DATABASE THEORY

Lecture 15: Datalog Evaluation (2)

David Carral
Knowledge-Based Systems

TU Dresden, June 12, 2020
Review: Datalog Evaluation

A rule-based recursive query language

<table>
<thead>
<tr>
<th>father(alice, bob)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mother(alice, carla)</td>
</tr>
</tbody>
</table>

Parent(x, y) ← father(x, y)
Parent(x, y) ← mother(x, y)

SameGeneration(x, x)
SameGeneration(x, y) ← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation
Semi-Naive Evaluation: Example

- $e(1, 2)$ $e(2, 3)$ $e(3, 4)$ $e(4, 5)$

 $(R1)$ $T(x, y) ← e(x, y)$

 $(R2.1)$ $T(x, z) ← \Delta^i_T(x, y) \land T^i(y, z)$

 $(R2.2')$ $T(x, z) ← T^{i-1}(x, y) \land \Delta^i_T(y, z)$

How many body matches do we need to iterate over?

$T^0_P = \emptyset$ \hspace{2cm} \text{initialisation}

$T^1_P = \{T(1, 2), T(2, 3), T(3, 4), T(4, 5)\}$ \hspace{1cm} $4 \times (R1)$

$T^2_P = T^1_P \cup \{T(1, 3), T(2, 4), T(3, 5)\}$ \hspace{1cm} $3 \times (R2.1)$

$T^3_P = T^2_P \cup \{T(1, 4), T(2, 5), T(1, 5)\}$ \hspace{1cm} $3 \times (R2.1), 2 \times (R2.2')$

$T^4_P = T^3_P = T^\infty_P$ \hspace{1cm} $1 \times (R2.1), 1 \times (R2.2')$

In total, we considered 14 matches to derive 11 facts.
Semi-Naive Evaluation: Full Definition

In general, a rule of the form

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land l_1(\vec{z}_1) \land l_2(\vec{z}_2) \land \ldots \land l_m(\vec{z}_m) \]

is transformed into \(m \) rules

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land \Delta_{l_1}^i(\vec{z}_1) \land l_2(\vec{z}_2) \land \ldots \land l_m(\vec{z}_m) \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land l_i^{-1}(\vec{z}_1) \land \Delta_{l_2}^i(\vec{z}_2) \land \ldots \land l_m(\vec{z}_m) \]
\[\ldots \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land l_i^{-1}(\vec{z}_1) \land l_2^{-1}(\vec{z}_2) \land \ldots \land \Delta_{l_m}^i(\vec{z}_m) \]

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)
Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

Example 15.1:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]
\[(R1) \quad T(x, y) \leftarrow e(x, y) \]
\[(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z) \]

Query: \[z \leftarrow T(2, z) \]

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like \[T(1, 4) \], which are neither directly nor indirectly relevant for computing the query result.
Assumption: For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.
Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply **backward chaining/resolution**: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results “set-at-a-time” (using relational algebra on tables)
- Evaluate queries in a “data-driven” way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- “Push” variable bindings (constants) from heads (queries) into bodies (subqueries)
- “Pass” variable bindings (constants) “sideways” from one body atom to the next

Details can be realised in several ways.
Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 15.2: If we want to derive atom $T(2, z)$ from the rule $T(x, z) \leftarrow T(x, y) \land T(y, z)$, then x will be bound to 2, while z is free.

We use adornments to denote the free/bound parameters in predicates.

Example 15.3:

$$T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)$$

- since x is bound in the head, it is also bound in the first atom
- any match for the first atom binds y, so y is bound when evaluating the second atom (in left-to-right evaluation)
Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

\[R^{bbb}(x, y, z) \leftarrow R^{bbf}(x, y, v) \land R^{bbb}(x, v, z) \]
\[R^{fbf}(x, y, z) \leftarrow R^{fbf}(x, y, v) \land R^{bbf}(x, v, z) \]

The order of body predicates affects the adornment:

\[S^{fff}(x, y, z) \leftarrow T^{ff}(x, v) \land T^{ff}(y, w) \land R^{bbf}(v, w, z) \]
\[S^{fff}(x, y, z) \leftarrow R^{fff}(v, w, z) \land T^{fb}(x, v) \land T^{fb}(y, w) \]

\[\sim \text{ For optimisation, some orders might be better than others} \]
Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we “call” a rule with a head where some variables are bound, we need to provide the bindings as input

\[\Rightarrow \text{for adorned relation } R^\alpha, \text{ we use an auxiliary relation } \text{input}^\alpha_R \]
\[\Rightarrow \text{arity of } \text{input}^\alpha_R = \text{number of } b \text{ in } \alpha \]

