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Abstract

Recently, it has been shown that the small DL ££, which allows for conjunction
and existential restrictions, has better algorithmic properties than its counterpart
F Ly, which allows for conjunction and value restrictions. Whereas the subsumption
problem in F Ly becomes already intractable in the presence of acyclic TBoxes, it
remains tractable in ££ even w.r.t. general concept inclusion axioms (GCIs). On the
one hand, we will extend the positive result for ££ by identifying a set of expressive
means that can be added to ££ without sacrificing tractability. On the other hand,
we will show that basically all other additions of typical DL constructors to €L with
GCIs make subsumption intractable, and in most cases even EXpTIME-complete. In
addition, we will show that subsumption in FLqg with GCIs is EXpTiME-complete.

1 Introduction

The quest for tractable (i.e., polynomial-time decidable) description logics (DLs), which
started in the 1980s after the first intractability results for DLs were shown [6, 26],
was until recently restricted to DLs extending the basic language F L, which allows
for conjunction (M) and value restrictions (Vr.C'). The main reason was that, when
clarifying the logical status of property arcs in semantic networks and slots in frames,
the decision was taken that arcs/slots should be read as value restrictions rather than
existential restrictions (Ir.C').

For subsumption between concept descriptions, the tractability barrier was inves-
tigated in detail in the early 1990s [10]. However, as soon as terminologies (TBoxes)
were taken into consideration, tractability turned out to be unattainable: even with
the simplest form of acyclic TBoxes, subsumption in FLy (and thus in all languages
extending it) is coNP-hard [27]. Subsumption in FLg is PSPACE-complete w.r.t. cyclic
TBoxes [3, 21], and we show in this paper that it becomes even EXPTIME-complete in
the presence of general concept inclusion axioms (GCIs), which are supported by all
modern DL systems.

For these reasons, and also because of the need for expressive DLs supporting GCIs
in applications, from the mid 1990s on the DL community has mainly given up on
the quest of finding tractable DLs. Instead, it investigated more and more expressive



DLs, for which reasoning is worst-case intractable. The goal was then to find practi-
cal subsumption algorithms, i.e., algorithms that are easy to implement and optimize,
and which—though worst-case exponential or even worse—behave well in practice (see,
e.g., [20]). This line of research has resulted in the availability of highly optimized DL
systems for expressive DLs [17, 14], and successful applications: most notably the rec-
ommendation by the W3C of the DL-based language OWL [18] as the ontology language
for the Semantic Web.

Recently, the choice of value restrictions as a sine qua non of DLs has been recon-
sidered. On the one hand, it was shown that the DL ££, which allows for conjunction
and existential restrictions, has better algorithmic properties than FLy. Subsumption
in £L stays tractable w.r.t. both acyclic and cyclic TBoxes [4], and even in the presence
of GCIs [7]. On the other hand, there are applications where value restrictions are not
needed, and where the expressive power of ££ or small extensions thereof appear to be
sufficient. In fact, SNOMED, the Systematized Nomenclature of Medicine [9] employs
EL [30, 31] with an acyclic TBox. Large parts of the Galen medical knowledge base can
also be expressed in ££ with GCIs and transitive roles [28]. Finally, the Gene Ontology
[32] can be seen as an acyclic ££-TBox with one transitive role.

Motivated by the positive complexity results cited above and the use of extensions
of £L£ in applications, we start with the DL £L£ with GCIs, and investigate the ef-
fect on the complexity of the subsumption problem that is caused by the addition of
standard DL constructors available in ontology languages like OWL. We prove that the
subsumption problem remains tractable when adding the bottom concept (and thus dis-
jointness statements), nominals (i.e., singleton concepts), a restricted form of concrete
domains (e.g., references to numbers and strings), and a restricted form of role-value
maps (which can express transitivity and the right-identity rule required in medical
applications [30]). We then prove that basically, all other additions of standard DL
constructors lead to intractability of the subsumption problem, and in most cases even
to EXPTIME-hardness.

2 Description Logics

In DLs, concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names, a set Nr of role names, and (possibly)
a set Ny of individual names. In this section, we introduce the extension E£1F of £L,
whose concept descriptions are formed using the constructors shown in the upper part
of Table 1. There and in general, we use a and b to denote individual names, r and s
to denote role names, and C, D to denote concept descriptions.

The concrete domain constructor provides an interface to so-called concrete domains,
which permits reference to, e.g., strings and integers. Formally, a concrete domain D is a
pair (AP, PP) with AP a set and PP a set of predicate names. Each p € P is associated
with an arity n > 0 and an extension p?” C (AP)”. To provide a link between the
DL and the concrete domain, we introduce a set of feature names Ng. In Table 1, p
denotes a predicate of some concrete domain D and fq,..., fi are feature names. The
DL ££7F may be equipped with a number of concrete domains Dj,..., D, such that



| Name | Syntax | Semantics

top T AT

bottom L 1]

nominal {a} {a"}

conjunction cnbD cTnbD*

existential - I . -
restriction r.C {fze A" |Fye AV (z,y) €r Ay eCT}
concrete p(fis- i) | {z €A | Tyy,... yp € AP

domain for p € PPi fH@)=yifor 1 <i <k A(ys,...,yr) € pP7}
GCI CCD ¢TI c D*

RI Tlo...orkgr T%O'~~OT%QTI

concept C’(a) o et

assertion

role - .

assertion r(a,b) (a”,b7) €r

Table 1: Syntax and semantics of EL£7 7.

APinN AP = for 1 <i < j <n. If we want to stress the use of particular concrete
domains Dy,...,D,, we write ELTT(Dy,...,D,) instead of ELTT.

The semantics of ELTH(Dy,. .., D,)-concept descriptions is defined in terms of an
interpretation T = (AZ,-T). The domain AT is a non-empty set of individuals and the
interpretation function T maps each concept name A € N¢ to a subset A% of AZ, each
role name r € Ni to a binary relation rZ on AT, each individual name ¢ € N; to an
individual a” € AZ, and each feature name f € Nf to a partial function f* from AZ to
Uj<icn, APi. The extension of - to arbitrary concept descriptions is inductively defined
as shown in the third column of Table 1.

An ELTT constraint boxr (CBoz) is a finite set of general concept inclusions (GClIs)
and role inclusions (RIs), whose syntax can be found in Table 1. Note that a finite set
of GCIs would commonly be called a general TBox. We use the term CBox due to the
presence of RIs. An interpretation Z is a model of a CBox C if, for each GCI and RI in
C, the conditions given in the third column of Table 1 are satisfied. In the definition of
the semantics of Rls, the symbol “o” denotes composition of binary relations.

An ELTT assertional box (ABoz) is a finite set of concept assertions and role as-
sertions , whose syntax can also be found in Table 1. ABoxes are used to describe a
snapshot of the world. An interpretation Z is a model of an ABox A if, for each concept
assertion and role assertion in A4, the conditions given in the third column of Table 1
are satisfied.

The most relevant inference problems for description logics can be described as
follows:

e Concept satisfiability. A concept C' is satisfiable w.r.t. a CBox C if there exists a
model Z of C such that CT # 0.



o Concept subsumption. A concept C' subsumes a concept D w.r.t. a CBox C (written
C Ce D) if CT C D? in every model T of C.

e ABox consistency. An ABox A is consistent w.r.t. a CBox C if A and C have a
common model.

e The instance problem. An individual name «a is an instance of a concept C' in an
ABox A w.r.t. a CBox C if a® € C7? for every common model Z of A and C.

In the remainder of this paper, we will concentrate on subsumption as the basic reasoning
task. This is justified by the facts that, first, all of the above reasoning tasks can be
mutually polynomially reduced to one another, and second, subsumption is the most
“traditional” reasoning service in description logics. We show mutual reducibility by
reducing all (other) reasoning tasks to subsumption, and vice versa:

e Satisfiability to (non-)subsumption: a concept C' is satisfiable w.r.t. a CBox C iff
CZe L.

e Instance problem to subsumption. We convert an ABox A into a concept C4 as
follows:

Cai= |_|A5|u.({a} nc) n

C(a)e r

(J;leA Ju.({a} 1 3r{b})

where u is a new role name not used in A. Then, an individual a is an instance
of a concept C' in an ABox A w.r.t. a CBox C iff {a} N C4 C¢ C.

e Consistency to subsumption: A is consistent w.r.t. C iff C'4 £ L.

e Subsumption to satisfiability: C' C¢ D iff C'M{a} is unsatisfiable w.r.t. the CBox
CU{Dn{a} C L}, where a is an individual name not occurring in C, D, and C.

e Subsumption to the instance problem: C' Ce D if a is an instance of D in the
ABox {a: C} w.r.t. C.

e Subsumption to consistency: C' C¢ D iff the ABox {C'(a)} is inconsistent w.r.t.
the TBox CU{D M {a} C L}.

Three remarks regarding the expressivity of ££*T are in order. First, our RIs generalize
three means of expressivity important in ontology applications: role hierarchies r C s;
transitive roles, which can be expressed by writing ror C r; and so-called right-identity
rules r o s C s, which are important in medical applications [30, 19]. Second, the
bottom concept in combination with GCIs can be used to express disjointness of complex
concept descriptions: C'T1 D C 1 says that C, D are disjoint. Finally, the unique name
assumption for individual names can be enforced by writing {a} M {b} C L for all
relevant individual names a and b.

