VOTING FOR BINS

INTEGRATING IMPRECISE PROBABILISTIC BELIEFS INTO THE CONDORCET JURY THEOREM

Jonas Karge
Computational Logic Group, TU Dresden

KoDis 2023, Rhodes, Greece, September 03, 2023

Introduction

Scenario: Multiple experts assess the likelihood of an event such as:

Example: Global sea level will rise at least 1,5 meters until the year 2100 above the level of 2000.

Two fundamental questions:
(1) How can we appropriately represent the probabilistic beliefs of experts?
(2) What constitutes a reasonable method for aggregation?

Outline

(i) Aggregation Method: Voting in a jury theorem setting
(ii) Representation: Imprecise probabilistic beliefs
(iii) Voting with this Representation: Supervaluationism
(iv) Embedding

The Condorcet Jury Theorem

The Condorcet Jury Theorem (CJT)

Marie Jean Antoine Nicolas Caritat Marquis de Condorcet
Theorem: For odd-numbered homogenous groups of independent and reliable agents in a dichotomic voting setting, the probability that majority voting identifies the correct alternative

- increases monotonically with the number of agents and
(non-asymptotic part)
- converges to 1 as the number of agents goes to infinity. (asymptotic part)

Voting

Define approval voting and obtain simpler voting mechanisms as special cases.
Given: finite set of n agents $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$
finite set of m choices $\mathcal{W}=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$

- approval voting (instance): relation $V \subseteq \mathcal{A} \times \mathcal{W}$

$$
\left(a_{i}, \omega_{j}\right) \in V \text { means agent } a_{i} \text { approves choice } \omega_{j}
$$

- given $\omega \in \mathcal{W}$, obtain score $\#_{V} \omega$ as overall number of votes that ω receives, i.e.,

$$
\#_{V} \omega=\left|\left\{a_{i} \in \mathcal{A}_{n} \mid\left(a_{i}, \omega\right) \in V\right\}\right|
$$

- ω wins approval vote V if it receives strictly more votes than any other choice:

$$
\#_{V} \omega>\max _{\omega^{\prime} \in \mathcal{W} \backslash\{\omega\}} \#_{V} \omega^{\prime}
$$

The Voting Scenario

CJT under approval voting

Asymptotic result:

Theorem: For odd-numbered heterogenous groups of independent and Δ reliable agents in a voting setting with a finite number of alternatives, the probability that approval voting identifies the correct alternative

- converges to 1 as the number of agents goes to infinity.

Beyond the convergence behavior in the infinite:
Theorem: In a Δp-group reliable setting with m choices, the worst case approval vote success probability is at least $P_{\min }$ whenever the number of agents is equal or higher than

$$
\begin{equation*}
\min \left(\frac{2}{\Delta p^{2}} \ln Q, 1+\left(\frac{1}{\Delta p^{2}}-1\right) Q\right) \tag{1}
\end{equation*}
$$

where $Q=2 \frac{m-1}{1-P_{\min }}$ is the twofold ratio between the number of incorrect alternatives and the admissible error probability.

The Voting Scenario

Probabilistic Beliefs

Precise Probabilities

Starting point:

Definition: A probability function \mathbb{P} is a function $\mathbb{P}: 2^{\Omega} \rightarrow \mathbb{R}$, satisfying the probability axioms.
\Rightarrow Output of function reflects the agent's degree of belief in that proposition.

Reconsider:

Example: Global sea level will rise at least 1,5 meters until the year 2100 above the level of 2000.

Problem:

What probability is the expert supposed to assign to A?

Imprecise Probabilities

Definition:

Imprecise probabilities are sets of probability functions.

We refer to a specific set of probability functions as the agent's representor, denoted by \mathcal{P}.

Definition: An agent's imprecise degree of belief in a proposition H is represented by a function, $\mathcal{P}(H)$, with $\mathcal{P}(H)=\{\mathbb{P}(H): \mathbb{P} \in \mathcal{P}\}$.

Example: Assume, the agent's representor consists of three probability functions that assign event A values from the set $\{0.4,0.6,0.8\}$. Assuming convexity, we may represent the agent's imprecise degree of belief with $\mathcal{P}(A)=[0.4,0.8]$. Thus, our agent is $40-80 \%$ confident that event A will occur, i.e., that proposition A is true.

