

Inhomogeneity in Reasoning: A Challenge for Cognitive Modeling

Lukas Elflein, Daniel Brand, Nicolas Riesterer, Marco Ragni

Human Reasoning Workshop Dresden

April 10, 2018

Introduction

- Experiments are done with individual reasoners
- Cognitive models use aggregated data
- Aggregation relies on items having similar properties
- Is human reasoning homogeneous or diverse?

Conditional Modi

Acceptance rate of Conditionals

MP: .56 - .96

$$\frac{p \rightarrow q, p}{\therefore q}$$

AC: .32 - .60

$$\frac{p \rightarrow q, q}{\therefore p}$$

MT: .35 - .65

$$\frac{p \rightarrow q, \neg q}{\therefore \neg p}$$

DA: .25 - .60

$$\frac{p \rightarrow q, \neg p}{\therefore \neg q}$$

Models for Conditionals

	Oaksford 2000	Dependence Model	Independence Model
MP	$1 - e$	1	b
MT	$\frac{1-b-a}{1-b} \cdot e$	$1 - a$	$1 - a$
AC	$\frac{a(1-e)}{b}$	$\frac{a}{b}$	a
DA	$\frac{1-b-a \cdot e}{1-a}$	$1 - b$	$1 - b$

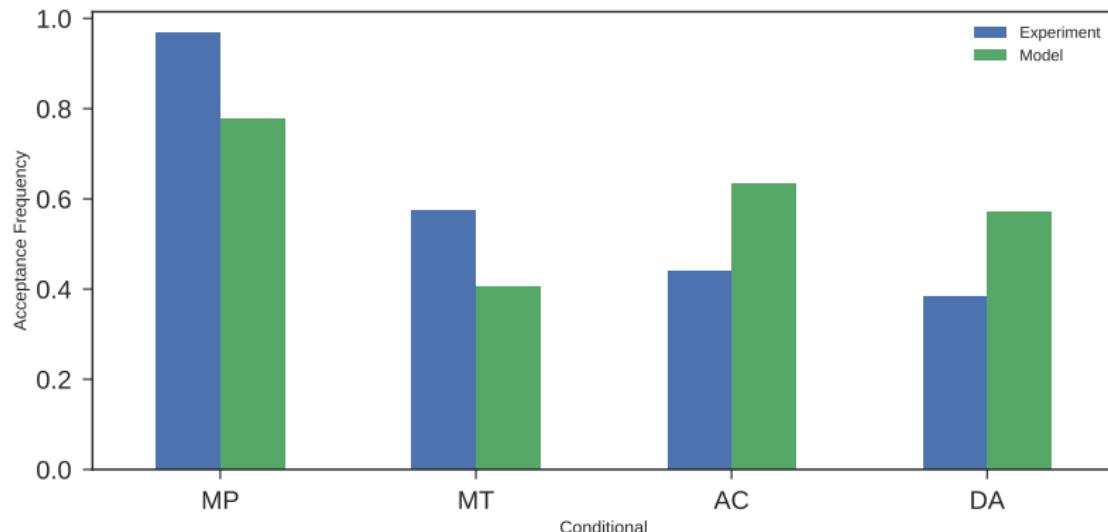
Bayesian Rationality models for acceptance of conditionals with
 $a = P(p)$, $b = P(q)$, $e = P(\neg q|p)$

Oaksford, Chater, Larkin (2000). Probabilities and polarity biases in conditional inference.