3 Deciding Subsumption in EL7(Dy, ..., Dy)

We develop a polynomial time algorithm for subsumption in ££7F. To this end, it is
convenient to first introduce an appropriate normal form for CBoxes.



3.1 A Normal Form for CBoxes

Given a CBox C, we use BC¢ to denote the set of basic concept descriptions for C | i.e.,
the smallest set of concept descriptions that contains

e the top concept T;
e all concept names used in C;
e all (sub)concepts of the form {a} or p(fi,..., fr) appearing in C.
Now, a normal form for CBoxes can be defined as follows.
Definition 1 (Normal Form for CBoxes). An ££1"-CBox C is in normal form if

1. all concept inclusions have one of the following forms, where C,Cs € BCe and
D e BC-,U {J_}:

CicCD

CiMCyC D
C1 C Ir.Cy

Ir.Cqy C D

2. all role inclusions are of the form r C s or r{ o ry C s.

By introducing new concept and role names, any CBox C can be turned into a normalized
CBox (' that is a conservative extension of C, i.e., every model of C' is also a model
of C, and every model of C can be extended to a model of C' by appropriately the
interpretations of the additional concept and role names.

We now show that this transformation can actually be done in linear time, yielding
a normalized CBox C’ whose size is linear in the size of C, where the size |C| of a CBox
C is the is the number of symbols needed to write down C.

£++

Lemma 2. Subsumption w.r.t. CBozxes in £ can be reduced in linear time to sub-

sumption w.r.t. normalized CBozes in ELTT.

Proof. A CBox can be converted into normal form using the translation rules shown
in Figure 1 in two phases:

1. exhaustively apply rules NF1 to NF4;
2. exhaustively apply rules NF5 to NF7.

Here “rule application” means that the concept inclusion on the left-hand side is replaced
with the set of concept inclusions on the right-hand-side. In Phase 1, the rule NF2 is
applied modulo commutativity of conjunction. It is easily verified that the size of the
normalized CBox C’ computed by applying the normalization rules is linear in the size of
the original CBox C, and that C’ is computed using at most |C| rule applications. O



NF1 rio---or,Cs — {rjo---orp 1 Cu,uorgC s}
NF2 CNDCE — {DCACNACE}
NF3 ICED — {CCAINACDY}
NF4 1ED — 0
NF5 CCD — {CCAACD}
NF6 BC3I#.C — {BC3IrAACC)
NF7 BCCnD — {BLCC,BLCD}
where C', D Z BCe, u denotes a new role name, and A a new concept name.

Figure 1: Normalization Rules

Note that the CBox obtained by rule application is of linear size only since we apply
normalization rules in two phases: if all rules are applied together in one phase, we
obtain a quadratic blowup in the worst case due to the duplication of the concept B by
Rule NF7.

3.2 The Algorithm

We now develop a polynomial-time algorithm for deciding subsumption in E£T" w.r.t.
CBoxes in normal form. Here and in the remainder of the paper, we can restrict our
attention to subsumption between concept names. In fact, C' C¢ D iff A Cer B, where
C'=CU{A C C,D C B} with A and B new concept names. Our subsumption
algorithm not only computes subsumption between two given concept names w.r.t. the
normalized input CBox C; it rather classifies C, i.e., it simultaneously computes the
subsumption relationships between all pairs of concept names occurring in C.

Now, let C be a CBox in normal form that is to be classified. We use R¢ to denote
the set of all role names used in C. The algorithm computes

e a mapping S from BC¢ to a subset of BCo U {T, L}, and
e a mapping R from R¢ to a binary relation on BCe.

The intuition is that these mappings make implicit subsumption relationships explicit
in the following sense:

(I1) D € S(C) implies that C' C¢ D,
(I2) (C,D) € R(r) implies that C' C¢ 3r.D.
In the algorithm, these mappings are initialized as follows:

e S(C):={C, T} foreach C € BCg,



Rt IfC' € S(C),C"CDeC, and D ¢ S(C)
then S(C) := S(C) U {D}

CR2 IfCl,CZES(C) Cincy,EDeC, andDgZS(C)
then S(C) := S(C)uU{D}

Rz IfC" e S(C), C"C3Ir.D e, and (C,D) ¢ R(r)
then R(r) := R(r) U{(C, D)}

cra If (C,D) € R(r), D' € S(D), IrD' TE €C, and E ¢ S(C)
then S(C) := S(C)U{E}

crs  If (C,D) € R(r), L € S(D), and L ¢ S(C),
then S(C) := S(C) U {L}

cre  If {a} € S(C)N S(D), C ~ D, and S(D)  S(C)
then §(C) := S(C) U S(D)

cr7  If con;(S(C')) is unsatisfiable in D; and L ¢ S(C),
then S(C):= S(C)u{L}
(
(

cre  If con;(S(C)) implies p(fi,..., fr) € BCc in D; and p(f1,...

then S(C) := S(C)U{p(fi,.--,fr)}

RO Ifp(fi,.... fu) 0/ (fl,.-.. frr) € S(C), p € PP,
p' € PP, j#(, fo = f] for some s,t, and | ¢ S(C),
then S(C) := S(C)U{L}

crio If (C,D) € R(r),rCseC,and (C,D) ¢ R(s)
then R(s) := R(s) U{(C, D)}

crir If (C,D) € R(r ), (D,E) € R(ry), rmora Erz3 € C, and (C, E) ¢ R(r3)

then R(rs) := Ri(r3) U{(C. )}

Table 2: Completion Rules

e R(r):=0 for each r € Re.

Then the sets S(C') and R(r) are extended by applying the completion rules shown in

Table 2 until no more rule applies.

Some of the rules use abbreviations that still need to be introduced. First, cré
uses the relation ~» C BCe x BCe, which is defined as follows: C ~» D iff there are

Ci,...,Cy € BC¢ such that
e (1 = C or C) = {b} for some individual name b,
o (Cj,Cj41) € R(rj) for some rj € Re (1 <j < k),

[ ] CkZD




Second, rules cr7 and crs use the notion con;(S;(C)), and satisfiability and impli-
cation in a concrete domain. If p is a predicate of the concrete domain D;, then the
ELTT-concept description p(fi,..., fn) can be viewed as an atomic first-order formula
with variables fi,..., f,. Thus, it makes sense to consider Boolean combinations of
such atomic formulae, and to talk about whether such a formula is satisfiable in (the
first-order interpretation) D;, or whether in D; one such formula implies another one.
For a set T of EL1T(Dy,...,Dy,)-concept descriptions and 1 < j < n, we define

con;(I') := /\ p(f1seees fio)-

p(f1,....fx)ET with pePPi

For the rules cr7 and crR8 to be executable in polynomial time, satisfiability and im-
plication in the concrete domains Dy,..., D, must be decidable in polynominal time.
However, for our algorithm to be complete, we must impose an additional condition on
the concrete domains.

Definition 3. The concrete domain D is p-admissible if
1. satisfiability and implication in D are decidable in polynominal time;

2. D is convez: if a conjunction of atoms of the form p(fi,..., fr) implies a disjunc-
tion of such atoms, then it also implies one of its disjuncts.

We investigate the property of p-admissibility in more detail in Section 4, where we also
exhibit some useful concrete domains that are p-admissible.

The next lemma shows how all subsumption relationships between concept names
occurring in C can be determined once the completion algorithm has terminated.

Lemma 4. Let S be the mapping obtained after the application of the rules of Table 2
for the normalized CBox C has terminated, and let A, B be concept names occurring
in C. Then A Ce B iff one of the following two conditions holds:

e S(A)N{B, L} #0,
o there is an {a} € BC¢ such that 1. € S({a}).

Lemma 4 will be proved in the subsequent section, where it is also shown that the algo-
rithm terminates after polynomially many rule applications. Before going into formal
details, let us briefly discuss soundness of the algorithm on an intuitive level. Soundness
immediately follows from the fact that (I1) and (I2) are satisfied for the initial defini-
tion of S, R, and that application of the rules preserves (I1) and (I2). This is trivially
seen for most of the rules. However, it is worthwhile to consider crRé in more detail. If
{a} € S(C)NS(D), then C, D C¢ {a}. Now, C' ~» D implies that C' C¢ Jry.---Irg_1.D
or {b} C¢ ry. -+ Irg_y1.D for some individual name b. In the second case, this implies
that D cannot be empty in any model of C, and in the first case it implies that D is
non-empty in any model of C for which C' is non-empty. Together with C, D C¢ {a},
this implies that C' C¢ D, which shows that the rule cRré is sound since it preserves (I1).
When dropping the requirement C' ~» D from this rule, (I1) is no longer preserved.



3.3 Soundness, Completeness,and Termination
We start with proving termination after polynomially many rule applications.

Lemma 5. For a normalized CBoz C, the rules of Table 2 can only be applied a poly-
nomial number of times, and each rule application is polynomial.

