Description Logics - Syntax and Semantics I

Lecture 4, 30th Oct 2023 // Foundations of Knowledge Representation, WS 2023/24

Motivation

Motivation

Many KR applications do not require full power of FOL
What can we leave out?

- Key reasoning problems should become decidable
- Sufficient expressive power to model application domain

Description Logics are a family of FOL fragments that meet these requirements for many applications:

- Underlying formalisms of modern ontology languages
- Widely used in bio-medical information systems
- Core component of the Semantic Web

Motivation

Recall our arthritis example:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- A person is either a child, a teenager, or an adult
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Every kind of arthritis damages some joint

The important types of objects are given by unary FOL predicates: juvenile disease, child, teenager, adult, ...
The types of relationships are given by binary FOL predicates: affects, damages, ...

Motivation

The vocabulary of a Description Logic is composed of

- Unary FOL predicates

Arthritis, Child, ...

- Binary FOL predicates

Affects, Damages, ...

- FOL constants

JohnSmith, MaryJones, JRA, ...
We are already restricting the expressive power of FOL

- No function symbols (of positive arity)
- No predicates of arity greater than 2

Motivation

Let us take a closer look at the FOL formulas for our example:

$$
\begin{array}{r}
\forall x .(J u v \operatorname{Dis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \text { Child }(y) \vee \text { Teen }(y))) \\
\forall x .(\operatorname{Child}(x) \vee \text { Teen }(x) \rightarrow \neg \operatorname{Adult}(x)) \\
\forall x .(\operatorname{Person}(x) \rightarrow \operatorname{Child}(x) \vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \\
\forall x .(J u v \operatorname{Arthritis}(x) \rightarrow \operatorname{Arthritis}(x) \wedge J \text { JuvDis }(x)) \\
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \text { Joint }(y)))
\end{array}
$$

We can find several regularities in these formulas:

- There is an outermost universal quantifier on a single variable x
- The formulas can be split into two parts by the implication symbol

Each part is a formula with one free variable

- Atomic formulas involving a binary predicate occur only quantified in a syntactically restricted way.

Complexity

Motivation

Consider as an example one of our formulas:

$$
\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x))
$$

Let us look at all its sub-formulas at each side of the implication
Child $(x) \quad$ Set of all children
$\operatorname{Teen}(x) \quad$ Set of all teenagers
Child $(x) \vee \operatorname{Teen}(x) \quad$ Set of all objects that are children or teenagers
Adult $(x) \quad$ Set of all adults
\neg Adult $(x) \quad$ Set of all objects that are not adults
Important observations concerning formulas with one free variable:

- Some are atomic (e.g., Child(x))
do not contain other formulas as subformulas
- Others are complex (e.g., Child $(x) \vee$ Teen (x))

Basic Definitions

Idea: Define operators for constructing complex formulas with one free variable out of simple building blocks

Atomic Concept: Represents an atomic formula with one free variable

$$
\text { Child } \rightsquigarrow \text { Child }(x)
$$

Complex concepts (part 1):

- Concept Union (ப): applies to two concepts

$$
\text { Child } \sqcup \text { Teen } \rightsquigarrow C h i l d(x) \vee \operatorname{Teen}(x)
$$

- Concept Intersection (п): applies to two concepts

$$
\text { Arthritis } \sqcap \text { JuvDis } \rightsquigarrow \operatorname{Arthritis~}(x) \wedge J u v \operatorname{Dis}(x)
$$

- Concept Negation (\neg): applies to one concept

$$
\neg \text { Adult } \rightsquigarrow \quad \neg \text { Adult }(x)
$$

Motivation

Consider examples with binary predicates:

$$
\begin{array}{r}
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \text { Joint }(y)) \\
\forall x .(J \operatorname{JuvDis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee \text { Teen }(y)))
\end{array}
$$