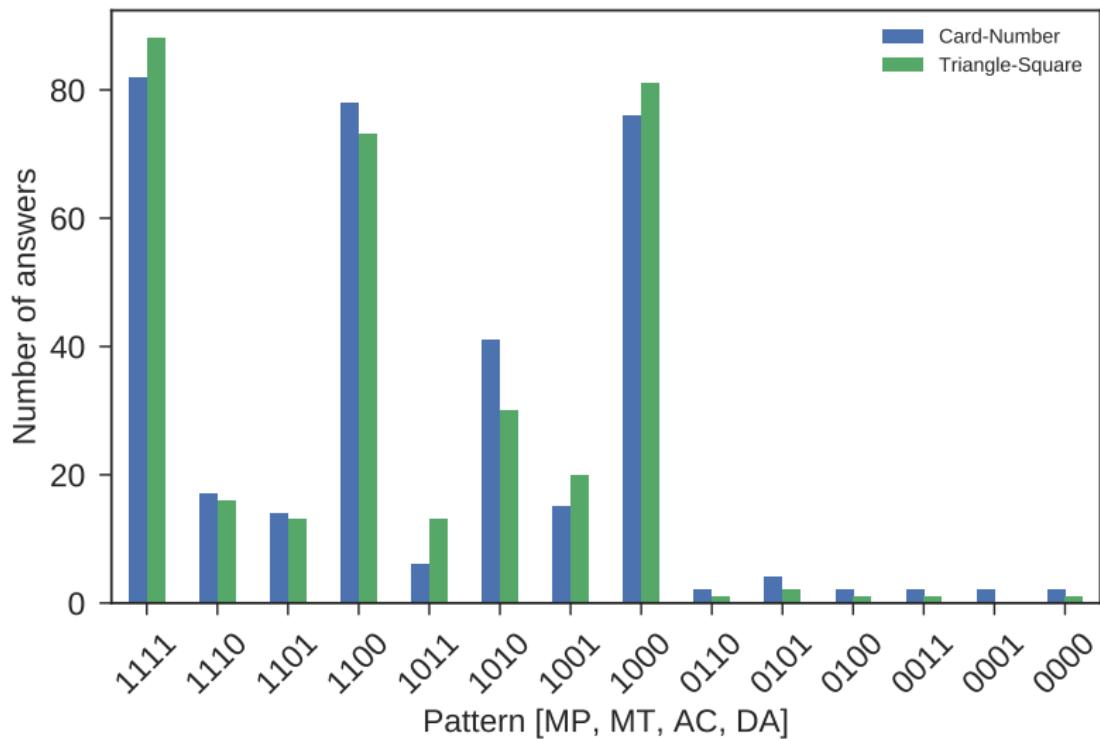
Oaksford, Chater (1994). A rational analysis of the selection task as optimal data selection.