Proof. Tt is readily checked that the cardinality of BC¢ and Re is linear in the size of C.
Each rule application performed by the algorithm adds a new element of BCoU{ L} to a
set S(C'), for some C' € BC¢, or a new tuple (C, D) € BC¢ x BC¢ to a relation R(r), for
some r € Re. Since no rule removes elements of these sets/relations, the total number
of rule applications is polynomial. It is readily checked that each rule application can be
performed in polynomial time. In particular, note that the relation ~» can be computed
using (polytime) graph reachability, 0

We now prove Lemma 4. For conveniene, we treat the “if” direction (soundness) and
the “only if” direction (completeness) separately. In the proofs, we will use the notion
of a solution for a conjunction con;(S(C)). Such a solution is a mapping ¢ : Np — AP
such that (6(f1),...,0(fx)) € pPi (henceforth denoted with & = p(f1,..., fr)) for each
conjunct p(fi,..., fr) of c. Clearly, a conjunction con;(S(C)) is satisfiable iff there
exists a solution for it.

Lemma 6 (Soundness). Let S be the mapping obtained after the application of the
rules of Table 2 for the normalized CBox C has terminated, and let A, B be concept
names occurring in C. Then A C¢ B if one of the following two conditions holds:

S1 S(A)N{B, L} #0,
S2 there is an {a} € BC¢ such that L € S({a}).

Proof. Assume that the algorithm is applied to a normalized CBox C yielding the
sequences of mappings Sp,..., S5, and Ry,...,R,. Let Ay and By be two concept
names such that (at least) one of the Conditions S1 and S2 is satisfied. To show that
A C¢ By, we prove the following claim.

Claim. For all n € N, models Z of C, r € Re, and = € CZ, the following holds:
(a) if D € S,(C) then x € D%; and
(b) if (C,D) € R,(r) then there is a y € AT with (z,y) € r* and y € D~.

The claim is proved by induction on n. Let 7 be a model of C and x € CT. First for the
induction start. For (a), n = 0 implies S,(C) = {C, T}. Thus, x € C* implies » € D?
for all D € S,(C). Point (b) is immediate since Ry(r) = () for all » € Re. Now for the
induction step. For (a), we assume that D € S,(C) \ S,—1(C) (for otherwise we are
done by the induction hypothesis). We make a case distinction according to the rule
that was used to add the concept D to Sy:

cR1 Then there exists a C' € S,_1(C) and a concept inclusion I = C' C D € C. By
Point (a) of the induction hypothesis (IH), we have x € c* implying by I that
also x € DT.



crR2 Then there exist C1,Cy € S,,_1(C) and a concept inclusion I = C;MCy E D € C.
By Point (a) of TH, C1,Co € S,_1(A) yields x € Cf and x € C¥, implying by I
that x € DT.

CcRa Then there exist B, E’ € BC¢, a role name r € R¢, and a concept inclusion
I =3r.E' C D € such that (C,E) € R,_1(r) and E' € S,,_1(E). By Point (b)
of TH, there is a y € AZ such that (z,y) € r¥ and y € FZ. By Point (a) of TH, we
have y € E'F. Thus I yields 2 € DZ.

crs If this rule is used, then we have D = 1 and there is an F € BC¢ such that
(C,E) € R(r) for some r € Re and L € S,,_1(E). By Point (b) of IH, there is a
y € AT such that (z,y) € rZ and y € EZ. By Point (a) of IH, we have y € 7.
As this is impossible, we conclude that there are no models Z of C with CT # .
Thus, adding L to S(C) (trivially) preserves Point (a).

crR6 Then there exists an F' € BC¢ and an individual name a such that {a} € S,,—1(C)N
Sn—1(E), D € S,_1(F), and there are C,...,C} € BC¢ such that

(i) Cy = C or Cy = {b} for some individual name b;
(i) Ci = B
(iii) (Ci, Cip1) € Rp—1(rj) for some r; € Re (1 <i < k).

By Point (b) of TH and (iii), there are y1,...,yx € AT s.t. y; € {2} U {bZ|b € N},
yr € CF = BT, and (y;,yi41) € r]Z for some r; € Re (1 <i < k). By Point (a) of
IH, 2 € CT and {a} € S,_1(C)NS,_1(F) implies x = a’ = y;. Also by Point (a),
D € S,,_1(E) implies y;, € DT. Thus, x € DT as required.

cr7 If this rule is used, then we have D = 1 and con;(S,—1(C)) is unsatisfiable
for some i. Define a function § : Np — APi by setting §(f) := fZ(x). Using
Part (a) of TH, we get that = € p(fi,..., fr)? for every conjunct p(fi,..., fi) of
con;(S,—1(C)). Thus, § is a solution for con;(S,_1(C)), contradicting its unsat-
isfiability. Thus, there can be no model T of C with CT # (). Thus, adding L to
S(C) (trivially) preserves Point (a).

crR8 Then D is of the form p(fy,..., fi) with p € PPi for some i, and con;(S,_1(C))
implies D. As in the previous case, we have x € p(fi,..., fi)? for every conjunct
p(f1,..., fr) of con;(S,—1(C)) by Part (a) of TH. Since con;(S,,—1(C)) implies D,
we thus have » € DT as required.

cR9 If this rule is used, then we have D = 1 and there are p(fi,..., fr) € Sh—1(C)
and p'(f{,...,fl)) € Sn—1(C) such that p € PPi and p' € PPi with i # j.
By Point (a) of IH, we have @ € p(fi,...,fu)f N p'(fl..... fl)F. Thus fF €
APi 0 APi| contradicting the disjointness of AP and APi. Again, Point(a) is
trivially preserved.

and make a case distinction according to

For (b), we assume (C,D) € R, (r) \ Rp—_1(r
n(r):

)\
the rule that was used to add (C, D) to R

10



crR3 Then there is a ¢’ € BCe with C" € S, _1(C) and a concept inclusion I = C' C
3r.D € C. By Point (a) of IH, z € CT implies z € C'%. By I, there is a y such
that (z,y) € rf and y € DT as required.

cr10 Then (C,D) € R,,_1(s) for some s with s C r € C. By Point (b) of TH, there is a
y € AT such that (z,y) € s and y € DL. Since s C r € C, we have (z,y) € r?
and are done.

cr11 Then there is an E € BC¢ such that (C,E) € R, _1(r1) and (E,D) € R, _1(r2)
for some 1,7y with r; o ro T r € C. By Point (b) of TH, there is a y € AT such
that (x,y) € r¥ and y € EZ. Another application of Point (b) yields the existence
of a z € AT such that (y,2) € r§ and z € D. Since riory C r € C, we have
(z,2) € r? and are done.

This finishes the proof of Claim 1.

Using the claim, it is now easy to prove that Ay C¢ By. We make a case distinction
according to whether condition S1 or 52 is satisfied.

S1 Let By € Sp(Ag). By Point (a) of Claim 1, we have x € B for all models Z of C
and all # € AL, In other words, A9 C¢ By. Now let L € S,,(A4p). By Point (a)
of Claim 1, we have x € 17 for all models Z of C and all z € Ag . In other words,
there are no models Z of C with AZ # (). Thus 4g C¢ By.

S2 Let L € Sp,({a}) for some individual name a. By Point (a) of Claim 1, we have
al € 17 for all models Z of C. In other words, there are no models of C. Thus

Ap C¢ By.
O

Lemma 7 (Completeness). Let S be the mapping obtained after the application of
the rules of Table 2 for the normalized CBox C has terminated, and let A, B be concept
names occurring in C. Then A C¢ B implies that one of the following two conditions
holds:

S1 S(A)N{B, L} #0,
S2 there is an {a} € BC¢ such that 1. € S({a}).

Proof. We show the contrapositive. Thus assume that the algorithm does not satisfy
S1 and S2 after termination. We show that this implies Ag Z¢ By by constructing a
model Z of C such that a € AF \ B for some a € AZ.

Assume that the algorithm computed the sequences of mappings Sy,..., S, and
Ro, ..., Ry. For convenience, denote S,, with S and R,, with R. Set BC; := {C €
BCc | Ag ~» C'}. Then define a relation ~ on BC, as follows:

C~Diff C=Dor{a} € S(C)NS(D) for some individual name a.

Using Rule cRe, it is readily checked that “~” is an equivalence relation. We use [C] to
denote the equivalence class of C' € BC, w.r.t. “~”. The equivalence classes of “~” will
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be used to define the domain elements of the model to be constructed. Before actually
defining this model, we prove two claims:

Claim 1. For all C,C" € BC, with C'~ C" and all r € R¢, we have
1. S(C)=S(C");
2. (C,D) € R(r) implies (C', D) € R(r).

Proof: Point 1 is an immediate consequence of non-applicability of cre. The proof of
Point 2 is by induction on the smallest i such that (C,D) € R;(r). As Ro(r) = 0
for all role names r, the induction start is trivial. Now for the induction step. Let
(C,D) € Ri(r) \ Ri—1(r) with i > 0. We make a case distinction according to the rule
applied:

cR3 Then there is an F € S;_1(C) and a concept inclusion I = F C 3r.D € C. Since
C ~ (', cre ensures that E € S;(C”) for some j > 0. Thus cR3 ensures that
(D,E) € R(r).

crR10 Then we have (C, D) € R;_1(s) for some role name s with s C r € C. By IH, this
implies (C, D) € R;(s) for some j > 0. Thus, cr12 ensures that (C', D) € R(r).

cr11l Then there is an E € BC¢ such that (C,E) € R;_1(r1) and (E,D) € R;_1(rs)
for some role names 71,72 with r; oy C r € C. By definition of “~”, C' € BC,
implies D € BC,. Thus, the IH yields (C, E) € R;_;(r1), which implies (C", E) €
Rj;(r1) for some j > 0. cr13 will eventually be applied to (C', E) € Ry(r;) and
(E, D) € Ry(rs) for some ¢ > 0, yielding (C’, D) € Ryy1(r) C R(r).