The Voting Scenario

Supervaluationism and Voting

Standard Supervaluationism

Consider a vague predicate such as tall
\Rightarrow can be made more precise by introducing cutoff points (i.e. $300 \mathrm{~cm}, 180 \mathrm{~cm}, 20 \mathrm{~cm}$).
Each cutoff point represents a precisification of that predicate.
Truth value of vague predicates:

- Determinate truth (true according to all admissible precisifications, person who is 400cm tall);
- Determinate falsehood (false according to all admissible precisifications, 10 cm);
- Indeterminate truth (true and false according to some admissible precisifications, 190 cm).

Modified Supervaluationism

Definition: A proposition is predominantly true if it is true according to a relative majority of admissible precisifications.

Definition: Given two propositions, A and B , an agent is considered to be predominantly more confident in proposition A than in proposition B if a greater proportion of elements within the agent's imprecise degree of belief satisfy the condition $\operatorname{Pr}(A)>\operatorname{Pr}(B)$.

Problem: we need to measure the proportion of possibly infinitely many elements.
\Rightarrow For any closed, $[a, b]$, open, (a, b), or half open, $(a, b]$ or $[a, b)$, interval it holds that its Lebesque measure is of length $l=b-a$;
\Rightarrow determine the proportion of elements in favor of a proposition by measuring the length of the corresponding interval.

Modified Supervaluationism and Voting

Example: Consider proposition A and its complement B, i.e. global sea level will not rise at least 1,5 meters until the year 2100 above the level of 2000. Suppose we have $\mathcal{P}(A)=[0.4,1]$ as our agent's imprecise degree of belief. For those elements represented by $(0.5,1]$ it holds true that $\operatorname{Pr}(A)>\operatorname{Pr}(B)$. For those represented by $[0.4,0.5)$ we have $\operatorname{Pr}(B)>\operatorname{Pr}(A)$. Taking their Lebesque measure, we obtain $l(A)=0.5$ as well as $l(B)=0.1$. Thus, the agent is predominantly more confident in proposition A.

Predominant confidence and voting:

Definition: Given a set of alternatives $\mathcal{W}=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ and set of agents $\mathcal{A}=$ $\left\{a_{1}, \ldots, a_{n}\right\}$, agent a_{i} approves alternative ω_{j} if the agent is predominantly more confident in that alternative than in its competitors.

Embedding

What is an Alternative?

Recall: We are given a finite set of alternatives $\omega_{1}, \ldots, \omega_{m}$ and one $\omega_{k} \in \mathcal{W}$ represents the correct probability for an event to occur.

Suppose, proposition A has a probability of 40.1862345% to occur.
First idea: Each alternative represents a precise probability value.
\Rightarrow Similar problems as on the belief level.
Second idea: Each alternative represents an interval of probability values of the form: $\left[X_{\text {min }}, X_{\max }\right]$.

Simplest (theoretically excluded) case: A single alternative with $\left[X_{\min }, X_{\max }\right]=[0,1]$.

More Alternatives?

To obtain more alternatives, $\left[X_{\min }, X_{\max }\right]$ is further divided into subintervals.
\Rightarrow Partition the unit interval $[0,1]$ into $2 k$ subintervals of equal Lebesgue measure, denoted as $\left[X_{j-1}, X_{j}\right.$), where $j=1,2, \ldots, 2 k$.

Note: The value of k depends on the desired precision.

Example: If a small group of agents is highly reliable in their estimates, a moderate precision of 10% may be adequate, achieved by setting $k=5$ (yielding $2 k=10$) and providing 10 subintervals of equal Lebesgue measure.

Note: Each subinterval is referred to as a bin.

The Voting Scenario

Confidence in Bins

Problem: predominant confidence compares the beliefs in two propositions.
\Rightarrow compare confidence in two probabilistic assessments for the same proposition.