Aggregate Model Predictions

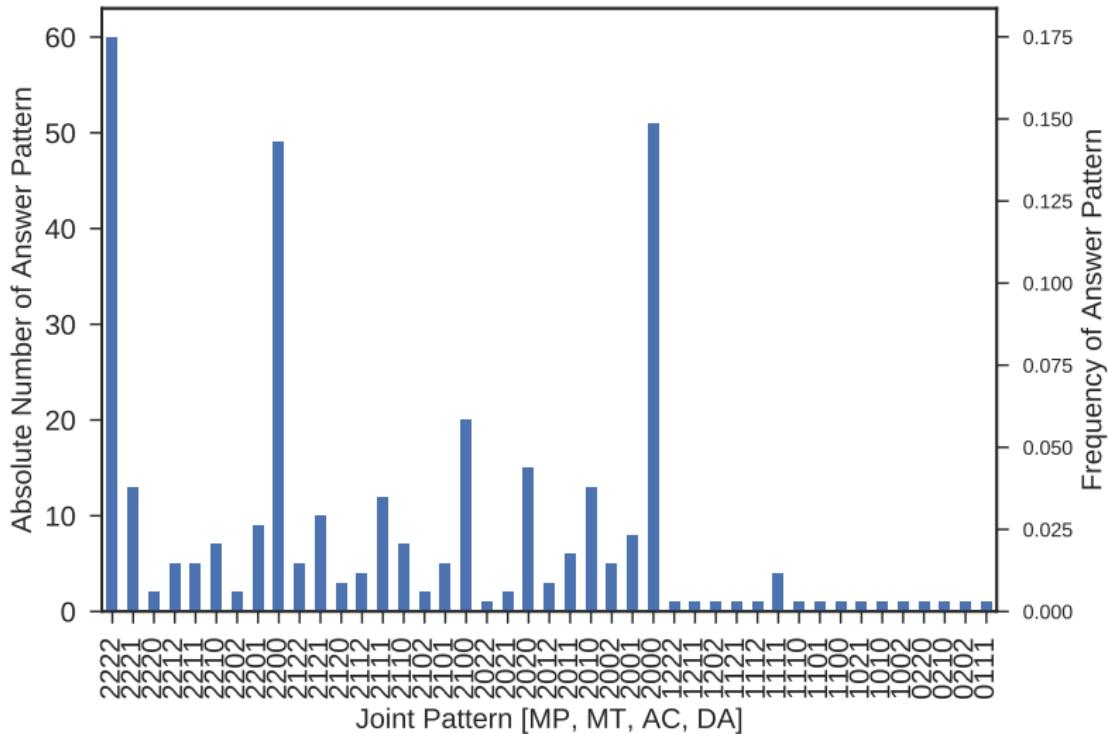
Aggregate Model Predictions



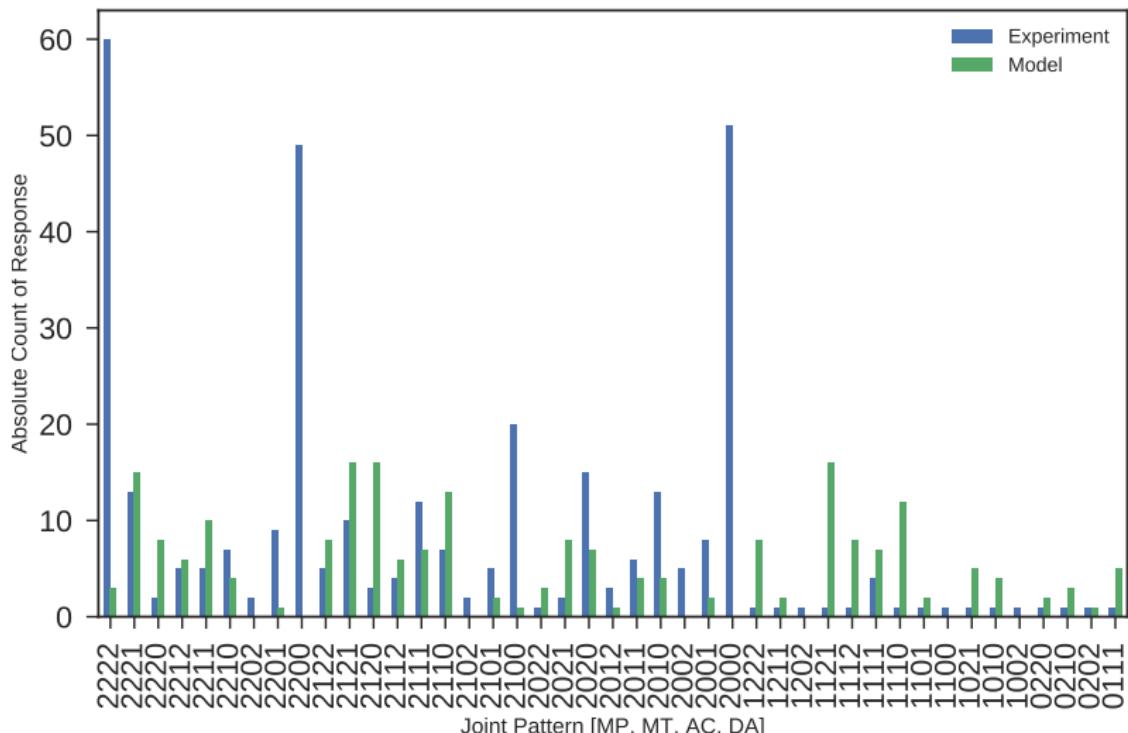
Individual Patterns



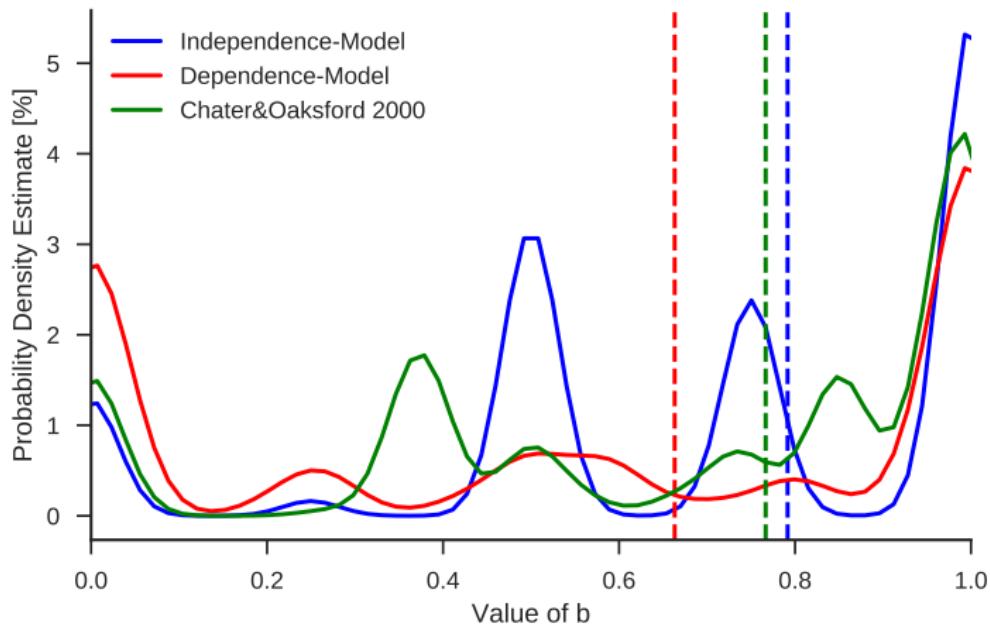
Joint Individual Patterns



Joint Pattern Prediction with Aggregate Model



Parameter Distribution on Individual Data



Summary

- Is human reasoning homogeneous or diverse?
Answer: There is substantial diversity in conditional reasoning.
- Aggregation masks this diversity
- What about other reasoning domains?

What are Syllogisms?

Premise 1: All a are b

Premise 2: Some b are c

What, if anything, follows?

Humans conclude: Some a are c.

What are Syllogisms?

Premise 1: All a are b

Premise 2: Some b are c

What, if anything, follows?

Humans conclude: Some a are c.

First-order logic: No Valid Conclusion

The Probability Heuristics Model

The Probability Heuristics Model (PHM)

- is a prominent probabilistic model