- We have a concept and a binary predicate (called a role) mentioning the concept's free variable
- The role and the concept are connected via conjunction (existential quantification) or implication (universal quantification)
- Nested sub-concepts use a fresh (existentially/universally quantified) variable, and are connected to the surrounding concept by exactly one role atom (often called a guard)

Basic Definitions

Atomic Role: Represents an atom with two free variables

$$
\text { Affects } \rightsquigarrow \operatorname{Affects}(x, y)
$$

Complex concepts (part 2): apply to an atomic role and a concept

- Existential Restriction:

$$
\exists \text { Damages.Joint } \rightsquigarrow \exists y .(D a m a g e s(x, y) \wedge \text { Joint }(y))
$$

- Universal Restriction:

$$
\forall \text { Affects.(Child } \sqcup \text { Teen }) \rightsquigarrow \quad \forall y .(A f f e c t s ~(x, y) \rightarrow \text { Child }(y) \vee \text { Teen }(y))
$$

ALC Concepts

$\mathcal{A L E}$ is the basic description logic
$\mathcal{A L C}$ concepts are inductively defined from atomic concepts and roles:

- Every atomic concept is a concept
- T and \perp are concepts
- If C is a concept, then $\neg C$ is a concept
- If C and D are concepts, then so are $C \sqcap D$ and $C \sqcup D$
- If C a concept and R a role, $\forall R . C$ and $\exists R . C$ are concepts.

Concepts describe sets of objects with certain common features:
Woman $\square \exists$ hasChild. (ヨhasChild.Person) Disease $\square \forall A f f e c t s . C h i l d$
Person $\sqcap \neg \exists$ owns.DetHouse

Women with a grandchild
Diseases affecting only children
People not owning a detached house
Fathers having only sons
\rightsquigarrow Very useful idea for Knowledge Representation

General Concept Inclusion Axioms

Recall our example formulas:

$$
\begin{array}{r}
\forall x .(J u v \operatorname{Dis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \text { Child }(y) \vee \text { Teen }(y))) \\
\forall x .(\operatorname{Child}(x) \vee \text { Teen }(x) \rightarrow \neg \operatorname{Adult}(x)) \\
\forall x .(\text { Person }(x) \rightarrow \operatorname{Child}(x) \vee \text { Teen }(x) \vee \operatorname{Adult}(x)) \\
\forall x .(J \operatorname{UvArthritis}(x) \rightarrow \operatorname{Arthritis}(x) \wedge J \text { JuvDis }(x)) \\
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \text { Joint }(y))
\end{array}
$$

They are of the following form, with $\alpha_{C}(x)$ and $\alpha_{D}(x)$ corresponding to $\mathcal{A L E}$ concepts C and D

$$
\forall x .\left(a_{C}(x) \rightarrow a_{D}(x)\right)
$$

Such sentences are $\mathcal{A L E}$ General Concept Inclusion Axioms (GCIs)

$$
C \sqsubseteq D
$$

where C and D are $\mathcal{A L C}$-concepts

General Concept Inclusion Axioms

```
\(\forall x .(J u v D i s(x) \rightarrow\)
    \(\forall y .(\operatorname{Affects}(x, y) \rightarrow\) Child \((y) \vee \operatorname{Teen}(y))) \rightsquigarrow\)
        \(\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg\) Adult \((x)) \rightsquigarrow\)
\(\forall x .(\operatorname{Person}(x) \rightarrow \operatorname{Child}(x) \vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \rightsquigarrow\)
    \(\forall x .(J \operatorname{uvArth}(x) \rightarrow \operatorname{Arth}(x) \wedge J \operatorname{JuvDis}(x)) \rightsquigarrow\)
    \(\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge J \operatorname{Joint}(y))) \rightsquigarrow\)
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow J \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

General Concept Inclusion Axioms