Definition: Let A be a proposition, $\mathcal{P}(A)=[a, b]$ be an agent's imprecise degree of belief in A, and let $\left[X_{j-1}, X_{j}\right.$), $j=1,2, \ldots, 2 k$ be $2 k$ bins defined on the unit interval reflecting probability values for A to occur. Given two bins B_{1} and B_{2}, we say that an agent is predominantly more confident in B_{1} if the intersection of $\mathcal{P}(A)$ and B_{1} is of greater Lebesque measure than the one of $\mathcal{P}(A)$ and B_{2}. That is, $l\left(\mathcal{P}(A) \cap B_{1}\right) \geq l\left(\mathcal{P}(A) \cap B_{2}\right)$.

Voting for Bins

Example: Suppose there are only two bins for proposition A with $B_{1}=[0,0.5)$ and $B_{2}=[0.5,1]$ and let $\mathcal{P}(A)=[0.3,0.9]$. We then have $\mathcal{P}(A) \cap B_{1}=[0.3,0.5)$ and $\mathcal{P}(A) \cap B_{2}=[0.5,0.9]$. This results in $l\left(\mathcal{P}(A) \cap B_{1}\right)=0.2$ as well as $l\left(\mathcal{P}(A) \cap B_{2}\right)=0.4$. Thus, the agent is predominantly more confident in the second bin.

Definition: Let $m=\omega_{1}, \ldots, \omega_{m}$ be a set of alternatives where each ω_{i} represents a bin of the form $\left[X_{j-1}, X_{j}\right)$. Moreover, let a_{1}, \ldots, a_{n} be a set of agents and let V represent a single election. We say that an agent a_{i} votes for an alternative ω_{j} if she is predominantly confident in that alternative. That is, if $\left(l\left(\mathcal{P}(A) \cap \omega_{j}\right) \geq l(\mathcal{P}(A) \cap\right.$ $\left.\omega_{k}\right)$) for all $j \neq k$ then $\left(a_{i}, \omega_{j}\right) \in V$.

The Voting Scenario

Estimate Permitted Precision

- In typical application scenarios, the number of voters on the expert board is known beforehand;
- i.e. studies on forecasting capabilities involving 42 climate scientists or 140 experts on COVID-19 outbreaks;
\Rightarrow determine the maximal precision that can be allowed.
Theorem: In a Δp-group reliable setting where $\Delta p \in(0,1)$ with n agents, the worst case approval vote success probability is at least $P_{\min }$ whenever the number of alternatives is equal or lower than

$$
\begin{equation*}
\max \left(\frac{\left(1-p_{\min }\right)}{\left(2 e^{-\frac{1}{2} n \Delta p^{2}}\right)}+1, \frac{\left(1-p_{\min }\right)\left(1+(n-1) \Delta p^{2}\right)}{2\left(1-\Delta p^{2}\right)}+1\right) \tag{2}
\end{equation*}
$$

\Rightarrow Directly translates into the maximal allowed precision in percentage (C) with $C=\frac{100}{m}$.

Illustration

Selection of data points			
Number of Experts	Δp	Number of Bins	Precision
50	0.3	<2	N.A.
50	0.4	4	25%
75	0.3	2	50%
75	0.4	21	4.8%
100	0.3	6	16%
100	0.4	150	0.6%
150	0.3	44	2.2%
150	0.4	8139	0.01%
200	0.3	406	0.25%
200	0.4	444307	0.0002%

Figure: Maximal number of permitted bins for $P_{\text {min }}=0.9$ and varying Δp and n (left) as well as a selection of data points (right).

Summary and Future Work

Summary

We embedded imprecise probabilistic beliefs into a generalization of the Condorcet Jury Theorem:

- combined the epistemological account of imprecise degrees of belief as well as their interpretation in the supervaluationinstic theory of vagueness with a voting setting;
- each alternative represents an interval of probability assessments (a bin) for the same proposition as the imprecise degree of belief;
- established a direct correspondence between the number of bins in the voting process and the maximal permitted precision during aggregation;
- gave estimate for the allowed precision in the aggregation procedure.

Future work

- Compare the performance of voting-based aggregation of imprecise probabilistic beliefs with traditional methods of probabilistic opinion pooling;
- investigate applications at the intersection of ensemble learning in ML and social choice;
- consider rough set theory instead of supervaluationism.