The result of calling a rule should be the “completed” input, with values for the unbound variables added

\[\Rightarrow \text{for adorned relation } R^\alpha, \text{ we use an auxiliary relation } \text{output}^\alpha_R \]
\[\Rightarrow \text{arity of } \text{output}^\alpha_R = \text{arity of } R (= \text{length of } \alpha) \]
Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations \(\text{sup}_i \)
\(~\) bindings required to evaluate rest of rule after the \(i \)th body atom
\(~\) the first set of bindings \(\text{sup}_0 \) comes from \(\text{input}^g_R \)
\(~\) the last set of bindings \(\text{sup}_n \) go to \(\text{output}^g_R \)

Example 15.4:

\[
\begin{align*}
\text{T}^{bf}(x, z) & \leftarrow \text{T}^{bf}(x, y) \land \text{T}^{bf}(y, z) \\
\uparrow & \quad \Downarrow \uparrow \quad \Downarrow \\
\text{input}^{bf}_T & \Rightarrow \text{sup}_0[x] \quad \text{sup}_1[x, y] \quad \text{sup}_2[x, z] \Rightarrow \text{output}^{bf}_T
\end{align*}
\]

- \(\text{sup}_0[x] \) is copied from \(\text{input}^{bf}_T [x] \) (with some exceptions, see exercise)
- \(\text{sup}_1[x, y] \) is obtained by joining tables \(\text{sup}_0[x] \) and \(\text{output}^{bf}_T [x, y] \)
- \(\text{sup}_2[x, z] \) is obtained by joining tables \(\text{sup}_1[x, y] \) and \(\text{output}^{bf}_T [y, z] \)
- \(\text{output}^{bf}_T [x, z] \) is copied from \(\text{sup}_2[x, z] \)

(we use “named” notation like \([x, y]\) to suggest what to join on; the relations are the same)
The set of all auxiliary relations is called a **QSQ template** (for the given set of adorned rules)

General evaluation:

- add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)

\[\rightarrow \text{there are many strategies for implementing this general scheme} \]

Notation:

- for an EDB atom \(A \), we write \(A^I \) for table that consists of all matches for \(A \) in the database
Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate R^{α}; current values of all QSQ relations

1. Copy tuples input$_R^{\alpha}$ (that unify with rule head) to sup$_0^r$
2. For each body atom A_1, \ldots, A_n, do:
 - If A_i is an EDB atom, compute sup$_i^r$ as projection of sup$_{i-1}^r \bowtie A_i^I$
 - If A_i is an IDB atom with adorned predicate S^{β}:
 (a) Add new bindings from sup$_{i-1}^r$, combined with constants in A_i, to input$_S^{\beta}$
 (b) If input$_S^{\beta}$ changed, recursively evaluate all rules with head predicate S^{β}
 (c) Compute sup$_i^r$ as projection of sup$_{i-1}^r \bowtie$ output$_S^{\beta}$
3. Add tuples in sup$_n^r$ to output$_R^{\alpha}$
QSQR Algorithm

Evaluation of query in QSQR:

Given: a Datalog program P and a conjunctive query $q[\vec{x}]$ (possibly with constants)

(1) Create an adorned program P^a:
 - Turn the query $q[\vec{x}]$ into an adorned rule $\text{Query}^{ff...f}(\vec{x}) \leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in P for all adorned predicates in P^a.

(2) Initialise all auxiliary relations to empty sets.

(3) Evaluate the rule $\text{Query}^{ff...f}(\vec{x}) \leftarrow q[\vec{x}]$.
 Repeat until no new tuples are added to any QSQ relation.

(4) Return output $\text{Query}^{ff...f}$.
QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$S(x, x) \leftarrow h(x)$$

$$S(x, y) \leftarrow p(x, w) \land S(v, w) \land p(y, v)$$

with query $S(1, x)$.

\leadsto Query rule: $\text{Query}(x) \leftarrow S(1, x)$

Transformed rules:

$$\text{Query}^f(x) \leftarrow S^{bf}(1, x)$$

$$S^{bf}(x, x) \leftarrow h(x)$$

$$S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$$

$$S^{fb}(x, x) \leftarrow h(x)$$

$$S^{fb}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$$
Magic
Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed?
~ yes, by magic

Magic Sets

- “Simulation” of QSQ by Datalog rules
- Can be evaluated bottom up, e.g., with semi-naive evaluation
- The “magic sets” are the sets of tuples stored in the auxiliary relations
- Several other variants of the method exist
Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection

~ can we just implement this in Datalog?

