Winter Term 2024/2025

TU Dresden, Fakultät Informatik Stephan Mennicke, Markus Krötzsch

Complexity Theory Exercise 8: Polynomial Hierarchy 7th January 2025

Exercise 8.1. Show that Cook-reducibility is transitive. In other words, show that if **A** is Cook-reducible to **B** and **B** is Cook-reducible to **C**, then **A** is Cook-reducible to **C**.

Exercise 8.2. Show that there exists an oracle C such that $NP^{C} \neq CONP^{C}$.

Hint:

What kind of Turing machines exist for languages in CONP? Use the answer to adapt the proof of the Baker-Gill-Solovay Theorem for CONP instead of P.

Exercise 8.3. Show $\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2 \mathsf{P}$.

Exercise 8.4. Show the following result: If there is any k such that $\Sigma_k^{\mathrm{P}} = \Sigma_{k+1}^{\mathrm{P}}$ then $\Sigma_j^{\mathrm{P}} = \Pi_j^{\mathrm{P}} = \Sigma_k^{\mathrm{P}}$ for all j > k, and therefore $\mathrm{PH} = \Sigma_k^{\mathrm{P}}$.

Exercise 8.5. Show that $PH \subseteq PSPACE$.

Exercise 8.6. Let A be a language and let F be a finite set with $A \cap F = \emptyset$. Show that $P^A = P^{A \cup F}$ and $NP^A = NP^{A \cup F}$.