```
\forallx.(JuvDis(x) }
    \forally.(Affects (x,y) ->Child(y)\vee Teen(y))) \rightsquigarrow JuvDis }\sqsubseteq\forallAffects.(Child \sqcupTeen
        \forall x . ( \operatorname { C h i l d } ( x ) \vee \text { Teen } ( x ) \rightarrow \neg \text { Adult (x)) } \rightsquigarrow
\forallx.(Person }(x)->\operatorname{Child}(x)\vee\mathrm{ Teen }(x)\vee\operatorname{Adult}(x)) 
    \forallx.(JuvArth}(x)->\operatorname{Arth}(x)\wedgeJuvDis(x)) \rightsquigarrow
    \forallx.(Arth}(x)->\existsy.(Damages(x,y)^Joint(y))) \rightsquigarrow
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of $\mathrm{GCls} C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

General Concept Inclusion Axioms

```
\forallx.(JuvDis(x) }
    \forally.(Affects (x,y) -> Child(y)\vee Teen(y))) \rightsquigarrow JuvDis }\sqsubseteq\forallAffects.(Child \sqcup Teen
        \forall x . ( C h i l d ~ ( x ) \vee ~ T e e n ~ ( x ) ~ \rightarrow ~ \neg A d u l t ~ ( x ) ) ~ \rightsquigarrow ~ C h i l d ~ \sqcup T e e n ~ \sqsubseteq ~ \neg A d u l t ~
\forallx.(Person }(x)->\operatorname{Child}(x)\vee\mathrm{ Teen }(x)\vee\operatorname{Adult}(x)) 
    \forallx.(JuvArth}(x)->\operatorname{Arth}(x)\wedgeJuvDis(x)) \rightsquigarrow
    \forallx.(Arth}(x)->\existsy.(Damages(x,y)^Joint(y))) \rightsquigarrow
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow J \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

General Concept Inclusion Axioms

```
\forallx.(JuvDis(x) }
    \forally.(Affects (x,y) ->Child(y)\vee Teen(y))) \rightsquigarrow JuvDis }\sqsubseteq\forallAffects.(Child \sqcupTeen
        \forallx.(Child}(x)\vee\mathrm{ Teen }(x)->\neg\mathrm{ Adult (x)) }\rightsquigarrow Child \sqcupTeen \sqsubseteq \negAdult
\forallx.(Person (x) ->Child (x)\vee Teen (x)\vee Adult (x)) }\rightsquigarrow Person \sqsubseteq Child \sqcupTeen \sqcupAdult
    \forallx.(JuvArth}(x)->\operatorname{Arth}(x)\wedgeJuvDis(x)) \rightsquigarrow
    \forallx.(Arth}(x)->\existsy.(Damages(x,y)^Joint(y))) \rightsquigarrow
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of $\mathrm{GCls} C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

General Concept Inclusion Axioms

```
\forallx.(JuvDis(x) }
    \forally.(Affects (x,y) ->Child(y)\vee Teen(y))) \rightsquigarrow JuvDis }\sqsubseteq\forallAffects.(Child \sqcupTeen
        \forallx.(Child}(x)\vee\mathrm{ Teen }(x)->\neg\mathrm{ Adult (x)) }\rightsquigarrow Child \sqcupTeen \sqsubseteq \negAdult
\forallx.(Person (x) ->Child (x)\vee Teen (x)\vee Adult (x)) }\rightsquigarrow Person \sqsubseteq Child \sqcupTeen ப Adult
    \forallx.(JuvArth (x) ->Arth (x)^JuvDis(x)) \rightsquigarrow JuvArth \sqsubseteq Arth \sqcap JuvDis
    \forallx.(Arth}(x)->\existsy.(Damages(x,y)^Joint(y))) \rightsquigarrow
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of $\mathrm{GCls} C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow J \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

General Concept Inclusion Axioms