- models human syllogistic reasoning
- is based on 5 heuristics

Min-Heuristic

Premise 1: All a are b

Premise 2: **Some** b are c

What, if anything, follows?

The min-heuristic (G1): Choose the quantifier of the conclusion to be the same as the quantifier in the least informative premise:

Some

$$I(\text{All}) > I(\text{Some}) > I(\text{No}) > I(\text{Some not})$$

Entailment-Heuristic

Premise 1: All a are b

Premise 2: **Some** b are c

What, if anything, follows?

Probabilistic entailments (G2): The next most preferred conclusion will be the entailment of the conclusion predicted by the min-heuristic: **Some not**

$$Ent(\text{All}) = \text{Some}, \quad Ent(\text{Some}) = \text{Some not}$$

$$Ent(\text{Some not}) = \text{Some}, \quad Ent(\text{No}) = \text{Some not}$$

Attachment-Heuristic

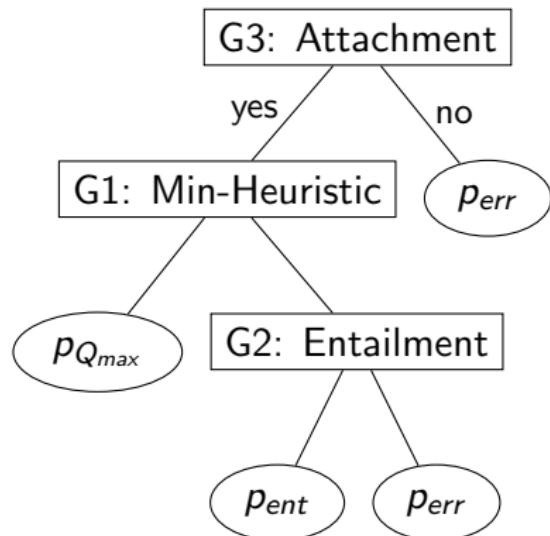
Premise 1: All **a** are **b**

Premise 2: Some **b** are **c**

What, if anything, follows?