This finishes the proof of Claim 1. Point (1) allows us to unambigously identify a given
equivalence class [C] of “~” with a set of concepts S(C'). This will be used implicitly
in what followows.

Claim 2. For each C' € BC; and each i € {1,...,n}, we can find a solution §([C],) for
con;(S(C)) such that, for all concepts D € BCe of the form p(fi,..., fr) with p € PPi,
we have §([C],t) = D iff D € S(C).

Proof: By Conditions S1 and S2, we have L ¢ S(Ap) and L ¢ S({a}) for all {a} € BC¢.
Due to Rule crs and by definition of BC;, it follows that L ¢ S(C'). Thus, by Rule cr7
there exists a solution for con;(S(C)). It remains to be shown that this solution can be
chosen such that it does not satisfy any concept p(fi,..., fr) € BCe \ S(C). Let T' be
the set of all solutions for con;(S(C')). Moreover, assume to the contrary of what is to
be shown that there exists a set ¥ C BC¢ \ S(C') of concepts of the form p(fi,..., fr)
with p € PP such that each solution from I satisfies a concept from ¥, i.e., con;(S(C))
implies the disjunction of all concepts in ¥. By Property 2 of p-admissibility, con;(S(C))
implies a single concept X from W. By rule crs, this implies X € S(C) in contradiction
to X € .

This finishes the proof of Claim 2. For each C' € BC, and each i € {1,...,n}, fix a
solution §([C],7) for con;(S(C)) as in Claim 2. We now define an interpretation 7 as
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follows:

AT = {[C]]CeBC);

AT = {[Cle AT | A€ S(C)} for all A € Nc NBC;

al = [{a}] for all {a} € BCp;

rf = {([C],[D])) € AT x AT | 3D’ € [D]: (C,D) € R(r)} for all r € Re;
FE(C) = 6([C),i) if there exists a p(f1, ..., fm) € S(C) with p € PAi and

fj = f for some j € {1,...,m}, for all f € Ng and [C] € AT

All concept names not in BCe and all role names not in Re are mapped to the empty
set. Each individual name a with {a} ¢ BCc is interpreted as a” := [Ag] (this choice is
arbitrary). Note the following:

e the use of the equivalence relation “~” ensures that, for each individual name a,
al is well-defined;

e the interpretation of roles is well-defined due to Point 2 of Claim 1.

e the interpretation of features is well-defined since L ¢ S(C') for all C € BC, and
due to Rule cro.

We now erstablish an additional, central claim.
Claim 3. For all [C] € AT and D € BCc U {L}, we have [C] € DT iff D € S(O).

The proof makes a case distinction according to the form of D:
e D =T. Easy since T € S(C) for all C' € BC.

e D = L. Easy since, in the proof of Claim 2, we already argued that L ¢ S(C') for
all C' € BC;.

e D is a concept name. Then [C] € DT iff D € S(C) is immediate by definition
of 7.

e D = {a}. Then [C] € {a}? implies a® = [O] and thus [C] = [{a}] by definition
of {a}f. This yields {a} € S(C) since {a} € Sy({a}). Conversely, {a} € S(C)
implies [C] = [{a}] by definition of “~" and thus e’ = [C] implying [C] € {a}?
by the semantics.

e D =p(fi,...,fr) with p € PP for some i. Then [C] € D? iff §([C],i) & D iff
D € S(C). The first “iff” is by definition of Z and the semantics and the latter
by choice of §([C], 7).

This finishes the proof of Claim 3. We now show that Z is a model of C with = € (AZ\ B})
for some x € AZ. Since Ay € BC, by definition of BC,, we have [4g] € AT. By S1,
we have By ¢ S(Ap). By definition of Sy, we have Ay € S(Ap). Thus, Claim 3 yields
[Ag] € (A% \ BI). It remains to be shown that T is a model of C. We make a case
distinction according to the form of concept and role inclusions:
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C C D. Let [C'] € CT. By Claim 3, we have C' € S(C"). Due to Rule cRr1, this
implies D € S(C") and thus [C'] € DT by Claim 3.

e C'T1 D LC E. Similar to the previous case using Rule cr2.

e C T Ir.D. Let [C'] € CT. Then C € S(C') by Claim 3. By Rule cRr3, we thus
have (C', D) € R(r). By definition of 7%, this implies ([C'],[D]) € rf. Moreover,
D € Sy(D) implies D € S(D). Thus, Claim 3 yields [D] € D%. Together, this
yields [C] € (3r.D)? as required.

e 3r.C C D. Let [E] € (3r.0)L. Hence there is an [F] € AT such that ([F],[F]) € r*
and [F] € CT. By definition of Z, this means that there is F' € [F] such that
(E,F') € R(r). Moreover, [F'] = [F] € CT implies C' € S(F’) by Claim 3. By
Rule cRra, we thus have D € S(E). Thus [E] € D? by Claim 3 as required.

e T s. Let ([C],[D]) € rZ. Then there is a D' € [D] such that (C,D’) € R(r).
By cr10, we obtain (C, D) € R(s). By definition of Z, we thus have ([C],[D']) =
([C],[D)) € st as required.

e 7107 C 5. Let ([O),[D]) € v and ([D],[E]) € rZ. Then there are D’ € [D] and
E' € [E] such that (C,D’) € R(r) and (D, E’) € R(r). By Point 2 of Claim 1,
the latter yields (D', E') € R(r). By cr1o, we thus obtain (C,E’) € R(s). By
definition of Z, we thus have ([C],[E']) = ([C],[E]) € sT as required.

U

We obtain the following result as a consequence of Lemmas 2, 5, and 4, and the reduction
of satisfiability, consistency, and the instance problem to subsumption given in Section 2.

Theorem 8. Satisfiability, subsumption, ABox consistency, and the instance problem
in ELTY can be decided in polynomial time.

It is not hard to see that, taken together, the proofs of Lemma 6 and 7 yield a small
model property for ££TT. To formulate it, let the size |C| of a concept C' and the
site | A| of an ABox A be defined analogously to the size of CBoxes: it is simply the
number of symbols needed to write down C' and A, respectively. Via the reductions of
satisfiability and ABox consistency to subsumption, we obtain the following.

Theorem 9. Let C' and D be concepts, A an ABozx, and C a CBox. Then the following
holds:

1. If C 1is satisfiable w.r.t. C, then C and C have a common model of size linear in
[T+ 1€l

2. if C' is not subsumed by D w.r.t. C, then there exists a model T of C of size linear
in |C| 4+ |D| + |C| such that a € CT\ D% for some a € AZ;

3. If A is consistent w.r.t. C, then A and C have a common model of size linear in

Al +[Cl;

4. if an individual a is not an instance of C in A w.r.t. C, then there exists a model

T of A and C of size linear in |C| + |A| + |C| such that a* ¢ CT.
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4 P-admissible and Non-admissible Concrete Domains

In order to obtain concrete DLs of the form L1 (Dy,...,D,) for n > 0 to which
Theorem 8 applies, we need concrete domains that are p-admissible. In the following,
we introduce two concrete domains that are p-admissible, and show that small extensions
of them are no longer p-admissible. To simplify notation, we call every finite conjunction
of atomic formulae p(fy,..., fr) from a concrete domain D a D-conjunction.

The concrete domain Q = (Q, PR) has as its domain the set @ of rational numbers,
and its set of predicates PQ consists of the following predicates:

e a unary predicate Tq with (TqQ)® = Q;
e unary predicates =, and >, for each ¢ € Q;
e a binary predicate =;

e a binary predicate +,, for each ¢ € QQ, with
(+0)¥={(d.¢") € Q* | ¢ +q=1¢"}.

The concrete domain S is defined as (3*,P%), where ¥ is the ISO 8859-1 (Latin-1)
character set and P° consistes of the following predicates:

e a unary predicate Ts with (Tg)% = %
e a unary predicate =, for each w € ¥*;
e a binary predicate =;

e a binary predicate conc,,, for each w € ¥*, with
conc? = {(w',w") | w" = w'w}.

We now show that both Q and S are p-admissible.
Proposition 10. The concrete domain Q is p-admissible.

Proof. First for Point 1 of p-admissibility. Assume that, in Q-conjunctions, we admit
the following additional predicates:

e a unary predicate <, for each ¢ € Q with (P-)R ={¢' € Q| ¢ < q};
e a binary predicate < with the obvious extension.

If this extended set of predicates is available, we can reduce Q-implication to Q-satis-
fiability: assume that we want to decide whether a Q-conjunction ¢ implies a formula
p(fi,..., fr) with p € PR. We make a case distinction according to p:

=, the implication holds if neither ¢ A <,(f1) nor ¢ A >,(f1) is satisfiable;
>, the implication holds if neither ¢ A <,(f1) nor ¢ A =,(f1) is satisfiable;

= the implication holds if neither ¢ A <(f1, f2) nor ¢ A <(f2, f1) is satisfiable;
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+, the implication holds if neither ¢ A +4(f1, f) A<(f, f2) nor ¢ A+4(f1, f) AN <(f2, f)
is satisfiable, where f is a feature name not appearing in c.

Using a straightforward reduction to linear programming, it is shown in [24] that satisfi-
ability of Q-conjunctions using the extended set of predicates is decidable in polynomial
time.