```
\forallx.(JuvDis(x) }
    \forally.(Affects (x,y) -> Child(y)\vee Teen(y))) \rightsquigarrow JuvDis }\sqsubseteq\forallAffects.(Child \sqcup Teen
        \forallx.(Child}(x)\vee\mathrm{ Teen }(x)->\neg\mathrm{ Adult (x)) }\rightsquigarrow Child \sqcupTeen \sqsubseteq \negAdult
\forallx.(Person (x) ->Child (x)\vee Teen (x)\vee Adult (x)) }\rightsquigarrow Person \sqsubseteq Child \sqcupTeen ப Adult
    \forallx.(JuvArth (x) -> Arth (x)^JuvDis (x)) \rightsquigarrow JuvArth \sqsubseteq Arth п JuvDis
    \forallx.(Arth }(x)->\existsy.(Damages(x,y)\wedge Joint(y))) \rightsquigarrow Arth \sqsubseteq\existsDamages.Joint
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of $\mathrm{GCls} C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:

$$
\left.\begin{array}{l}
\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\
\text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }
\end{array}\right\} \rightsquigarrow J \text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

Terminological Statements

GCls allow us to represent a surprising variety of terminological statements:

- Sub-type statements

$$
\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x)) \quad \rightsquigarrow \quad \text { JuvArth } \sqsubseteq \operatorname{Arth}
$$

- Full definitions:

$$
\forall x .(J u v \operatorname{Arth}(x) \leftrightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \quad \rightsquigarrow \quad \text { JuvArth } \equiv \operatorname{Arth} \sqcap \text { JuvDis }
$$

- Disjointness statements:

$$
\forall x .(\operatorname{Child}(x) \rightarrow \neg \text { Adult }(x)) \quad \rightsquigarrow \quad \text { Child } \sqsubseteq \neg \text { Adult }
$$

- Covering statements:

$$
\forall x .(\operatorname{Person}(x) \rightarrow \text { Adult }(x) \vee \text { Child }(x)) \quad \rightsquigarrow \quad \text { Person } \sqsubseteq \text { Adult } \sqcup \text { Child }
$$

- Type (domain and range) restrictions:

$$
\begin{aligned}
\forall x .(\forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Arth}(x) \wedge \text { Person }(y))) \rightsquigarrow & \exists \text { Affects. } \top \sqsubseteq \text { Arth } \\
& \top \sqsubseteq \forall \text { Affects.Person }
\end{aligned}
$$

Concept Inclusion Axioms \& Definitions

Why call $C \sqsubseteq D$ a concept inclusion axiom?

- Intuitively, every object belonging to C should belong also to D
- States that C is more specific than D

Why call it a general concept inclusion axiom?

- It may be interesting to consider restricted forms of inclusion
- E.g., axioms where l.h.s. is atomic are sometimes called definitions
- A concept definition specifies necessary and sufficient conditions for instances, e.g.:

$$
\text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

- A primitive concept definition specifies only necessary conditions for instances, e.g.:

$$
\text { Arth } \sqsubseteq \exists \text { Damages.Joint }
$$

Data Assertions

In description logics, we can also represent data:

$$
\begin{aligned}
\text { Child(JohnSmith) } & \text { John Smith is a child } \\
\text { JuvenileArthritis(JRA) } & \text { JRA is a juvenile arthritis } \\
\text { Affects(JRA, MaryJones) } & \text { Mary Jones is affected by JRA }
\end{aligned}
$$

Usually data assertions correspond to FOL ground atoms.
Alternative notation: JohnSmith:Child, (JRA, MaryJones):Affects In $\mathcal{A L C}$, we have two types of data assertions, for a, b individuals:

$$
\begin{aligned}
C(a) & \rightsquigarrow C \text { is an } \mathcal{A L C} \text { concept } \\
R(a, b) & \rightsquigarrow \mathrm{R} \text { is an atomic role }
\end{aligned}
$$

Examples of acceptable data assertions in $\mathcal{A L C}$:
$\exists h a s C h i l d . T e a c h e r(J o h n) ~ \rightsquigarrow \exists y$.(hasChild(John, y) ^Teacher(y))
HistorySt \sqcup ClassicsSt(John) \rightsquigarrow HistorySt(John) \vee ClassicsSt(John)