Attachment-heuristic (G3): If just one of the possible conclusion subject noun phrases matches the subject noun phrase of just one premise, then the conclusion has that subject noun phrase: **a-c**

Example Syllogism



Premise 1: All a are b

Premise 2: Some b are c

What, if anything, follows?

G3: Accept a-c

G1: Accept 'Some a are c' with probability p_A

G2: Accept 'Some a are not c' with probability p_{ent}

- p_A, p_I, p_E, p_O are fitted according to test heuristics T1 and T2.

Inference Methods

Approaches for aggregated data $Data_a$:

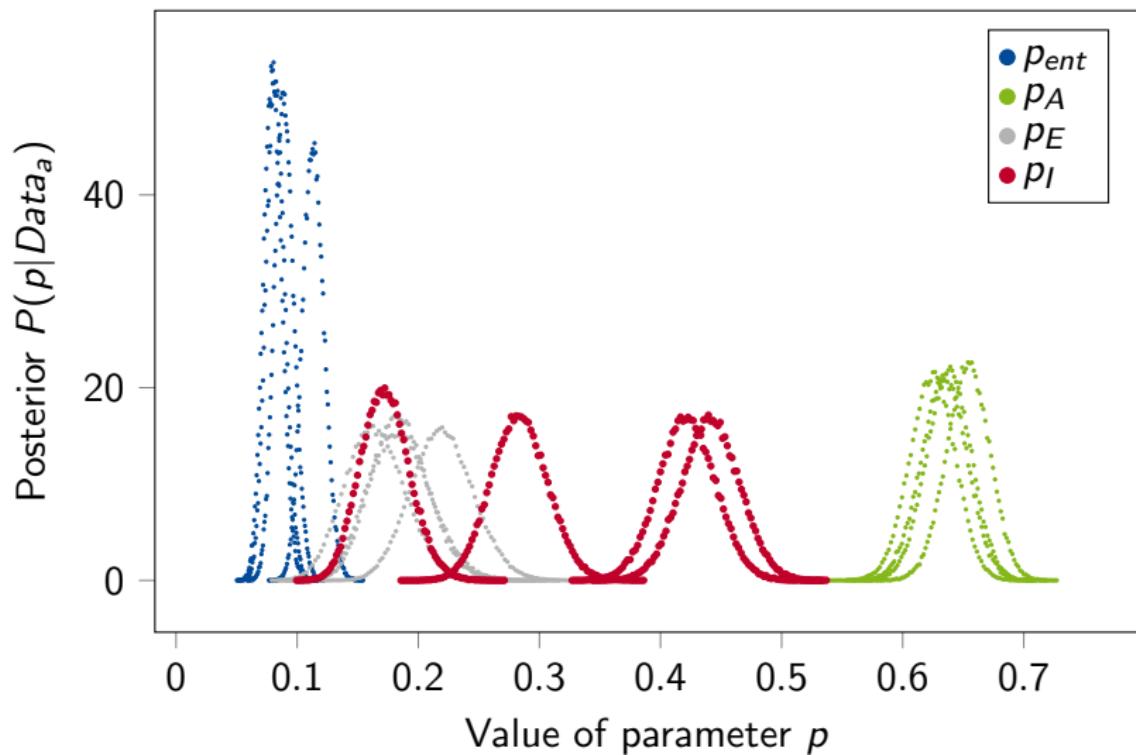
- Frequentist fits: minimize error between model estimates y_j^{mod} and experimental data $Data_j^{exp,a}$:

$$RMSE = \sqrt{\frac{1}{576} \sum_{j=1}^{576} (y_j^{mod} - Data_j^{exp,a})^2}$$

- Bayesian Parameter estimate:

$$P(\Theta|Data_a) \propto P(Data_a|\Theta) \cdot P(\Theta)$$

Aggregated Parameter Instability



Aggregate vs no Pooling

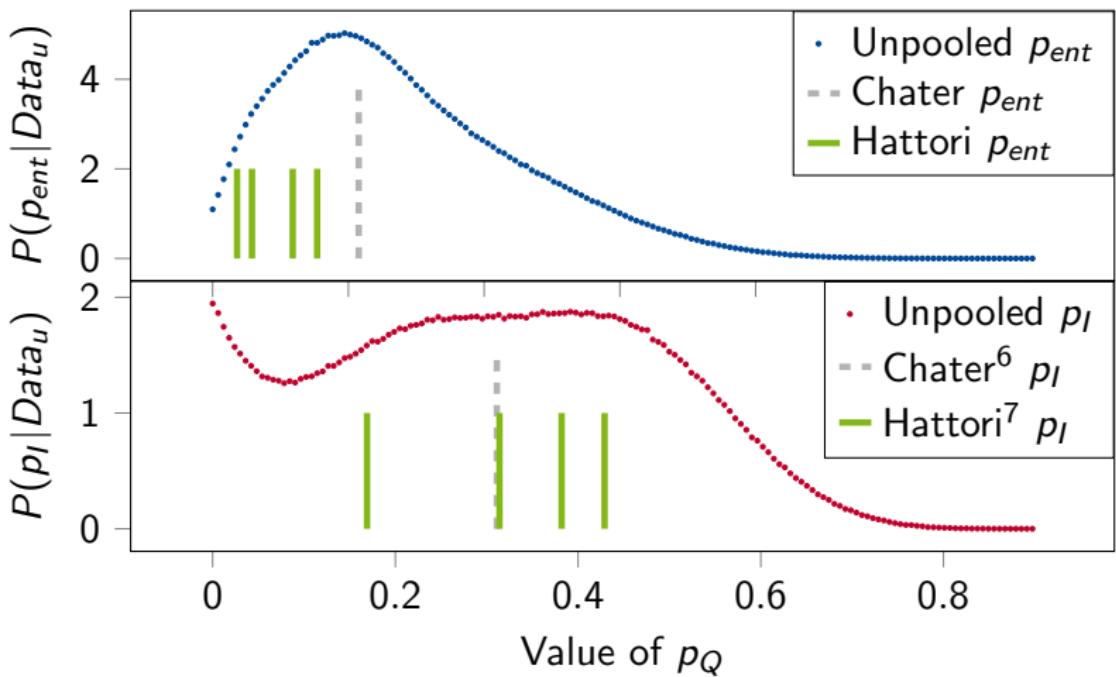
- Data aggregation, complete pooling:

$$P(\Theta|Data_a) \propto P\left(\sum_{i=1}^N Data_i|\Theta\right) \cdot P(\Theta)$$

- No pooling:

$$P(\Theta|Data_u) \propto \sum_{i=1}^N P(Data_i|\Theta) \cdot P(\Theta)$$

No Pooling vs Point Estimates



⁶ Chater & Oaksford (1999). The probability heuristics model of syllogistic reasoning

⁷ Hattori (2016). Probabilistic representation in syllogistic reasoning

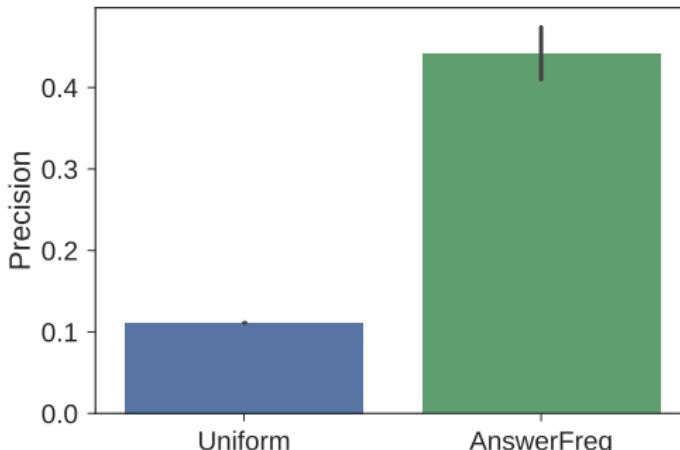
Summary

- Conditional and syllogistic reasoning is diverse in humans
- Aggregated modeling has limitations
 - Estimated parameters may vary across experiments
 - Parameters vary across participants
- Individual response pattern prediction is somewhat inaccurate