Now for Point 2 of p-admissibility. First, let ¢ be a Q-conjunction, and let I" be a
finite set of formulae of the form p(fi,..., fr) such that ¢ implies no formula from T.
Obviously, ¢ must be satisfiable. Assume that ¢ implies the disjunction over all formulae
in I'. W.Lo.g, we may assume that ¢ does not contain conjuncts of the form Tq(f) since
the conjunction that is obtained from ¢ by dropping such conjuncts is equivalent to c.
Moreover, the fact that ¢ does not imply any formula from I" means that T" also contains
no concepts of the form Tq(f). Our aim is to construct a solution ¢ for ¢ such that
d = C for all C' € T, in contradiction to our assumption. The construction is done in
two steps: first, we define a solution for ¢ that does not satisfy any formula >,(f) € I,
and then we tweak this solution such that no other formulae from I' are satisfied. For
the first step, we start with defining a relation ~ on the set of features N as follows:

f~ fliff f=f"or fand f' occur jointly in a conjunct of c.

Clearly, the transitive closure ~* of ~ is an equivalence relation. We now define, for

each equivalence class A of ~*, a distance function da that takes each pair of features
f, f' € A to a rational number as follows:

o da(f,f)=0;

=0if=(f,f)ecor=(f",f) €
qif +4(f, f) € &

= —qif +4(f', f) €

o da(f, f') =dalf, f") +dalf", f).

Note that da is total on A due to the definition of ~ and well-defined since c is satisfiable.
We say that a feature f is fized by cif there exists a feature f' with f ~* f"and =,(f') € ¢
for some ¢ € Q). Observe that, for a given ~*-equivalence class, either all the features in
the class are fixed or all are not fixed. Thus we can also talk about equivalence classes
to be fixed.

Let Aq,..., Ay be the equivalence classes of ~*. We define a solution §y for ¢. This
is done separately for each A;, 1 <i < k:

.dA

(

(f, f
o da(f. f'
o da(f,f'

)
)
)
)

1. If A; is fixed, then take a feature f € A; with =,(f) € ¢ and set do(f) = ¢. For
all other features f' € A;, set do(f') = do(f) + da,(f, ).

2. If A; is not fixed, then choose a feature f € A;. Next, choose a value dy(f) € Q
such that the following conditions are satisfied:

o So(f)+da,(f, ") >qforall f'€ A; and all ¢ with >,(f’) € c.
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o 0o(f)+da,(f,f) < qforall f'€A; and all ¢ with >,(f’) € T.

For all other f' € A;, set do(f') = do(f) + da,(f, f')-

To verify that a rational number dy(f) as required above indeed exists, let us
assume the opposite. Then there is a >,(f’) € ¢ and a >, (f"”) € T such that
da, (f, 1) —da, (f, f") = da, (f', ") > ¢ — ¢'. By definition of da,, there is thus
no solution dg for ¢ that does not satisfy > (f") € T'. This contradicts the fact
that ¢ does not imply any element of I'.

Using the definition of da and of dy, it is readily checked that dg is a solution for ¢
satisfying none of the formulae >,(f) in T'. The latter is obvious if 0(f) has been
defined in Point 2 above. If it has been defined in Point 1, then 0(f) > ¢ clearly yields
that ¢ implies >,(f), and thus >,(f) ¢ I'.

Now for the second step, which deals with formulae =,(f), =(f, f'), and +,(f, f') in
I' that may be “accidentally” satisfied by dy. We destroy such satisfactions by carefully
“shifting down” values of dy. To this end, choose a b € Q such that the following
conditions are satisfied:

1. b>0;
2. for all conjuncts >,(f) of ¢, b < o (f) — q;

3. for all =,(f) € T with &(f) # ¢, b < |50 (f) —ql;

W~

. for all =(f, f') € T with do(f) # o(f"), b < |60(f) — So(f")|;

. for all +4(f, f') € T with do(f') # do(f) +q, b < [00(f) = (do(f) + @)I;

ot

We define a new solution § of ¢ as follows:

. do(f) — b if f is not fixed by ¢
o) = { do(f) otherwise

It is not hard to show that 0 is indeed a solution of ¢: conjuncts >,(f) are satisfied
by choice of b (Point 2); conjuncts =,(f) are satisfied since they are satisfied by dg
and their presence implies that f is fixed by ¢; and conjuncts =f, ') and +,(f, f') are
satisfied since they are satisfied by dp and their presence implies that f is fixed by ¢ iff
f! is fixed by c.

Moreover, the new solution ¢ does not satisfy any formula in I': formulae >,(f)
have not been satisfied by dg, and we only shifted down when moving to §; formulae of
the other form are not satisfied by definition of ¢ and choice of b. O

Proposition 11. The concrete domain S is p-admissible.
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Proof. First for Point 1 of p-admissibility. Consider the concrete domain ' = (X*, PS'),
with PS' containing the following properties:

1. a unary predicate Tg as in S;

2. a unary predicate =, as in S (but only for the empty word), and it’s negation #.
with the obvious extension;

3. binary predicates = and # with the obvious extension;

4. binary predicate conc,, and conc,, for each w € ¥*, where the extension of conc,,
is as in S, and the extension of S’ is complementary.

We claim that satisfiability and implication in S can be polynomially reduced to satis-
fiability in S':

e To check satisfiability of an S-conjunction ¢, first extend ¢ with the conjunct =, (e),
where e is a feature name not occurring in ¢, and then replace each conjunct =,,(f)
in ¢ with w # ¢ by the conjunct concy/(e, f). Finally, check satisfiability of the
resulting conjunction ¢’ in S'.

e To check whether an S-conjunction ¢ implies a formula p(fy,..., fy), first trans-
form c into ¢ as in the satisfiability case above. If p is of the form =., =, or
concy, then simply check whether ¢ extended with the conjunct p(f1,..., fn) is
unsatisfiable. If p is of the form =,, with w # ¢, then check whether ¢’ extended
with the conjunct concy (e, f1) is unsatisfiable.

Since it is shown in [22] that satisfiability in S’ are decidable in polynomial time, we
thus obtain the same result for satisfiability and implication in S.

Now for Point 2 of p-admissibility. First, let ¢ be an S-conjunction, and let T" be
a finite set of formulae of the form p(fi,..., fr) such that ¢ implies no formula from
I'. Again, in this case c¢ is satisfiable. Assume that ¢ implies the disjunction over all
formulae in T'. As in the case of the concrete domain Q, we may assume that the
predicate Tg(f) does not occur in ¢ and I'. Our aim is to construct a solution ¢ for ¢
such that ¢ & C for all C' € T, in contradiction to the assumption.

To this end, let dy be an arbitrary solution for ¢. Let us tweak this solution such
that no formula from I' is satisfied. We start with defining a relation ~ on the set of
features Ng as follows:

f~ fliff f=f"or fand f' occur jointly in a conjunct of c.

The transitive closure ~* of ~ is an equivalence relation. We say that a feature f

is fized by c if there exists a feature f’ with f ~* f' and =,(f") € ¢ for some w €
3*. Observe that, for a given ~*-equivalence class, either all the features in the class
are fixed or all are not fixed. Thus we can also talk about equivalence classes to be
(non-)fixed. Let aq,...,a, denote the non-fixed equivalence classes of ~*. Then fix
words wy, ..., w, € ¥* such that the following conditions are satisfied:

1. w; is not a prefix of w, for 1 <7 < n and =, a predicate occurring in T’;
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2. wj is not a prefix of wy, for 1 <4,57 <n and i # j;
3. w; is not a prefix of §(f) for 1 <i < n and each f € Ng occurring in c.

Now define a new solution ¢ of ¢ as follows:

(5(f) _ { ’LUZ(SU(f) iffEai

do(f) if there is no such «; .

It remains to show that 0 = ¢ and ¢ = C for all C' € I'. For the former, we argue as
follows:

e For all predicates in ¢ of the form =,(f), f is, by definition, non-fixed. Thus
0(f) = do(f) = w.

e All predicates in ¢ of the form =(f,¢) remain satisfied because their existence
implies that f and g are in the same equivalence class and thus §(f) = w - §p(f)
and 0(g) = w - dp(g) for some w € T*.

e All predicates concy,(f, g) remain satisfied for the same reason.
Now for the latter.

e Consider some =, (f) € I'. If f is is fixed and &y = =, (f), then ¢ implies =, (f)
in contradiction to the assumption that ¢ does not imply any element of I'. Thus,
either f is not fixed or dy = =, (f). If f is not fixed, then 0 = =, (f) because of
Property 1 of the words wy, ..., w,. If f is fixed and dy & =, (f), then we clearly
also have § = =, (f).

e Now consider =(f,g) € T'. If f and g are in the same equivalence class and
do E =(f,g) then ¢ implies =(f, g) contradicting our assumption. Thus either f
and ¢ are not in the same equivalence class or dy = =(f,¢). In f and ¢ are not
in the same equivalence class, we have § = =(f,g) due to Properties 2 and 3 of
the words wq,...,w,. If they are in the same equivalence class and dy [~ =(f, g),
then we clearly also have § = =(f, g).

e The case concy,(f,g) € I' is analogous.
U

Note that p-admissibility of concrete domains is easily broken. Consider e.g. the follow-
ing examples:

e The concrete domain Q<*~¢ with domain @ that has the predicates (>),eq from
Q and, additionally, unary predicates (<,)seq with

<qg,>
(<)¥" " ={d eQ|d <q}.

