
Design and Results of the Second International
Competition on Computational Models of

Argumentation

Sarah A. Gaggla, Thomas Linsbichlerb, Marco Marateac,⇤, Stefan Woltranb

aFaculty of Computer Science, TU Dresden, Germany
bFaculty of Informatics, TU Wien, Austria

cDipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi,
Università di Genova, Italy

Abstract

Argumentation is a major topic in the study of Artificial Intelligence. Since
the first edition in 2015, advancements in solving (abstract) argumentation frame-
works are assessed in competition events, similar to other closely related problem
solving technologies. In this paper, we report about the design and results of the
Second International Competition on Computational Models of Argumentation,
which has been jointly organized by TU Dresden (Germany), TU Wien (Austria),
and the University of Genova (Italy), in affiliation with the 2017 International
Workshop on Theory and Applications of Formal Argumentation. This second
edition maintains some of the design choices made in the first event, e.g. the I/O
formats, the basic reasoning problems, and the organization into tasks and tracks.
At the same time, it introduces significant novelties, e.g. three additional promi-
nent semantics, and an instance selection stage for classifying instances according
to their empirical hardness.

Keywords: Abstract Argumentation, Solver Competition, Computational Logic

IThis paper is an extended and revised version of a paper presented at the First International
Workshop on Systems and Algorithms for Formal Argumentation (Gaggl et al., 2016), which
included the design of the event before the competition was run. A brief survey of the competition
is to be published in AI Magazine (Gaggl et al., 2018).

⇤Corresponding author
Email addresses: sarah.gaggl@tu-dresden.de (Sarah A. Gaggl),

linsbich@dbai.tuwien.ac.at (Thomas Linsbichler), marco@dibris.unige.it (Marco
Maratea), woltran@dbai.tuwien.ac.at (Stefan Woltran)

Preprint submitted to Artificial Intelligence August 1, 2019

1. Introduction

Computational Argumentation is a multidisciplinary area at the intersection
of Philosophy, Artificial Intelligence (AI), Linguistics, Psychology, and several
application domains (Bench-Capon and Dunne, 2007). Within AI, several sub-
fields are particularly relevant to – and benefit from – studies of argumentation.
These include decision support, knowledge representation, nonmonotonic reason-
ing, and multiagent systems. Moreover, computational argumentation provides
a formal investigation of problems that have been studied informally only by
philosophers, and which consequently allow for the development of computa-
tional tools for argumentation, see (Atkinson et al., 2017).

Since its invention by Dung (1995), abstract argumentation based on argu-
mentation frameworks (AFs) has become a key concept for the field. In AFs,
argumentation scenarios are modeled as simple directed graphs, where the ver-
tices represent arguments and each edge corresponds to an attack between two
arguments. Besides its simplicity, there are several reasons for the success story
of this concept: First, a multitude of semantics (Baroni et al., 2011, 2018) al-
lows for tight coupling of argumentation with existing formalisms from the areas
of knowledge representation and logic programming; indeed, one of the main
motivations of Dung’s work (Dung, 1995) was to give a uniform representation
of several nonmonotonic formalisms including Reiter’s Default Logic, Pollock’s
Defeasible Logic, and Logic Programming (LP) with default negation; the latter
lead to a series of works that investigated the relationship between different LP
semantics and different AF semantics, see e.g. (Wu et al., 2009; Caminada et al.,
2015). Second, abstract argumentation is employed as a core method in advanced
argumentation formalisms like ASPIC+ (Modgil and Prakken, 2014) or the ABA
framework (Cyras et al., 2018); in particular, semantics for such formalisms are
often defined via a representation that makes use of AFs, and moreover, some of
the systems implementing ASPIC+ or ABA rely on efficient solvers for abstract
argumentation. Consequently, an increasing amount of work has been focused on
the development of efficient algorithms and systems for AFs, see (Charwat et al.,
2015) for a survey.

Given this development, it was soon recognized that there is a need for system-
atic benchmarking in order to have a solid comparison of the different methods
and systems that have been proposed. This is witnessed by a number of papers
on the topic, e.g. (Bistarelli et al., 2015; Cerutti et al., 2016b; Bistarelli et al.,

2

2018; Vallati et al., 2018) and cumulated in the creation and organization of the
International Competition on Computational Models of Argumentation (ICCMA).
The first edition took place in 2015 and focused on four prominent semantics; 18
solvers were competing in this event, see (Thimm et al., 2016; Thimm and Villata,
2017) for details.

In this report, we present the design and results of the Second International
Competition on Computational Models of Argumentation (ICCMA’17)1, which
has been jointly organized by TU Dresden (Germany), TU Wien (Austria), and the
University of Genova (Italy), in affiliation with the 2017 International Workshop
on Theory and Applications of Formal Argumentation (TAFA’17). ICCMA’17
has been conducted in the first half of 2017, and comes two years after the first
edition.

