European Conferen
e on Arti�
ial Intelligen
e (ECAI-

2004), pages 298{302. IOS Press, 2004.

[8℄ D. Calvanese. Reasoning with in
lusion axioms in des
ription logi
s: Algorithms

and 
omplexity. In Pro
eedings of the Twelfth European Conferen
e on Arti�
ial

Intelligen
e (ECAI-96), pages 303{307, 1996.

[9℄ R. Cote, D. Rothwell, J. Palotay, R. Be
kett, and L. Bro
hu. The systematized

nomen
lature of human and veterinary medi
ine. Te
hni
al report, SNOMED In-

ternational, North�eld, IL: College of Ameri
an Pathologists, 1993.

[10℄ F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The 
omplexity of 
on
ept

languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Pro
. of the 2nd

Int. Conf. on the Prin
iples of Knowledge Representation and Reasoning (KR'91),

pages 151{162. Morgan Kaufman, 1991.

[11℄ M. J. Fis
her and R. E. Ladner. Propositional dynami
 logi
 of regular programs.

J. Comput. Syst. S
i., 18:194{211, 1979.

[12℄ G. D. Gia
omo and M. Lenzerini. Boosting the 
orresponden
e between des
ription

logi
s and propositional dynami
 logi
s. In Pro
eedings of the Twelfth National

Conferen
e on Arti�
ial Intelligen
e (AAAI'94). Volume 1, pages 205{212. AAAI

Press, 1994.

[13℄ R. Givan, D. Kozen, D. M
Allester, and C. Witty. Tarskian set 
onstraints.

Manus
ript, 1996. Abriged version published in: Pro
eedings of the 11

th

Annual

IEEE Symposium on Logi
 in Computer S
ien
e, 1996.

[14℄ V. Haarslev and R. M�oller. RACER system des
ription. In R. Gor�e, A. Leits
h,

and T. Nipkow, editors, Pro
eedings of the First International Joint Conferen
e

on Automated Reasoning (IJCAR'01), number 2083 in Le
ture Notes in Arti�
al

Intelligen
e, pages 701{705. Springer-Verlag, 2001.

30



[15℄ J. Hladik and U. Sattler. A translation of looping alternating automata to des
rip-

tion logi
s. In Pro
. of the 19th Conferen
e on Automated Dedu
tion (CADE-19),

volume 2741 of Le
ture Notes in Arti�
ial Intelligen
e. Springer Verlag, 2003.

[16℄ M. Hofmann. Personal 
ommuni
ation.

[17℄ I. Horro
ks. Using an expressive des
ription logi
: Fa
t or �
tion? In Pro
eedings of

the Sixth International Conferen
e on the Prin
iples of Knowledge Representation

and Reasoning (KR98), pages 636{647, 1998.

[18℄ I. Horro
ks, P. F. Patel-S
hneider, and F. van Harmelen. From SHIQ and RDF

to OWL: The making of a web ontology language. Journal of Web Semanti
s,

1(1):7{26, 2003.

[19℄ I. Horro
ks and U. Sattler. De
idability of shiq with 
omplex role in
lusion axioms.

In Pro
. of the International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI-

2003), pages 343{348. Morgan-Kaufmann Publishers, 2003.

[20℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for very expressive

des
ription logi
s. Logi
 Journal of the IGPL, 8(3):239{264, 2000.

[21℄ Y. Kazakov and H. de Nivelle. Subsumption of 
on
epts in FL

0

for (
y
li
) ter-

minologies with respe
t to des
riptive semanti
s is pspa
e-
omplete. In E. F.

Diego Calvanese, Giuseppe De Gia
omo, editor, Pro
eedings of the Interna-

tional Workshop in Des
ription Logi
s 2003 (DL2003), number 81 in CEUR-WS

(http://
eur-ws.org/), 2003.

[22℄ C. Lutz. NExpTime-
omplete des
ription logi
s with 
on
rete domains. LTCS-

Report 00-01, LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen, Germany,

2000. See http://www-lti.informatik.rwth-aa
hen.de/Fors
hung/Reports.html.

[23℄ C. Lutz. The Complexity of Reasoning with Con
rete Domains. PhD thesis, LuFG

Theoreti
al Computer S
ien
e, RWTH Aa
hen, Germany, 2002.

[24℄ C. Lutz. Des
ription logi
s with 
on
rete domains|a survey. In F. W. Philippe Bal-

biani, Nobu-Yuki Suzuki and M. Zakharyas
hev, editors, Advan
es in Modal Logi
s

Volume 4, pages 265{296. King's College Publi
ations, 2003.

[25℄ C. Lutz and U. Sattler. Mary likes all 
ats. In F. Baader and U. Sattler, editors,

Pro
eedings of the 2000 International Workshop in Des
ription Logi
s (DL2000),

number 33 in CEUR-WS (http://
eur-ws.org/), pages 213{226, 2000.

[26℄ B. Nebel. Computational 
omplexity of terminologi
al reasoning in BACK. Arti-

�
ial Intelligen
e, 34(3):371{383, 1988.

[27℄ B. Nebel. Terminologi
al reasoning is inherently intra
table. Arti�
ial Intelligen
e,

43:235{249, 1990.

31



[28℄ A. Re
tor and I. Horro
ks. Experien
e building a large, re-usable medi
al ontology

using a des
ription logi
 with transitivity and 
on
ept in
lusions. In Pro
eedings of

the Workshop on Ontologi
al Engineering, AAAI Spring Symposium (AAAI'97),

Stanford, CA, 1997. AAAI Press.

[29℄ K. D. S
hild. A 
orresponden
e theory for terminologi
al logi
s: Preliminary re-

port. In J. Mylopoulos and R. Reiter, editors, Pro
eedings of the Twelfth Inter-

national Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI-91), pages 466{471.

Morgan Kaufmann, 1991.

[30℄ K. Spa
kman. Managing 
lini
al terminology hierar
hies using algorithmi
 
al
u-

lation of subsumption: Experien
e with SNOMED-RT. Journal of the Ameri
an

Medi
al Informati
s Asso
iation, 2000. Fall Symposium Spe
ial Issue.

[31℄ K. Spa
kman, K. Campbell, and R. Cote. SNOMED RT: A referen
e terminology

for health 
are. pages 640{644, 1997. Fall Symposium Supplement.

[32℄ The Gene Ontology Consortium. Gene Ontology: Tool for the uni�
ation of biology.

Nature Geneti
s, 25:25{29, 2000.

[33℄ D. Toman and G. Weddell. On reasoning about stru
tural equality in xml: A

des
ription logi
 approa
h. Theoreti
al Computer S
ien
e. To appear, available

from http://db.uwaterloo.
a/�david/papers.html.

32