Then the Q<¢~¢-conjunction ¢ := >¢(f’) does not imply any concept from T' :=
{<o(f),=0(f),>0(f)}, but every solution of ¢ satisfies some concept of T
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| Name | Syntax | Semantics |

negation -C AT\ C*
disjunction cubD | ctuD?
value restriction vr.C | {z e AT |Vye AT : (z,y) €rT -y e CT}

at-least restriction | (= nr) | {x € AT | #{ye AT | (z,y) €r’} >n}
at-most restriction | (< nr) | {r € AT | #{y € AT | (z,y) ert} <n}

inverse roles Ir=.C | {z|IyeAl:(y,2) ert Ay eCt}

role negation F.C |[{r]|IyeAT:(y,x)¢rf AyeCT}

role union FIrUs.C | {x|TFye Al (y,x) erfust Ay e CT}
transitive closure Fr*.C [ {z|eAT:(y,x) € " H)T Aye Ot}

Table 3: The additional constructors.

e Any concrete domain S* with domain ¥* for some finite alphabet ¥ and the unary
predicates pref, and suff; for every s € ¥* with

prefS” = {s'|sis a prefix of s'}

suffS” = {s'|sis a suffix of s’}

Assume a € ¥. Then the S*-conjunction ¢ := suff,(f) implies no formula from
I':= {pref . (f) | o € £}, but every solution of ¢ satisfies some formula from T.

e Any concrete domain S* with domain X* for some finite alphabet ¥, the unary
predicates Tg- and =. with the obvious semantics, and the unary predicates pref,,
s € ¥*, as in the previous example. Then the S*-conjunction ¢ := Ts-(f) implies
no concept from I" := {=_(f)}U{pref.(f) | o € £}, but every solution of ¢ satisfies
some concept from I'.

5 Lower Bounds

The purpose of this section is to justify our choice of constructors in the language
ELTT. To this end, we consider the sublanguage £L£ of ££1 and restrict the attention
to general TBoxes, i.e., finite sets of GCIs. Recall that ££ is obtained from £
by dropping all concept constructors except conjunction, existential restriction, and
top. We will show that the extension of ££ with basically any typical DL constructor
not present in LT results in intractability of subsumption w.r.t. general TBoxes.
Syntax and semantics of the additional constructors used in this section can be found in
Table 3, where #S5 denotes the cardinality of a set S and (rZ)* denotes the transitive
closure of the relation rZ. As in the previous section, we can restrict the attention to
satisfiability /subsumption of concept names w.r.t. general TBoxes.

Before considering concept and role constructors, we briefly discuss a natural ex-
tension of CBoxes: role inclusions can be strengthened to so-called role-value-maps
(RVMs), i.e., to inclusions ry o ---or, C s1 0--- 0 sp whose right-hand side is a compo-
sition of role names. The semantics of RVMs is defined in analogy with the semantics
of £L£71’s role inclusions. By a result of Baader [4], subsumption in ££ is undecidable
already if only RVMs, but no concept inclusions are admitted in CBoxes.
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Theorem 12 (Baader). Subsumption of £L-concepts w.r.t. RVMs is undecidable.

In the following, we walk through the constructors listed in Table 3 and, for each of
them, prove that subsumption w.r.t. general TBoxes is not tractable.

Atomic negation

Let £L£7 be the extension of ££ with negation, and let L") be obtained from £L£7
by restricting the applicability of negation to concept names (atomic negation). Since
EL™ is a notational variant of the DL ALC, EXPTIME-completeness of satisfiability
and subsumption in ALC w.r.t. general TBoxes [29] carries over to E£7. EXPTIME-
completeness even carries over to €L since =C' with C' complex can be replaced with
—A for a new concept name A if we add the two GCIs A C C and C' C A.

Theorem 13. In EE(_'), satisfiability and subsumption w.r.t. general TBozes is EXPTIME-
complete.

For many other extensions of £L£ presented in this section, satisfiability is trivial in the
sense that every concept is satisfiable w.r.t. every TBox. In the following, we will only
explicitly mention satisfiability if it is not trivial.

Disjunction

Let £LU be the extension of £L£ with disjunction. Our aim is to show that subsumption
in £LU w.r.t. general TBoxes is EXPTIME-complete. The upper bound follows from & LU
being a fragment of ALC. For the lower bound, we reduce satisfiability of £ E(ﬁ)—concepts
w.r.t. general TBoxes to subsumption of £LU-concepts. The former is EXPTIME-hard
by Theorem 13.

Let Ag be an ££7) concept name and T a general £ £ TBox. To decide satisfia-
bility of Ay w.r.t. T, take a new (i.e. distinct from Ay and not occurring in 7°) concept
name A’ for each concept name A occurring in 7. Also fix an additional new concept
name L. Then the TBox 7* is obtained from 7 by first replacing each subconcept —A
with A’, and then adding the following GCIs:

e TC AU A and AN A’ C L for each concept name A occurring in 7T

e dr.LC L.
Note that the concept inclusion dr.L C L is equivalent to =L C Vr.—L. It thus ensures
that L acts as the bottom concept in (connected) countermodels of the subsumption
Ag T+ L. Using this observation, it is not hard to verify that C'is satisfiable w.r.t. T
if, and only if, Ay Z7+ L.

Theorem 14. In ELU, subsumption w.r.t. general TBozes is EXPTIME-complete.
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This theorem improves upon the result of Brandt that subsumption of £L£U concepts
w.r.t. general TBoxes is NP-hard [7], and it improves upon the result of Hladik and
Sattler that satisfiability of LU concepts extended with functional roles and the bottom
concept w.r.t. general TBoxes is EXPTIME-hard [15].

At-Least Restrictions

Let ££72 be the extension of ££ with at-least restrictions of the form (> 2 r). Sub-
sumption in ££22 w.r.t. general TBoxes is in EXPTIME since ££22 is a fragment of
ALC extended with number restrictions [12]. We establish a matching lower bound by
reducing subsumption in £ELU w.r.t. general TBoxes. Let Ay and By be concept names
and 7 a general £LU TBox. We assume that all concept inclusions in 7 have one of
the following forms:

cCCD
cinc,CC
CCCiLudy
C C3dr.D
Ir.CC D

where C', D, C, and C5 are concept names or T. It is easily verified that this assumption
can be made without loss of generality since every general TBox can be converted into
normal form using normalization rules similar to the one presented in Figure 1. Note
in particular that Cy LI Cy C C can be replaced by the two rules C1 E C' and Cy C C.
To convert 7 into an ££72 CBox, we only need to rephrase concept. implications of the
form C' C Cy U C5. This is done as follows: introduce two new concept names A and B
and a new role name r, and replace the mentioned implication with

C C Ir.An3drB
Cnar(AnB) C C
Cn(=2r) C Cy

Call the resulting TBox 7. It is easily seen that Ay Cy By iff Ag Ty« By.

Theorem 15. In EL£22, subsumption w.r.t. general TBozes is EXPTIME-complete.

Role Constructors —, U, -*

We consider the extension £L£77 of £L£ with role negation, ££ with role union, and
EL* with transitive closure. For these three DLs, subsumption w.r.t. general TBoxes
can be proved EXPTIME-hard using a technique similar to the one employed for at-
least restrictions in the previous section: the lower bounds are established by reducing
subsumption in ELU w.r.t. general TBoxes. Thus, let Ag and By be concept names
and 7 a general £LU TBox. As in the proof of Theorem 15, we assume that 7 is in
normal form. We convert T into a new IBox 7* by replacing each concept inclusion
C C C7 U Cy as follows:
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e In ££%7, we introduce a new concept name A and two new role names r and s.
Then we replace the above inclusion by the following:

C C arA
Cnis. A C 4
CnNi-s.A C (Cy

e In £L£Y, we introduce a new concept name A and two new role names r and s.
Then we replace the above inclusion by the following:

C C drus.A
Cnard C ¢
Cnis.A C Cy

e In £L£%, we introduce a new concept name A and a new role name r. Then we
replace the above inclusion by the following:

C C Irt.A
Cnard C ¢
CnaIrIrt.A C

The EXPTIME upper bound is obtained from the fact that in ALC extended with the
Boolean operators on roles, subsumption w.r.t. general TBoxes is in EXPTIME [25], and
the same holds for the description logic ALCreg [11, 29, 2].

Theorem 16. In ELR-, ELY, and EL*, subsumption w.r.t. general TBozxes is EXPTIME-
complete.

Non-p-admissible Concrete Domains

We now show that p-admissibility of the concrete domains is not only a sufficient con-
dition for polynomiality of reasoning in ££7 ", but also a necessary one: if D is a non-
convex concrete domain, then subsumption in ££(D) is EXPTIME-hard, where £L£(D)
is the extension of £L£ with the concrete domain D, i.e., with features f that are mapped
to partial functions from A% to AP, and with a concept constructor p(fi,..., fx) for
each k-ary predicate p € PP.