The general goal of this competition is to consolidate and strengthen the IC-
CMA series, which in its first edition had very good outcomes in some respects,
e.g. in terms of the number of submitted solvers (18, as already mentioned above).
The second edition maintains some of the design choices previously made, e.g. the
I/O formats and the basic reasoning problems. With a slight modification to the
first edition, the competition is organized into tasks and tracks, where a task is a
reasoning problem under a particular semantics, and a track collects different tasks
over a semantics. ICCMA’17 also introduces several novelties: (i) a new scoring
scheme is implemented for better reflecting the solvers’ behavior, (ii) three new
semantics are included, namely semi-stable, stage and ideal semantics, (iii) a spe-
cial “Dung’s Triathlon” track is added, where solvers are required to deal with
different problems simultaneously, with the goal of testing the solvers’ capability
of exploiting interrelationships among semantics, and (iv) a “call for benchmarks”
has been performed, to enrich the suite of instances for the competition, followed
by a novel instance selection stage.

In addition to the report of the competition, we also compare in this article the
performance of the ICCMA’15 winning systems to the current leaders.

Besides its importance for the argumentation community, the ICCMA series
is also of interest for researchers beyond this field. This is due to the following
two reasons:

• Solvers need to handle a variety of different semantics which range over
different levels of complexity; in ICCMA’17 we put even more emphasis
on this rather unique feature by the introduction of the Dung’s triathlon,

1
http://argumentationcompetition.org/2017/

3

where the systems are required to solve problems situated at three dif-
ferent complexity layers, preferably exploiting interrelationships between
these problems. (We note that problems of different complexity are also
present in other competitions, e.g. in Quantified Satisfiability (QBF) or in
Answer Set Programming (ASP) competitions, see (Pulina, 2016; Calimeri
et al., 2016; Gebser et al., 2017)); however, the situation is more challeng-
ing in argumentation since the diverse complexity actually stems from the
different semantics which require different computational tasks including
subset-maximization, fixed-point computations, etc.)

• Given the range of submitted solvers, we see a great variety of approaches.
In particular, various methods including (different forms of) reductions to
SAT, ASP, constraint satisfaction, and circumscription are employed in the
submitted systems. Thus, ICCMA also provides (to a certain extent) an in-
terdisciplinary comparison between different reasoning paradigms in AI.2.

The report is structured as follows. Section 2 introduces preliminaries about ab-
stract argumentation, with focus on the semantics evaluated in the competition.
Then, Section 3 presents the design of the competition. Section 4 and 5 are de-
voted to the description of the benchmark suite employed in the competition, and
the instance selection process, respectively. Section 6 then presents the partici-
pating solvers. The results of the competition, with respective award winners, are
then presented in Section 7. The report ends in Section 8 with a discussion on
how the novelties introduced are treated in related competitions, and in Section 9
with conclusions and final remarks.

2. Background

An abstract argumentation framework (AF, for short) is a tuple F = (A,!)
where A is a set of arguments and ! is a relation !✓ A⇥A (Dung, 1995). For
two arguments a,b2A the relation a! b means that argument a attacks argument
b. An argument a2A is defended by S ✓A (in F) if for each b2A such that b! a
there is some c 2 S such that c ! b. A set E ✓ A is conflict-free (in F) if and only
if there are no a,b 2 E with a ! b. E is admissible (in F) if and only if it is

2It has to be mentioned that this not a completely new phenomenon. For instances, SAT-based
approaches competed in ASP competitions, see, e.g. (Giunchiglia et al., 2006), and likewise, an
ASP-based approach for 2-QBF solving participated (Amendola et al., 2016) to the 2016 QBF
evaluation.

4

conflict-free and each a 2 E is defended by E. Finally, the range of E (in F) is
given by E+

F = E [{a 2 A | 9b 2 E : b ! a}.
Semantics are used to determine sets of jointly acceptable arguments by map-

ping each AF F = (A,!) to a set of extensions s(F)✓ 2A. The extensions under
complete (CO), preferred (PR), stable (ST), semi-stable (SST) (Caminada et al.,
2012), stage (STG) (Verheij, 1996), grounded (GR) and ideal (ID) (Dung et al.,
2007) semantics are defined as follows. Given an AF F = (A,!) and a set E ✓ A,

• E 2 CO(F) iff E is admissible in F and if a 2 A is defended by E then
a 2 E,

• E 2 PR(F) iff E 2 CO(F) and there is no E 0 2 CO(F) s.t. E 0 � E,

• E 2 ST(F) iff E 2 CO(F) and E+
F = A,

• E 2 SST(F) iff E 2 CO(F) and there is no E 0 2 CO(F) s.t. E 0+
F � E+

F ,

• E 2 STG(F) iff E is conflict-free in F and there is no E 0 such that E 0 is
conflict-free in F and E 0+

F � E+
F ,

• E 2 GR(F) iff E 2 CO(F) and there is no E 0 2 CO(F) s.t. E 0 ⇢ E,

• E 2 ID(F) iff E is admissible in F , E ✓
T

PR(F) and there is no E 0 ✓T
PR(F) s.t. E 0 is admissible in F and E 0 � E,

For more discussion on these semantics we refer to Baroni et al. (2011).
Note that both grounded and ideal extensions are uniquely determined and

always exist (Dung, 1995; Dung et al., 2007). Thus, they are also called single-
status semantics. The other semantics introduced are multi-status semantics. That
is, there is not always a unique extension induced by the semantics. For all seman-
tics except stable semantics, there always exists at least one extension, whereas the
set of stable extensions can be empty. If the set of stable extensions is non-empty,
it coincides with the set of semi-stable extensions and with the set of stage exten-
sions, i.e. ST(F) = SST(F) = STG(F) whenever ST(F) 6= /0.