Summary

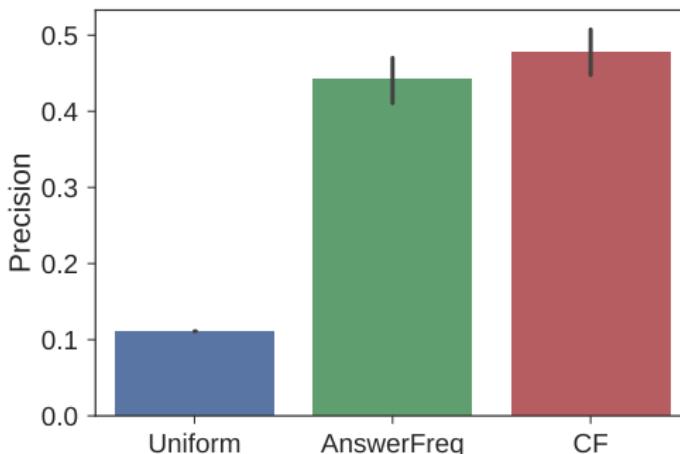
- Conditional and syllogistic reasoning is diverse in humans
- Aggregated modeling has limitations
 - Estimated parameters may vary across experiments
 - Parameters vary across participants
- Individual response pattern prediction is somewhat inaccurate
- How well do aggregate models predict individual reasoners?
- How precisely can we predict behavior in principle?
 - Is diversity in reasoning information, or is it just noise?
 - What are good predictive baselines?

Predictive Information Content



- The majority syllogistic answer (green) predicts individual answers
- Uniform guessing is substantially worse
- Can we do better than that?

Predictive Information Content

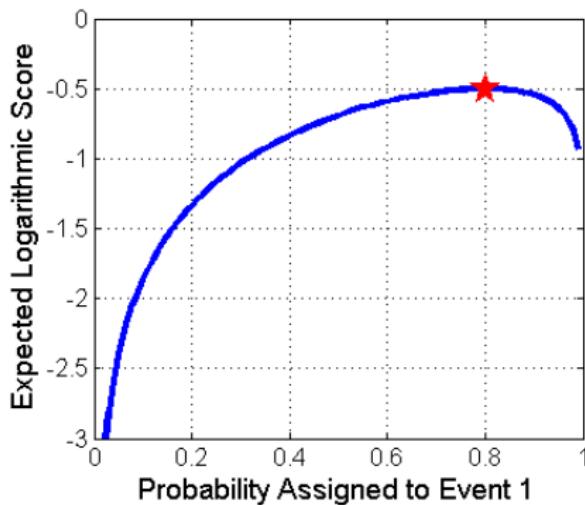


- Collaborative Filtering (red) is more accurate than the majority
- CF uses **individual information** and is **domain-agnostic**
- Useful information is lost when aggregating data

Individual Modelling Evaluation

- It is **hard to compare** different models
 - Single answer vs. multiple answers
 - Probabilities vs Ranked answers vs. unranked answers
 - 'Interpretable' models vs. 'Blackboxes'
- But we can rate their performance in a prediction task
 - Fit the model on known **training data**
 - Let it predict **test data** it has not seen
 - Rate the model performance on the test data
- Metrics for aggregated data (RMSE) mask diversity
- Which **metrics** can we use?

Proper scoring rule



- A scoring rule assigns a number to a prediction
- A proper scoring rule gives maximum score to true probability
- Properness incentivizes 'honesty'
- Improperness is unsafe for optimization ('gaming the metric')

Logarithmic scoring rule

$$Q = \frac{1}{64} \sum_{i=1}^{64} \ln(p_i)$$

The logarithmic score

- is a proper scoring rule
- takes model probabilities p_i of the participant answer

Some models do not output probabilities!