To prove EXPTIME-hardness, we first strengthen Theorem 14 as follows. Let a single-
disjunction TBox (sd-TBox) be a general £L£ TBox that, additionally, contains zero or
one concept implication of the form A T By U By with A, Bj, and By concept names.
We show that subsumption of £L-concepts w.r.t. sd-TBoxes is EXPTIME-complete.
The lower bound is proved by reduction of subsumption in ELU w.r.t. general TBoxes,
which is EXpTiME-hard by Theorem 14. Thus, let Ay and By be concept names and 7
a general £LU TBox. We again assume that 7 is in the usual normal form introduced
above. For the reduction, introduce new concept names U and U’ and a new role name
ra,p,p for each concept implication A T BUB' € T. We convert 7 into a sd-TBox T*
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by adding the concept implication T C U L U’. and replacing each concept implication
A C B U B with

T E HTA,B,BI.T
AHEI’I“A,B,B/.U E B
A|_|E|7“A7B7BI.UI C B

It is easy to check that Ag Ty By iff Ag C7+ By. Together with the upper bound from
Theorem 13, we thus obtain the following:

Theorem 17. Subsumption of £EL-concepts w.r.t. sd-TBozxes is EXPTIME-complete.
Now back to the EXPTIME-hardness of subsumption in ££(D), where D is a non-
convex concrete domain. We reduce subsumption in ££ w.r.t. sd-TBoxes. Let Ay and
By be concept names and 7 an sd-TBox. Since D is not convex, there is a satisfiable
conjunction ¢ of atoms of the form p(fi,..., fr) that implies a disjunction ay V...V a,
of such atoms, but none of its disjuncts. If we assume that this is a minimal such
counterexample (i.e., m is minimal), then we also know that ¢ does not imply asV...Va,,,
and that each of the a; is satifiable. Then we have

(i) each assignment of values from D that satisfies ¢ satisfies a; or as V...V ap;

(ii) there is an assignment satisfying ¢ and aq, but not as V...V ap;

(iii) there is an assignment satisfying ¢ and ay V ...V a,,, but not a;.

Now, let 7* be obtained from 7 by replacing the single GCI A C BU B’ by A C ¢,
a1 C B,and a; C B for i = 2,...,m. Tt is easy to see that Ay C7 By iff A9 Ty« By.

Theorem 18. For any non-convex concrete domain D, subsumption in EL(D) w.r.t.
general TBozxes is EXPTIME-hard.

For example, this theorem applies to the concrete domains introduced at the end of
Section 4. We obtain the following corollary.

Corollary 19. For the following concrete domains D, subsumption in EL(D) w.r.t.
general TBoxes is EXPTIME-hard:

e the concrete domain Q< ~4;

e any concrete domain S* with domain X* for some finite alphabet 3 and the unary
predicates pref, and suffs for every s € ¥*;

e any concrete domain S* with domain X* for some finite alphabet X, the unary
predicates Ts+ and =., and the unary predicates pref,, for each s € ¥*.
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Using results from [23], a matching upper bound can be obtainted for the case where
D-satisfiability is in EXPTIME. Thisis e.g. the case for the first item of Corollary 19 [24].

Inverse Roles

Let £L£T be the extension of £L£ with inverse roles. We show that subsumption in ££7
w.r.t. general TBoxes is PSPACE-hard by reducing satisfiability in the description logic
ALE w.r.t. so-called primitive TBoxes:

e ALE is obtained by extending ££7 with atomic negation;

e primitive TBoxes are general TBoxes whose concept inclusions have the form
A C C, with A a concept name.

It has been shown by Calvanese that satisfiability in ALE w.r.t. primitive TBoxes is
PSPACE-complete [8].

Let Ay be a concept name, and 7 a primitive ALE TBox. We assume that 7 is in
normal form: every concept inclusion is of one of the following forms:

ACB
AC-B
ACBNB
ALC Ir.B
ACVr.B

where A, B, and B’ are concept names. It is easily verified that this assumption can
be made without loss of generality since every primitive TBox can be converted into
normal form using normalization rules similar to the one presented in Figure 1.

For the reduction, we take a new concept name L and define a general ££7 TBox
T* containing the following concept inclusions:

e AC Dforall AC D € T if D is a concept name or of the form dr.B;
e dr LAC Bforall ACVr.BeT;

e AMBLC Lforall AC-B€T,;

e IrnLC L.

As in the case of ELU, the concept inclusion Ir.. C L is equivalent to =L C Vr.—L
and ensures that L acts as the bottom concept in connected countermodels of the
subsumption Ay C7+ L. Additionally, 3r—.A C B is clearly equivalent to A C Vr.B.
Thus, it is not hard to verify that Ag is satisfiable w.r.t. 7 if, and only if, Ay [Z¢ L.

Theorem 20. in ELT, subsumption w.r.t. general TBozxes is PSPACE-hard.
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The exact complexity of this problem is still open (the best upper bound we know of is
EXPTIME, stemming from results for the DL ALCZ [12]).

At-Most Restrictions

Let £L£5! be the extension of ££ with at-most restrictions of the form (< 1 7). As
in the case of ££72, subsumption in ££5! w.r.t. general TBoxes is in EXPTIME since
ELSY is a fragment of ALC with number restrictions. We prove a matching lower
bound by reducing subsumption in the DL F Ef]f w.r.t. general TBoxes. F ng offers
only the concept constructors conjunction and value restriction and requires all roles to
be interpreted as total functions. Subsumption in this DL w.r.t. general TBoxes was
proved EXPTIME-complete by Toman and Wedell: as noted below Corollary 12 of [33],
this is an immediate consequence of the proof of Theorem 11 in the same paper. Note
that FLy is often assumed to additionally offer the T-concept. For our purposes, it is
simpler to exlude it. This is justified by the fact that EXpTiME-hardness of subsumption
in F Ef)f also does not presuppose the presence of the T-concept as well.

Let Ag and By be concept names and T a general F. ,Cgf TBox. We convert 7 into a
general £L£5! TBox T* by replacing each subconcept Vr.C' appearing on the left-hand
side of a GCI with 3r.C', and each subconcept Vr.C' appearing on the right-hand side of
a GCT with (< 1 7)1 3r.C. Then the following holds:

Lemma 21. Ay &7 By iff Ag C7+ By.

Proof. We show the contrapositives of both directions. First assume that Ay Z7+ By,
i.e., there is an ££5! model T of 7* and an o € AZ \ Bf. First modify Z to a model Z'
as follows: for each x € AT and each role name r such that |{y € AT | (x,y) € rT}| > 1,
delete all out-going r-edges starting at x. To show that 7' is still a model of T7*, it
suffices to prove that cT C C7T for concepts C' appearing on the left-hand side of
GCIs, and €T = C7T for concepts €’ appearing on the right-hand side of GCIs. The
former is easy since left-hand sides of GClIs are £L£ concepts, and the latter is easy
since existential restrictions 3r.C' on right-hand sides of GCIs are always conjoined with
(< 1 r). Clearly, all role names are interpreted as partial functions in Z'. We now
extend these interpretations to total functions: Let AZ” be defined as follows:

AT = AT w{x,}
AT = AT for all concept names A
= T U{(z,xy) | (z,y) € rT for all y € AT} for all role names 7.

Observe that the new domain element x| is in the extension of no concept name. It is
readily checked that z € CT iff € CT" for all z € AT and £L concepts C not using
the T concept. Thus, Z” is still a model of 7*. Since role names are interpreted as total
functions, it is easy to show by structural induction that

¢ = (chT" = (chHT" (%)

for every }'llgf concept C, where CT denotes the result of replacing each subconcept
Vr.C' with 3r.C,, and C* denotes the result of replacing each subconcept Vr.C' with
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(< 1r)M3r.C. Since Z" is a model of 7%, this clearly yields that Z” is a model of T as
well. Since zg € Ag” \Bg”, we have Ay [Z7 By as required.

Now for the other direction. Assume that Ay Z7 By, i.e., there is an ]—',Cgf model 7
of T and an g € Af\ Bf. As in the direction considered first, the fact that all relations
are interpreted as total functions implies that we have z € (Ir.C)T iff z € (Vr.C)T for
all x € AT, £L concepts C, and role names r. Since Z is a model of 7, it is thus also a
model of 7% yielding Ay [Z7+ By as required. 0

We thus obtain the following theorem:
Theorem 22. Subsumption in ELZ' w.r.t. general TBozes is EXPTIME-complete.

Ana analogous result can be proved if the concept constructor (< 1 r) is replaced by
CBox assertions Funct(r), which are satisfied by an interpretation Z if 7 is a partial
function.

6 Comparison with F.

The purpose of this paper is to investigate the complexity of reasoning w.r.t. general
TBoxes in extensions of the basic description logic ££. To fully appreciate the result
from [7] that subsumption in ££ w.r.t. general TBoxes is polynomial and the results
from this paper that polynomiality is even preserved for several extensions of £L, it
is worthwhile to compare the computational complexity of ££ with that of it’s sibling
DL FLg providing only for the concept constructors M and Vr.C'. Such a comparison is
performed in this section yielding the result that, although looking just as harmless as
EL, FLy is much less robust than ££ w.r.t. the addition of TBox formalisms: we prove
that subsumption in FLy with general TBoxes is EXPTIME-complete.

Summing up the work on ££ carried out in this and previous papers, we obtain the
following picture:

e Subsumption of £L concepts without reference to a TBox is of polynomial com-
plexity [5].

e Subsumption in £L£ w.r.t. standard TBozes is still of polynomial complexity, where
a standard TBox is a finite set of concept definitions A = C' with A a concept
name. Such a concept definition is satisfied by an interpretation Z if AZ = CF [4].

e Subsumption in ££ w.r.t. general TBoxes is still of polynomial complexity [7].

e Even for several extensions of ££, subsumption w.r.t. general TBoxes remains
polynomial (current paper).

