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Introduction

Experiments are done with individual reasoners

°
@ Cognitive models use aggregated data

@ Aggregation relies on items having similar properties
°

Is human reasoning homogeneous or diverse?
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Conditional Reasoning

Conditional Modi

Aggregated View
Individual Data
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Conditional Reasoning Aggregated View

Individual Data

Models for Conditionals

Oaksford 2000 Dependence Model Independence Model

MP 1—e 1 b

MT ILpse 1-a 1-a
1

AC 2 (i-e) 2 a

DA 1-b-ae 1-b 1-b

Bayesian Rationality models for acceptance of conditionals with
a=P(p), b= P(q), e = P(—qlp)

Oaksford, Chater, Larkin (2000). Probabilities and polarity biases in conditional inference.

Oaksford, Chater (1994). A rational analysis of the selection task as optimal data selection.
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Conditional Reasoning

Aggregated View

Aggregate Model Predictions

Aggregate Model Predictions
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Conditional Reasoning ated View

Individual Data

Individual Patterns
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Conditional Reasoning

Joint Individual Patterns

Aggregated View
Individual Data
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Conditional Reasoning Aggregated View

Individual Data

Joint Pattern Prediction with Aggregate Model
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Conditional Reasoning

Aggregated View
Individual Data

Parameter Distribution on Individual Data

—— Independence-Model
| =/ Dependence-Model
—— Chater&Oaksford 2000

Probability Density Estimate [%]

Value of b
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Conditional Reasoning Aggregated View
55/ “

Individual Data

Summary

@ Is human reasoning homogeneous or diverse?
Answer: There is substantial diversity in conditional reasoning.

o Aggregation masks this diversity

@ What about other reasoning domains?
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Probability Heuristics Model

Syllogistic Reasoning Parameter Inference

What are Syllogisms?

Premise 1: Allaareb
Premise 2: Some b are c

What, if anything, follows?

Humans conclude: Some a are c.
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Probability Heuristics Model

Syllogistic Reasoning Parameter Inference

What are Syllogisms?

Premise 1: Allaareb
Premise 2: Some b are c

What, if anything, follows?

Humans conclude: Some a are c.
First-order logic: No Valid Conclusion
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Syllogisti .2 Probability Heuristics Model
yllogistic Reasoning Parameter Inference

The Probability Heuristics Model

The Probability Heuristics Model (PHM)
@ is a prominent probabilistic model
@ models human syllogistic reasoning

@ is based on 5 heuristics

Chater & Oaksford (2007). Bayesian rationality: The probabilistic approach to human reasoning.
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Probability Heuristics Model

llogistic R ing
Syllogistic Reasoning Parameter Inference

Min-Heuristic

Premise 1: Allaareb
Premise 2: Some b are c

What, if anything, follows?

The min-heuristic (G1): Choose the quantifier of the conclusion to
be the same as the quantifier in the least informative premise:
Some

I(All) > I/(Some) > I(No) > /(Some not)
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Probability Heuristics Model

llogistic R ing
Syllogistic Reasoning Parameter Inference

Entailment-Heuristic

Premise 1: Allaareb
Premise 2: Some b are c

What, if anything, follows?

Probabilistic entailments (G2): The next most preferred conclusion
will be the entailment of the conclusion predicted by the
min-heuristic: Some not

Ent(All) = Some, Ent(Some) = Some not
Ent(Some not) = Some, Ent(No) = Some not
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Probability Heuristics Model

llogistic R ing
Syllogistic Reasoning Parameter Inference

Attachment-Heuristic

Premise 1: Allaareb
Premise 2: Some b are ¢

What, if anything, follows?

Attachment-heuristic (G3): If just one of the possible conclusion
subject noun phrases matches the subject noun phrase of just one
premise, then the conclusion has that subject noun phrase: a-c
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Probability Heuristics Model

llogistic R ing
Syllogistic Reasoning Parameter Inference

Example Syllogism

’ G3: Attachment ‘

Premise 1: All a areb
yes no Premise 2: Some b are c

’Gl: Min—Heuristic‘ @ What, if anything, follows?
G3: Accept a-c

; G1: Accept 'Some a are ¢’ with
@ ’GZ: Enta||ment‘ orobability pa

G2: Accept 'Some a are not ¢’

@ @ with probability pent

@ pa, pi, PE, Po are fitted according to test heuristics T1 and T2.
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Probability Heuristics Model

Syllogistic Reasoning Parameter Inference

Inference Methods

Approaches for aggregated data Data,:

e Frequentist fits: minimize error between model estimates

yj’""d and experimental data Datanp’a:
— 1 576 (. mod exp,a\2
RMSE = \/ﬁ 3976 (ymod — Data®??)

