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Introduction

Experiments are done with individual reasoners

Cognitive models use aggregated data

Aggregation relies on items having similar properties

Is human reasoning homogeneous or diverse?
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Aggregated View
Individual Data

Conditional Modi

Acceptance rate of Conditionals

MP: .56 - .96
p→q, p
∴ q

MT: .35 - .65
p→q,¬q
∴ ¬p

AC: .32 - .60
p→q, q
∴ p

DA: .25 - .60
p→q,¬p
∴ ¬q
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Aggregated View
Individual Data

Models for Conditionals

Oaksford 2000 Dependence Model Independence Model

MP 1− e 1 b

MT 1−b−a e
1−b 1− a 1− a

AC a (1−e)
b

a
b a

DA 1−b−a·e
1−a 1− b 1− b

Bayesian Rationality models for acceptance of conditionals with
a = P(p), b = P(q), e = P(¬q|p)

Oaksford, Chater, Larkin (2000). Probabilities and polarity biases in conditional inference.

Oaksford, Chater (1994). A rational analysis of the selection task as optimal data selection.
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Aggregated View
Individual Data

Aggregate Model Predictions

Aggregate Model Predictions

MP MT AC DA
Conditional
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Aggregated View
Individual Data

Individual Patterns
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Aggregated View
Individual Data

Joint Individual Patterns
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Individual Data

Joint Pattern Prediction with Aggregate Model
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Aggregated View
Individual Data

Parameter Distribution on Individual Data
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Aggregated View
Individual Data

Summary

Is human reasoning homogeneous or diverse?
Answer: There is substantial diversity in conditional reasoning.

Aggregation masks this diversity

What about other reasoning domains?
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Probability Heuristics Model
Parameter Inference

What are Syllogisms?

Premise 1: All a are b
Premise 2: Some b are c

What, if anything, follows?

Humans conclude: Some a are c.

First-order logic: No Valid Conclusion
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Probability Heuristics Model
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The Probability Heuristics Model

The Probability Heuristics Model (PHM)

is a prominent probabilistic model

models human syllogistic reasoning

is based on 5 heuristics

Chater & Oaksford (2007). Bayesian rationality: The probabilistic approach to human reasoning.
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Probability Heuristics Model
Parameter Inference

Min-Heuristic

Premise 1: All a are b
Premise 2: Some b are c

What, if anything, follows?

The min-heuristic (G1): Choose the quantifier of the conclusion to
be the same as the quantifier in the least informative premise:
Some

I (All) > I (Some) > I (No) > I (Some not)
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Probability Heuristics Model
Parameter Inference

Entailment-Heuristic

Premise 1: All a are b
Premise 2: Some b are c

What, if anything, follows?

Probabilistic entailments (G2): The next most preferred conclusion
will be the entailment of the conclusion predicted by the
min-heuristic: Some not

Ent(All) = Some, Ent(Some) = Some not

Ent(Some not) = Some, Ent(No) = Some not
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Probability Heuristics Model
Parameter Inference

Attachment-Heuristic

Premise 1: All a are b
Premise 2: Some b are c

What, if anything, follows?

Attachment-heuristic (G3): If just one of the possible conclusion
subject noun phrases matches the subject noun phrase of just one
premise, then the conclusion has that subject noun phrase: a-c
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Example Syllogism

G3: Attachment

G1: Min-Heuristic

pQmax G2: Entailment

pent perr

perr

yes no
Premise 1: All a are b
Premise 2: Some b are c

What, if anything, follows?

G3: Accept a-c

G1: Accept ’Some a are c’ with
probability pA

G2: Accept ’Some a are not c’
with probability pent

pA, pI , pE , pO are fitted according to test heuristics T1 and T2.
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Probability Heuristics Model
Parameter Inference

Inference Methods

Approaches for aggregated data Dataa:

• Frequentist fits: minimize error between model estimates
ymod
j and experimental data Dataexp,aj :

RMSE =
√

1
576

∑576
j=1(ymod

j − Dataexp,aj )2

• Bayesian Parameter estimate:
P(Θ|Dataa) ∝ P(Dataa|Θ) · P(Θ)
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Probability Heuristics Model
Parameter Inference