Precision@1

$$PRC = \frac{tp}{tp + fp}$$

with:

- true positive model predictions tp
- false positives model predictions fp

For example:

- The actual participant answer is **Aac**
- The model prediction is
 - **Aac**: $PRC = 1$
 - **{Aac, Ica}**: $PRC = \frac{1}{2}$
 - **{Oca, Eca}**: $PRC = 0$

Precision@1 Properties

$$PRC = \frac{tp}{tp + fp}$$

Precision@1

- + is very simple
- + naturally handles incomplete models
- + does not require probabilistic predictions
- destroys the information in ranking or probabilities
- is not a proper scoring rule

Mean Reciprocal Rank (MMR)

$$MRR_p = \frac{1}{64} \sum_{a \in ans(p)} \frac{1}{rank_a}$$

with:

- the answer $ans(p) \in \{Aac, Aca, \dots\}$ given by participant p
- the rank of the model response $rank_a \in [1, 9]$

For example:

- Model prediction: **Aac** > **Ica** > Other
- Actual participant answer:
 - Aac**: $MRR = 1$
 - Iac**: $MRR = \frac{1}{2}$
 - Oca**: $MRR = \frac{1}{(3+4+5+6+7+8+9)/7} = 0.17$

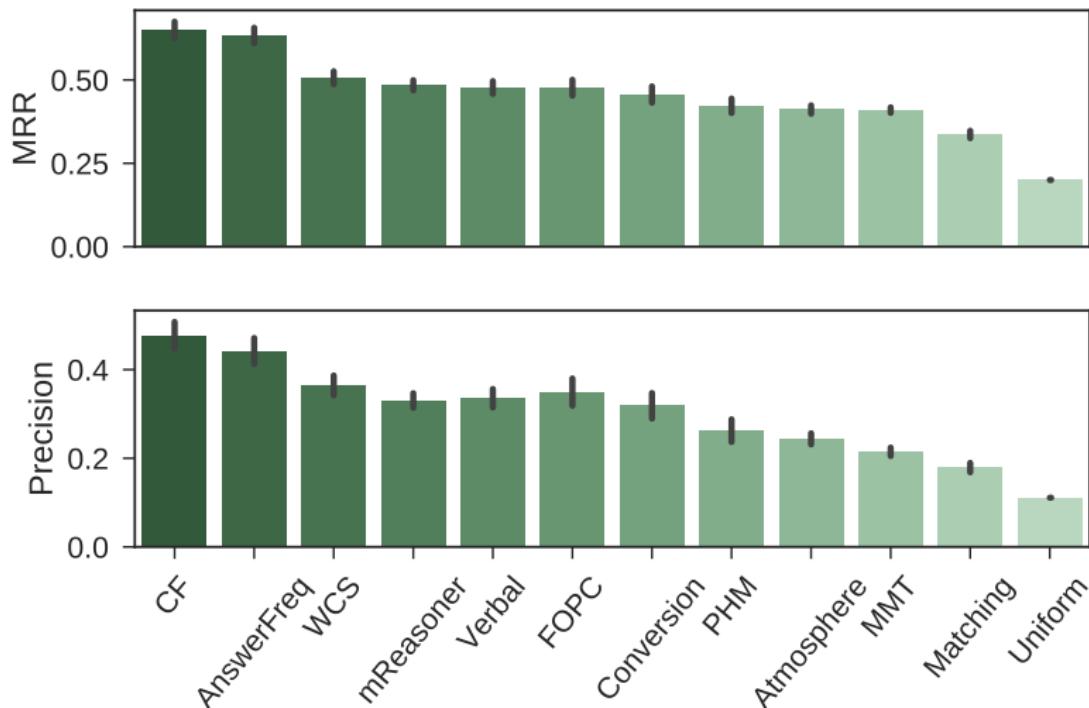
Mean Reciprocal Rank (MMR) Properties

$$MRR_p = \frac{1}{64} \sum_{a \in ans(p)} \frac{1}{rank_a}$$

The Mean Reciprocal Rank (MMR)

- + is sensitive to ranking while not requiring probabilities
- + can handle incomplete model output or missing ranks
- needs a tie-handling rule, e.g. 'use the average rank'
- is not a proper scoring rule for simple tie-handling

Predictive Performance of Models



Summary

Results:

- Human reasoning is **diverse**
- Current models fail to capture this diversity
- Individual reasoning can be **predicted** more precisely

Open problems:

- What is a good metric for individual prediction?
- How can **cognitive theories** account for individual reasoning?
 - We need models **adapted to individual data**.
 - Can we beat Collaborative Filtering (CF)?