DL Knowledge Base: TBox + ABox

An $\mathcal{A L E}$ knowledge base $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ is composed of:

- A TBox \mathcal{T} (Terminological Component):

Finite set of GCls

- An ABox \mathcal{A} (Assertional Component):

Finite set of assertions

TBox:

> JuvArthritis \sqsubseteq Arthritis \sqcap JuvDisease
> Arthritis \sqcap JuvDisease \sqsubseteq JuvArthritis
> Arthritis $\sqsubseteq \exists$ Damages.Joint
> JuvDisease $\sqsubseteq \forall$ Affects.(Child \sqcup Teen) Child \sqcup Teen $\sqsubseteq \neg$ Adult

ABox:

Child(JohnSmith) JuvArthritis(JRA) Affects(JRA, MaryJones) Child \sqcup Teen(MaryJones)

Semantics via FOL Translation

- Concepts translated as formulas with one free variable (except T and \perp which are mapped to themselves):

$$
\begin{aligned}
\pi_{x}(A) & =A(x) & \pi_{y}(A) & =A(y) \\
\pi_{x}(\neg C) & =\neg \pi_{x}(C) & \pi_{y}(\neg C) & =\neg \pi_{y}(C) \\
\pi_{x}(C \sqcap D) & =\pi_{x}(C) \wedge \pi_{x}(D) & \pi_{y}(C \sqcap D) & =\pi_{y}(C) \wedge \pi_{y}(D) \\
\pi_{x}(C \sqcup D) & =\pi_{x}(C) \vee \pi_{x}(D) & \pi_{y}(C \sqcup D) & =\pi_{y}(C) \vee \pi_{y}(D) \\
\pi_{x}(\exists R . C) & =\exists y .\left(R(x, y) \wedge \pi_{y}(C)\right) & \pi_{y}(\exists R . C) & =\exists x .\left(R(y, x) \wedge \pi_{x}(C)\right) \\
\pi_{x}(\forall R . C) & =\forall y .\left(R(x, y) \rightarrow \pi_{y}(C)\right) & \pi_{y}(\forall R . C) & =\forall x .\left(R(y, x) \rightarrow \pi_{x}(C)\right)
\end{aligned}
$$

- GCls and assertions translated as sentences

$$
\begin{aligned}
\pi(C \sqsubseteq D) & =\forall x .\left(\pi_{x}(C) \rightarrow \pi_{x}(D)\right) \\
\pi(R(a, b)) & =R(a, b) \\
\pi(C(a)) & =\pi_{x}(C)[x / a]
\end{aligned}
$$

- TBoxes, ABoxes and KBs are translated in the obvious way.

Semantics via FOL Translation

Note redundancy in concept-forming operators:

$$
\begin{aligned}
\perp & \rightsquigarrow \neg \top \\
C \sqcup D & \rightsquigarrow \neg(\neg C \sqcap \neg D) \\
\forall R . C & \rightsquigarrow \neg(\exists R . \neg C)
\end{aligned}
$$

These equivalences can be proved using FOL semantics:

$$
\begin{aligned}
\pi_{x}(\neg \exists R . \neg C) & =\neg \exists y .\left(R(x, y) \wedge \neg \pi_{y}(C)\right) \\
& \equiv \forall y \cdot\left(\neg\left(R(x, y) \wedge \neg \pi_{y}(C)\right)\right) \\
& \equiv \forall y \cdot\left(\neg R(x, y) \vee \pi_{y}(C)\right) \\
& \equiv \forall y \cdot\left(R(x, y) \rightarrow \pi_{y}(C)\right) \\
& =\pi_{x}(\forall R . C)
\end{aligned}
$$

We can define syntax of $\mathcal{A L E}$ using only conjunction and negation operators and the existential role operator, considering all other operators as abbreviations.