Aggregated Parameter Instability
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Probability Heuristics Model
Parameter Inference

Aggregate vs no Pooling

• Data aggregation, complete pooling:
P(Θ|Dataa) ∝ P(

∑N
i=1Datai |Θ) · P(Θ)

• No pooling:
P(Θ|Datau) ∝

∑N
i=1 P(Datai |Θ) · P(Θ)
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No Pooling vs Point Estimates
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Chater & Oaksford (1999). The probability heuristics model of syllogistic reasoning

7
Hattori (2016). Probabilistic representation in syllogistic reasoning
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Summary

Conditional and syllogistic reasoning is diverse in humans

Aggregated modeling has limitations

Estimated parameters may vary across experiments
Parameters vary across participants

Individual response pattern prediction is somewhat inaccurate

How well do aggregate models predict individual reasoners?

How precisely can we predict behavior in principle?

Is diversity in reasoning information, or is it just noise?
What are good predictive baselines?
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Predictive Information Content

Uniform AnswerFreq
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The majority syllogistic answer (green) predicts individual answers

Uniform guessing is substantially worse

Can we do better than that?
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Predictive Information Content

Uniform AnswerFreq CF
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Collaborative Filtering (red) is more accurate than the majority

CF uses individual information and is domain-agnostic

Useful information is lost when aggregating data
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Individual Modelling Evaluation

It is hard to compare different models

Single answer vs. multiple answers
Probabilities vs Ranked answers vs. unranked answers
’Interpretable’ models vs. ’Blackboxes’

But we can rate their performance in a prediction task

Fit the model on known training data
Let it predict test data is has not seen
Rate the model performance on the test data

Metrics for aggregated data (RMSE) mask diversity

Which metrics can we use?
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Proper scoring rule

A scoring rule assigns a number to a prediction
A proper scoring rule gives maximum score to true probability
Properness incentivizes ‘honesty’
Improperness is unsafe for optimization (‘gaming the metric’)

en.wikipedia.org/wiki/Scoring_rule 25 / 32
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Logarithmic scoring rule

Q =
1

64

64∑
i=1

ln(pi )

The logarithmic score

is a proper scoring rule

takes model probabilities pi of the participant answer

Some models do not output probabilities!
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Precision@1

PRC =
tp

tp + fp

with:

true positive model predictions tp

false positives model predictions fp

For example:

The actual participant answer is Aac

The model prediction is

Aac: PRC = 1
{Aac, Ica}: PRC = 1

2
{Oca, Eca}: PRC = 0
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Precision@1 Properties

PRC =
tp

tp + fp

Precision@1

+ is very simple

+ naturally handles incomplete models

+ does not require probabilistic predictions

- destroys the information in ranking or probabilities

- is not a proper scoring rule
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Mean Reciprocal Rank (MMR)

MRRp =
1

64

∑
a∈ans(p)

1

ranka

with:

the answer ans(p) ∈ {Aac,Aca, . . .} given by participant p

the rank of the model response ranka ∈ [1, 9]

For example:

Model prediction: Aac > Ica > Other

Actual participant answer:

Aac: MRR = 1
Iac: MRR = 1

2
Oca: MRR = 1

(3+4+5+6+7+8+9)/7 = 0.17
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Mean Reciprocal Rank (MMR) Properties

MRRp =
1

64

∑
a∈ans(p)

1

ranka

The Mean Reciprocal Rank (MMR)

+ is sensitive to ranking while not requiring probabilities

+ can handle incomplete model output or missing ranks

needs a tie-handling rule, e.g. ‘use the average rank’

- is not a proper scoring rule for simple tie-handling

30 / 32



Conditional Reasoning
Syllogistic Reasoning
Predictive Modeling

Predictive Performance of Models
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Summary

Results:

Human reasoning is diverse

Current models fail to capture this diversity

Individual reasoning can be predicted more precisely

Open problems:

What is a good metric for individual prediction?

How can cognitive theories account for individual reasoning?

We need models adapted to individual data.
Can we beat Collaborative Filtering (CF)?
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