Example 15.5: The QSQ information flow

\[
T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)
\]

\[
\uparrow \quad \downarrow \quad \uparrow \quad \downarrow
\]

input^{bf}_T \Rightarrow sup_0[x] \quad sup_1[x, y] \quad sup_2[x, z] \Rightarrow output^{bf}_T

could be expressed using rules:

\[
sup_0(x) \leftarrow input^{bf}_T(x)
\]

\[
sup_1(x, y) \leftarrow sup_0(x) \land output^{bf}_T(x, y)
\]

\[
sup_2(x, z) \leftarrow sup_1(x, y) \land output^{bf}_T(y, z)
\]

\[
output^{bf}_T(x, z) \leftarrow sup_2(x, z)
\]
Observation: $\text{sup}_0(x)$ and $\text{sup}_2(x, z)$ are redundant. Simpler:

\[
\begin{align*}
\text{sup}_1(x, y) & \leftarrow \text{input}^T_{\text{bf}}(x) \land \text{output}^T_{\text{bf}}(x, y) \\
\text{output}^T_{\text{bf}}(x, z) & \leftarrow \text{sup}_1(x, y) \land \text{output}^T_{\text{bf}}(y, z)
\end{align*}
\]

We still need to “call” subqueries recursively:

\[
\text{input}^T_{\text{bf}}(y) \leftarrow \text{sup}_1(x, y)
\]

It is easy to see how to do this for arbitrary adorned rules.
A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example 15.6: The following rule is correctly adorned

\[R^{bf}(x, y) \leftarrow T^{bbf}(x, a, y) \]

This leads to the following rules using Magic Sets:

\[\text{output}^{bf}_{R}(x, y) \leftarrow \text{input}^{bf}_{R}(x) \land \text{output}^{bbf}_{T}(x, a, y) \]
\[\text{input}^{bbf}_{T}(x, a) \leftarrow \text{input}^{bf}_{R}(x) \]

Note that we do not need to use auxiliary predicates \(\text{sup}_{0} \) or \(\text{sup}_{1} \) here, by the simplification on the previous slide.
Magic Sets: Summary

A goal-directed bottom-up technique:
- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if
- Database does not change very often (materialisation as one-time investment)
- Queries are very diverse and may use any IDB relation (bad for caching supplementary relations)

\[\rightarrow \text{semi-naive evaluation is still very common in practice} \]
Implementation
How to Implement Datalog

We saw several evaluation methods:

- Semi-naive evaluation
- QSQ(R)
- Magic Sets

Don’t we have enough algorithms by now?

No. In fact, we are still far from actual algorithms.

Issues on the way from “evaluation method” to basic algorithm:

- Data structures! (Especially: how to store derivations?)
- Joins! (low-level algorithms; optimisations)
- Duplicate elimination! (major performance factor)
- Optimisations! (further ideas for reducing redundancy)
- Parallelism! (using multiple CPUs)
- ...
General concerns

System implementations need to decide on their mode of operation:

- Interactive service vs. batch process
- Scale? (related: what kind of memory and compute infrastructure to target?)
- Computing the complete least model vs. answering specific queries
- Static vs. dynamic inputs (will data change? will rules change?)
- Which data sources should be supported?
- Should results be cached? Do we to update caches (view maintenance)?
- Is intra-query parallelism desirable? On which level and for how many CPUs?
- …
Datalog as a Special Case

Datalog is a special case of many approaches, leading to very diverse implementation techniques.

- **Prolog** is essentially “Datalog with function symbols” (and many built-ins).
- **Answer Set Programming** is “Datalog extended with non-monotonic negation and disjunction”
- **Production Rules** use “bottom-up rule reasoning with operational, non-monotonic built-ins”
- **Recursive SQL Queries** are a syntactically restricted set of Datalog rules

→ Different scenarios, different optimal solutions
→ Not all implementations are complete (e.g., Prolog)
Datalog Implementation in Practice

Dedicated Datalog engines as of 2018 (incomplete):

- **RDFox** Fast in-memory RDF database with runtime materialisation and updates
- **VLog** Fast in-memory Datalog materialisation with bindings to several databases, including RDF and RDBMS (co-developed at TU Dresden)
- **Llunatic** PostgreSQL-based implementation of a rule engine
- **Graal** In-memory rule engine with RDBMS bindings
- **SociaLite** and **EmptyHeaded** Datalog-based languages and engines for social network analysis
- **DeepDive** Data analysis platform with support for Datalog-based language “DDlog”
- **LogicBlox** Big data analytics platform that uses Datalog rules (commercial, discontinued?)
- **DLV** Answer set programming engine that is usable on Datalog programs (commercial)
- **Datomic** Distributed, versioned database using Datalog as main query language (commercial)
- **E** Fast theorem prover for first-order logic with equality; can be used on Datalog as well
- ...
Summary and Outlook

Several implementation techniques for Datalog

- bottom up (from the data) or top down (from the query)
- goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:

- naive evaluation (not goal-directed)
- semi-naive evaluation (not goal-directed)
- Magic Sets (goal-directed)

Next topics:

- Graph databases and path queries
- Dependencies