Direct (Model-Theoretic) Semantics

Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation $\mathcal{J}=\left\langle\Delta^{\mathcal{J}},{ }^{\mathfrak{J}}\right\rangle$ is a FOL interpretation over the DL vocabulary:

- Each individual a interpreted as an object $a^{\mathcal{J}} \in \Delta^{\mathcal{J}}$.
- Each atomic concept A interpreted as a set $A^{\mathcal{J}} \subseteq \Delta^{\mathfrak{J}}$.
- Each atomic role R interpreted as a binary relation $R^{\mathfrak{J}} \subseteq \Delta^{\mathfrak{J}} \times \Delta^{\mathfrak{J}}$.

The mapping ${ }^{\top}$ is extended to T, \perp and compound concepts as follows:

$$
\begin{aligned}
\top^{\mathfrak{J}} & =\Delta^{\mathfrak{J}} \\
\perp^{\mathfrak{J}} & =\emptyset \\
(\neg C)^{\mathfrak{J}} & =\Delta^{\mathfrak{J}} \backslash C^{\mathfrak{J}} \\
(C \sqcap D)^{\mathfrak{J}} & =C^{\mathfrak{J}} \cap D^{\mathfrak{J}} \\
(C \sqcup D)^{\mathfrak{J}} & =C^{\mathcal{J}} \cup D^{\mathcal{J}} \\
(\exists R . C)^{\mathfrak{J}} & =\left\{u \in \Delta^{\mathfrak{J}} \mid \exists w \in \Delta^{\mathfrak{J}} \text { s.t. }\langle u, w\rangle \in R^{\mathcal{J}} \text { and } w \in C^{\mathcal{J}}\right\} \\
(\forall R . C)^{\mathfrak{J}} & =\left\{u \in \Delta^{\mathfrak{J}} \mid \forall w \in \Delta^{\mathfrak{J}},\langle u, w\rangle \in R^{\mathcal{J}} \text { implies } w \in C^{\mathcal{J}}\right\}
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathcal{J}},{ }^{\top}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{\top} & =\{u\} \\
\text { Child }^{\top} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of Δ^{T} :

$$
\begin{aligned}
(\text { JuvDis } \cap \text { Child })^{\mathfrak{3}} & = \\
(\text { Child } \sqcup \text { Teen })^{\mathfrak{3}} & = \\
(\exists \text { Affects.(Child } \sqcup \text { Teen) })^{\mathfrak{1}} & = \\
(\neg \text { Child })^{\mathfrak{1}} & = \\
(\forall \text { Afects.Teen })^{\mathfrak{3}} & =
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathcal{J}},{ }^{\top}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{J} & =\{u\} \\
\text { Child }^{\mathfrak{J}} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of Δ^{T} :

$$
\begin{aligned}
(\text { JuvDis } \cap \text { Child })^{\mathfrak{j}} & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathfrak{j}} & = \\
\text { (} \exists \text { Affects.(Child } \sqcup \text { Teen) })^{\mathfrak{j}} & = \\
(\neg \text { Child })^{\mathfrak{j}} & = \\
(\forall \text { Affects.Teen })^{\mathfrak{j}} & =
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathfrak{J}},{ }^{J}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathfrak{J}} & =\{u\} \\
\text { Child }^{\top} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{T}}$:

$$
\begin{aligned}
(\text { JuvDis } \cap \text { Child })^{\mathfrak{J}} & =\emptyset \\
(\text { Child } \sqcup \text { Teen }) & =\{w\} \\
(\exists \text { Affects.(Child } \sqcup \text { Teen) }) & = \\
(\neg \text { Child })^{\mathfrak{j}} & = \\
(\forall \text { Affects.Teen })^{\mathfrak{J}} & =
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathfrak{J}},{ }^{J}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathfrak{J}} & =\{u\} \\
\text { Child }^{\mathrm{J}} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of Δ^{T} :