When we summarize the work on F L, we obtain a dramatically different picture: in
this case, adding a more powerful TBox formalism usually results in an increase of the
complexity of reasoning:

e Subsumption of FLg concepts without reference to a TBox is of polynomial com-
plexity [6].
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e Subsumption in FLg w.r.t. acyclic TBoxes is co-NP-complete, where an acyclic
TBox is a standard TBox that does not contain concept definitions

Ao =Coyony Ay = Ciy
such that A; 11 mod & 18 used in C; for all i < k [27].

e Subsumption in F Ly w.r.t. (possibly cyclic) standard TBoxes is PSPACE-complete
1, 3, 21].

To complete the picture for FLy and to illustrate that the robust computational be-
havior of £L is rather surprising, in the following we prove that subsumption in FLg
w.r.t. general TBoxes is EXPTIME-complete. As containment in EXPTIME follows from
the fact that subsumption in ALC w.r.t. general TBoxes is in EXPTIME, it remains to
establish the lower bound.

The proof is by a reduction of subsumption in F Ef)f w.r.t. general TBoxes. As has
already been mentioned, this problem is ExpTIME-complete by results from [33]. Let
Ap and By be concept names and T a general F Ef)f TBox. For simplicity, we assume
that 7 is in normal form, i.e., it only contains concept definitions of the following forms:

A C B

A C Vr.B
AnA C B
vr.A C B

where A, A’, B, and B’ are concept names. It is not hard to verify that every general
F ng TBox can be converted into normal form in polynomial time by using normaliza-
tion rules similar to the one presented in Figure 1. Then we have the following:

Lemma 23. Ay Ty By in FLq iff Ag T By in FLY .

Proof. The “only if” direction is trivial: consider the contrapositive, i.e., Ag Z7 By in
F Eéf implies Ay L7 By in FLy. As every interpretation witnessing the former is also
a witness for the latter, there is nothing to be done.

Now for the (contrapositive of the) “if” direction. Assume that Ay Z7 By, i.e.,
there is an FLy model Z of 7 and an zg € Ag \ BOI. We show how to convert Z into
an F ng interpretation witnessing Ag Z7 By in F ng . Let Ry denote the set of role
names occurring in 7, and S the set of all sequences of role names from Ry, including
the empty sequence . For each S € S and = € AZ, we use S(x) to denote the set
{y € AT | (z,y) € ST}, where ST is defined in the obvious way using composition of
relations (and ¢Z(z) = {z}). Now we construct a F ,Cf]f interpretation J as follows:

¢ AT =38,
o AT =S| S%(w) C AT};

o r7:={(5,5) | S" = Sr} for all r € Ry;
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By definition of 7, we have that ¢ € Aoj \ B(‘)7 . It is readily checked that all role names
are interpreted as total functions. To show that Ay Z7 By, it thus remains to show
that J satisfies all concept inclusions in 7:

1. AC B. Let S € A7. Then S%(x5) C AT. Since 7 satisfies A = B, this yields
ST (z0) € BT and thus S € BY as required.

2. AN A’ C B. Similar to the previous case.

3. VA C B. Let S € (Vr.A)7. Then Sr € A7. Thus, Srf(zg) C AT implying
ST (o) C (Vr.A)L. Hence, ST(x¢) C BT since T satisfies Vr.A C B. Tt follows that
S € BY as required.

4. ACVr.B. Let S € A7. Then S%(zo) C A%, and, since T satisfies A C Vr.B, we
have SrZ(zg) C BE. It follows that Sr € BY implying S € (Vr.B)7 since Sr is
the only r-successor of S in [J.

]

We thus obtain the following theorem, improving a result from [13] which states that
subsumption in £L£ extended with value restrictions is EXPTIME-complete.

Theorem 24. Subsumption in FLy w.r.t. general TBoxes is EXPTIME-complete.

Thus, subsumption w.r.t. general TBoxes is polynomial in the fragment ££ of ALC,
but it is EXPTIME-complete in the equally harmless looking fragment FLy—and thus
just as hard as subsumption in full ALC. In parallel to our work, Theorem 24 was
independently proved by Martin Hofmann using a reduction of (the existence of winning
stratiegies in) pushdown games [16].

7 Conclusion

We believe that the results of this paper show that—in contrast to the negative con-
clusions drawn from early complexity results in the area—the quest for tractable DLs
that are expressive enough to be useful in practice can be successful. Our DL ££TF
is tractable even w.r.t. GCIs, and it offers many constructors that are important in
ontology applications.

References

[1] F. Baader. Terminological cycles in KL-ONE-based knowledge representation lan-
guages. In Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), pages 621-626, Boston, MA, USA, 1990.

[2] F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pages 446-451, Sydney, Australia,
1991.

29



3]

[4]

[13]

[14]

F. Baader. Using automata theory for characterizing the semantics of terminological
cycles. Annals of Mathematics and Artificial Intelligence, 18(2-4):175-219, 1996.

F. Baader. Terminological cycles in a description logic with existential restrictions.
In G. Gottlob and T. Walsh, editors, Proceedings of the 18th International Joint
Conference on Artificial Intelligence, pages 325-330. Morgan Kaufmann, 2003.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In T. Dean, editor, Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), pages
96-101. Morgan Kaufmann, 1999.

R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAT’8)), pages 34-37, 1984.

S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In R. L. de Mantdras and L. Saitta, edi-
tors, Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-
2004 ), pages 298-302. TOS Press, 2004.

D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Proceedings of the Twelfth European Conference on Artificial
Intelligence (ECAI-96), pages 303-307, 1996.

R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED In-
ternational, Northfield, IL: College of American Pathologists, 1993.

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the 2nd
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91),
pages 151-162. Morgan Kaufman, 1991.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18:194-211, 1979.

G. D. Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAT’9]). Volume 1, pages 205-212. AAAT
Press, 1994.

R. Givan, D. Kozen, D. McAllester, and C. Witty. Tarskian set constraints.
Manuscript, 1996. Abriged version published in: Proceedings of the 11** Annual
IEEE Symposium on Logic in Computer Science, 1996.

V. Haarslev and R. Moller. RACER system description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proceedings of the First International Joint Conference
on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical
Intelligence, pages 701-705. Springer-Verlag, 2001.

30



[15]

[16]

[17]

[19]

[20]

[21]

[26]

[27]

J. Hladik and U. Sattler. A translation of looping alternating automata to descrip-
tion logics. In Proc. of the 19th Conference on Automated Deduction (CADE-19),
volume 2741 of Lecture Notes in Artificial Intelligence. Springer Verlag, 2003.

M. Hofmann. Personal communication.

I. Horrocks. Using an expressive description logic: Fact or fiction? In Proceedings of
the Sixth International Conference on the Principles of Knowledge Representation
and Reasoning (KR98), pages 636-647, 1998.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7-26, 2003.

I. Horrocks and U. Sattler. Decidability of shiq with complex role inclusion axioms.
In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI-
2003), pages 343-348. Morgan-Kaufmann Publishers, 2003.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

Y. Kazakov and H. de Nivelle. Subsumption of concepts in FLg for (cyclic) ter-
minologies with respect to descriptive semantics is pspace-complete. In E. F.
Diego Calvanese, Giuseppe De Giacomo, editor, Proceedings of the Interna-
tional Workshop in Description Logics 2003 (DL2003), number 81 in CEUR-WS
(http://ceur-ws.org/), 2003.

C. Lutz. NExpTime-complete description logics with concrete domains. LTCS-
Report 00-01, LuFG Theoretical Computer Science, RWTH Aachen, Germany,
2000. See http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html.

C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG
Theoretical Computer Science, RWTH Aachen, Germany, 2002.

C. Lutz. Description logics with concrete domains—a survey. In F. W. Philippe Bal-
biani, Nobu-Yuki Suzuki and M. Zakharyaschev, editors, Advances in Modal Logics
Volume 4, pages 265-296. King’s College Publications, 2003.

C. Lutz and U. Sattler. Mary likes all cats. In F. Baader and U. Sattler, editors,
Proceedings of the 2000 International Workshop in Description Logics (DL2000),
number 33 in CEUR-WS (http://ceur-ws.org/), pages 213-226, 2000.

B. Nebel. Computational complexity of terminological reasoning in BACK. Arti-
ficial Intelligence, 34(3):371-383, 1988.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43:235-249, 1990.

31



28]

A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of
the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’'97),
Stanford, CA, 1997. AAAI Press.

K. D. Schild. A correspondence theory for terminological logics: Preliminary re-
port. In J. Mylopoulos and R. Reiter, editors, Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-91), pages 466-471.
Morgan Kaufmann, 1991.

K. Spackman. Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Association, 2000. Fall Symposium Special Issue.

K. Spackman, K. Campbell, and R. Cote. SNOMED RT: A reference terminology
for health care. pages 640-644, 1997. Fall Symposium Supplement.

The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25-29, 2000.

D. Toman and G. Weddell. On reasoning about structural equality in xml: A
description logic approach. Theoretical Computer Science. To appear, available
from http://db.uwaterloo.ca/~david/papers.html.

32