e Bayesian Parameter estimate:
P(©|Data,) < P(Data,|©) - P(©)
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T .2 Probability Heuristics Model
Syllogistic Reasoning Parameter Inference

Aggregated Parameter Instability
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Probability Heuristics Model

Syllogistic Reasoning Parameter Inference

Aggregate vs no Pooling

e Data aggregation, complete pooling:
P(©|Data,) o P(3Y, Data;|@) - P(©)

e No pooling:
P(©|Data,) o« S_N | P(Data;|®) - P(©)
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Probability Heuristics Model

Syllogistic Reasoning Parameter Inference

No Pooling vs Point Estimates
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6Chater & Oaksford (1999). The probability heuristics model of syllogistic reasoning

Hattori (2016). Probabilistic representation in syllogistic reasoning
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Predictive Modeling

Summary

e Conditional and syllogistic reasoning is diverse in humans
o Aggregated modeling has limitations

o Estimated parameters may vary across experiments
e Parameters vary across participants

@ Individual response pattern prediction is somewhat inaccurate
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Predictive Modeling

Summary

Conditional and syllogistic reasoning is diverse in humans

Aggregated modeling has limitations

o Estimated parameters may vary across experiments
e Parameters vary across participants

Individual response pattern prediction is somewhat inaccurate

How well do aggregate models predict individual reasoners?

How precisely can we predict behavior in principle?

o Is diversity in reasoning information, or is it just noise?
o What are good predictive baselines?
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Predictive Modeling

Predictive Information Content
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@ The majority syllogistic answer (green) predicts individual answers
@ Uniform guessing is substantially worse

@ Can we do better than that?
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Predictive Modeling

Predictive Information Content

Precision
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@ Collaborative Filtering (red) is more accurate than the majority
@ CF uses individual information and is domain-agnostic
@ Useful information is lost when aggregating data
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Predictive Modeling

Individual Modelling Evaluation

e It is hard to compare different models

e Single answer vs. multiple answers
o Probabilities vs Ranked answers vs. unranked answers
o 'Interpretable’ models vs. 'Blackboxes’

@ But we can rate their performance in a prediction task

e Fit the model on known training data
o Let it predict test data is has not seen
e Rate the model performance on the test data

@ Metrics for aggregated data (RMSE) mask diversity

@ Which metrics can we use?
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Predictive Modeling

Proper scoring rule

Expected Logarithmic Score

0 0z 04 06 08
Probability Assigned to Event 1

@ A scoring rule assigns a number to a prediction

@ A proper scoring rule gives maximum score to true probability

@ Properness incentivizes ‘honesty’

@ Improperness is unsafe for optimization (‘gaming the metric’)

en.wikipedia.org/wiki/Scoring_rule 25/32


en.wikipedia.org/wiki/Scoring_rule

Predictive Modeling

Logarithmic scoring rule

The logarithmic score
@ is a proper scoring rule
@ takes model probabilities p; of the participant answer

Some models do not output probabilities!
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Predictive Modeling

Precision@1

t
c=—"
tp+ fp

with:
@ true positive model predictions tp

o false positives model predictions fp

For example:
@ The actual participant answer is Aac

@ The model prediction is

e Aac: PRC =1
o {Aac, Ica}: PRC =}
o {Oca, Eca}: PRC =0
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Predictive Modeling

Precision@1 Properties

tp

PRC =
tp+ fp

Precision@1
+ is very simple
+ naturally handles incomplete models
+ does not require probabilistic predictions
- destroys the information in ranking or probabilities

- is not a proper scoring rule
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Predictive Modeling

Mean Reciprocal Rank (MMR)

1 1
MRR, = —
P 64 Z rank,

acans(p)
with:
e the answer ans(p) € {Aac, Aca, ...} given by participant p

@ the rank of the model response rank, € [1,9]

For example:

@ Model prediction: Aac > lIca > Other

@ Actual participant answer:
e Aac: MRR=1
e lac: MRR =
e Oca: MRR =

1
2

1 _
(3+4+5+6+7+8+9)/7 — 0.17
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Predictive Modeling

Mean Reciprocal Rank (MMR) Properties

1 1
MRR, = —
P 64 Z rank,
acans(p)

The Mean Reciprocal Rank (MMR)
+ is sensitive to ranking while not requiring probabilities
-+ can handle incomplete model output or missing ranks
@ needs a tie-handling rule, e.g. ‘use the average rank’

- is not a proper scoring rule for simple tie-handling
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Predictive Modeling
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Predictive Modeling

Summary

Results:
@ Human reasoning is diverse
@ Current models fail to capture this diversity

@ Individual reasoning can be predicted more precisely

Open problems:

@ What is a good metric for individual prediction?
@ How can cognitive theories account for individual reasoning?

o We need models adapted to individual data.
e Can we beat Collaborative Filtering (CF)?
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