$$
\begin{aligned}
(\text { (JuvDis } \cap \text { Child })^{\mathfrak{3}} & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathfrak{J}} & =\{w\} \\
(\exists \text { Affects.(Child } \sqcup \text { Teen }))^{3} & =\{u\} \\
(\neg \text { Child })^{\mathfrak{J}} & = \\
(\forall \text { Affects.Teen })^{\mathfrak{J}} & =
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathfrak{J}},{ }^{J}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathfrak{J}} & =\{u\} \\
\text { Child }^{\mathrm{J}} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of Δ^{T} :

$$
\begin{aligned}
\left(\text { JuvDis } \cap \text { Child) }{ }^{\mathfrak{J}}\right. & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathfrak{j}} & =\{w\} \\
\left(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen) })^{\mathfrak{j}}\right. & =\{u\} \\
(\urcorner \text { Child })^{\mathfrak{j}} & =\{u, v\} \\
(\forall \text { Affects.Teen })^{\mathfrak{j}} & =
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{J}=\left\langle\Delta^{\mathfrak{J}},{ }^{J}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathfrak{J}} & =\{u, v, w\} \\
\text { JuvDis }^{\top} & =\{u\} \\
\text { Child }^{\top} & =\{w\} \\
\text { Teen }^{\mathfrak{J}} & =\emptyset \\
\text { Affects }^{\mathfrak{J}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of Δ^{T} :

$$
\begin{aligned}
& \left(\text { JuvDis } \square \text { Child }^{3}=\emptyset\right. \\
& \text { (Child } \sqcup \text { Teen })^{3}=\{w\} \\
& (\exists \text { Affects.(Child } \sqcup \text { Teen) })^{\mathfrak{j}}=\{u\} \\
& (\neg \text { Child })^{3}=\{u, v\} \\
& (\forall \text { Affects.Teen })^{\mathfrak{j}}=\{v, w\}
\end{aligned}
$$

Direct (Model-Theoretic) Semantics

We can now determine whether \mathcal{J} is a model of ...

- A General Concept Inclusion Axiom $C \sqsubseteq D$:

$$
\mathcal{J} \models(C \sqsubseteq D) \quad \text { iff } \quad C^{\mathcal{J}} \subseteq D^{\mathcal{J}}
$$

- An assertion $C(a)$:

$$
\mathcal{J} \models C(a) \quad \text { iff } \quad a^{\mathcal{J}} \in C^{\mathcal{J}}
$$

- An assertion $R(a, b)$:

$$
\mathcal{J} \models R(a, b) \quad \text { iff } \quad\left\langle a^{\mathcal{J}}, b^{\mathcal{J}}\right\rangle \in R^{\mathcal{J}}
$$

- A TBox \mathcal{T}, ABox \mathcal{A}, and knowledge base:

$$
\begin{array}{lll}
\mathcal{J} \models \mathcal{T} & \text { iff } & \mathcal{J} \models a \text { for each } a \in \mathcal{T} \\
\mathcal{J} \models \mathcal{A} & \text { iff } & \mathcal{J} \models a \text { for each } a \in \mathcal{A} \\
\mathcal{J} \models \mathcal{K} & \text { iff } & \mathcal{J} \models \mathcal{T} \text { and } \mathcal{J} \models \mathcal{A}
\end{array}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{aligned}
& \Delta^{\mathcal{J}}=\{u, v, w\} \quad \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} \\
& \text { JuvDis }{ }^{\mathcal{J}}=\{u\} \quad \text { Child }^{\mathfrak{J}}=\{w\} \quad \text { Teen }^{\mathcal{J}}=\emptyset
\end{aligned}
$$

J is a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \Xi \text { Affects.Child }
\end{aligned} \rightsquigarrow
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{array}{r}
\text { JuvDis } \sqsubseteq \exists \text { Affects.(Child } \sqcap \text { Teen) } \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } \rightsquigarrow
\end{array}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{array}{lcl}
\Delta^{\mathcal{J}}=\{u, v, w\} & \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{J}}=\{u\} & \text { Child }^{\mathcal{J}}=\{w\} & \text { Teen }^{\mathcal{J}}=\emptyset
\end{array}
$$

J is a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \sqsubseteq \text { Affects.Child } \\
\text { Child } & \rightsquigarrow \neg \text { Teen } \rightsquigarrow \\
\text { JuvDis } & \forall \text { Affects.Child } \\
& \rightsquigarrow
\end{aligned}
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{array}{r}
\text { JuvDis } \sqsubseteq \exists \text { Affects.(Child } \sqcap \text { Teen) } \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } \rightsquigarrow
\end{array}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{array}{lcl}
\Delta^{\mathcal{J}}=\{u, v, w\} & \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{J}}=\{u\} & \text { Child }^{\mathcal{J}}=\{w\} & \text { Teen }^{\mathcal{J}}=\emptyset
\end{array}
$$

J is a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects.Child } & \rightsquigarrow \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow u\} \subseteq\{u\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow
\end{aligned}
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{array}{r}
\text { JuvDis } \sqsubseteq \exists \text { Affects.(Child } \sqcap \text { Teen) } \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } \rightsquigarrow
\end{array}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{array}{lcl}
\Delta^{\mathcal{J}}=\{u, v, w\} & \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{J}}=\{u\} & \text { Child }^{\mathcal{J}}=\{w\} & \text { Teen }^{\mathcal{J}}=\emptyset
\end{array}
$$

J is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{array}{r}
\text { JuvDis } \sqsubseteq \exists \text { Affects.(Child } \sqcap \text { Teen) } \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } \rightsquigarrow
\end{array}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{array}{lcc}
\Delta^{\mathcal{J}}=\{u, v, w\} & \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{J}}=\{u\} & \text { Child }^{\mathfrak{J}}=\{w\} & \text { Teen }^{\mathcal{J}}=\emptyset
\end{array}
$$

J is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \exists \text { Affects.(Child } \sqcap \text { Teen }) \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{aligned}
& \Delta^{\mathfrak{J}}=\{u, v, w\} \quad \text { Affects }^{\mathfrak{J}}=\{\langle u, w\rangle\} \\
& \text { JuvDis }^{\mathfrak{J}}=\{u\} \quad \text { Child }^{\mathrm{J}}=\{w\}
\end{aligned} \quad \text { Teen }^{\mathfrak{J}}=\emptyset \text {. }
$$

J is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \text { ヨAffects.Child } & \rightsquigarrow\{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow\{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow\{u\} \subseteq\{u, v, w\}
\end{array}
$$

However \mathfrak{J} is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. }(\text { Child } \sqcap \text { Teen }) & \rightsquigarrow\{u\} \nsubseteq \emptyset \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow\{u, v, w\} \nsubseteq\{w\} \\
\exists \text { Affects. } T \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

Direct (Model-Theoretic) Semantics: Examples

Consider our previous example interpretation:

$$
\begin{array}{lcc}
\Delta^{\mathcal{J}}=\{u, v, w\} & \text { Affects }^{\mathcal{J}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{J}}=\{u\} & \text { Child }^{\mathfrak{J}}=\{w\} & \text { Teen }^{\mathcal{J}}=\emptyset
\end{array}
$$

J is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However \mathcal{J} is not a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. (Child } \sqcap \text { Teen) } & \rightsquigarrow & \{u\} \nsubseteq \emptyset \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow & \{u, v, w\} \nsubseteq\{w\} \\
\exists \text { Affects. } T \sqsubseteq \text { Teen } & \rightsquigarrow & \{u\} \nsubseteq \emptyset
\end{array}
$$

Conclusion

- Description Logics are a family of knowledge representation languages
- They can be seen as syntactic fragments of first-order predicate logic
- Only unary and binary predicate symbols, no function symbols (of positive arity)
- Use of quantification is restricted by guards
- $\mathcal{A L C}$ is the basic description logic
- Syntax of DLs: concepts (atomic/complex), general concept inclusions
- DL knowledge bases: consist of TBox and ABox
- Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