Example 1. To illustrate the semantics, consider the following AF:

F = ({a,b,c,d,e, f ,g,h},
{(a,b),(b,a),(b,c),(c,d),(d,e),(d,g),(e,c),(e, f),(f , f),(g,g),(g,h),(h,g)}).

5

a b c d

e f

g h

Figure 1: An argumentation framework.

F is depicted in Figure 1, where nodes represent arguments and directed edges
represent attacks. First, the conflict-free sets of F are as follows:

{ /0,{a},{b},{c},{d},{e},{h},{a,c},{a,d},{a,e},{a,h},{b,d},{b,e},
{b,h},{c,h},{d,h},{e,h},{a,c,h},{a,d,h},{a,e,h},{b,d,h},{b,e,h}}.

Note that no set containing f or g can be conflict-free, since both f and g are
self-attacking. Among the conflict-free sets, the following sets are admissible:

{ /0,{a},{b},{h},{a,h},{b,d},{b,h},{b,d,h}}.

The conflict-free set {a,d}, for instance, is not admissible since d is attacked by c
in F , but {a,d} does not attack c, i.e. it does not defend d.

For stable semantics, it can be checked that there is no conflict-free set of argu-
ments in F attacking all other arguments, hence:

ST(F) = /0.

The complete extensions of F are those admissible sets which do not defend any
argument not contained in the set:

CO(F) = { /0,{a},{h},{a,h},{b,d,h}}.

For instance, the admissible set {b,d} is not complete since it defends h. As no
argument of F is unattacked, the grounded extension is empty:

GR(F) = { /0}.

The preferred extensions are just the ✓-maximal admissible sets, which always
coincide with the ✓-maximal complete extensions:

PR(F) = {{a,h},{b,d,h}}.

6

The semi-stable and stage extensions of F are given as follows:

SST(F) ={{b,d,h}}.
STG(F) ={{a,e,h},{b,e,h},{b,d,h}}.

Finally, {h}=
T

PR(F) and {h} is admissible, hence

ID(F) = {{h}}.

In order to reason with multi-status semantics, usually, one takes either a cred-
ulous or skeptical perspective.

Given a semantics3 s 2 {CO,PR,ST,SST,STG,GR,ID}, we thus define the
following decision problems:

• Creds : Given an AF F = (A,!) and argument a 2 A, a is credulously
accepted in F under semantics s if there is a s -extension E 2 s(F) with
a 2 E;

• Skepts : Given an AF F = (A,!) and argument a 2 A, a is skeptically
accepted in F with semantics s if for all s -extensions E 2 s(F) it holds
that a 2 E.

Recall that stable semantics is the only case where an AF might possess no
extension. In such a situation, each argument is defined to be skeptically accepted.

Further reasoning problems for any semantics s are defined as follows:

• Vers : Given an AF F = (A,!) and a set of arguments S ✓ A, decide
whether S 2 s(F).

• Existss : Given an AF F = (A,!), decide whether there exists an S 2 s(F).

• Exists¬ /0
s : Given an AF F = (A,!), decide whether there exists an S 2 s(F)

with S 6= /0.

• Enums : Given an AF F = (A,!), enumerate the set s(F).

3For the sake of uniformity, we include here also the single-status semantics GR, ID; clearly,
in this case credulous and skeptical acceptance coincides.

7

Table 1: Complexity of reasoning with AFs. C -c means that the problem is complete for class C .

s Creds Skepts Vers Existss Exists¬ /0
s Enums

CO NP-c P-c in L trivial NP-c nOP

PR NP-c ⇧
P
2 -c coNP-c trivial NP-c nOP

ST NP-c coNP-c in L NP-c NP-c nOP

GR P-c P-c P-c trivial in L in DelayP

STG ⌃
P
2 -c ⇧

P
2 -c coNP-c trivial in L nOP

SST ⌃
P
2 -c ⇧

P
2 -c coNP-c trivial NP-c nOP

ID in ⇥
P
2 in ⇥

P
2 in ⇥

P
2 trivial in ⇥

P
2 nOP

Complexity of reasoning problems under the various semantics has been stud-
ied in (Dimopoulos and Torres, 1996; Dunne and Bench-Capon, 2002; Caminada
et al., 2012; Dvořák and Woltran, 2010; Dunne et al., 2013; Kröll et al., 2017). The
most recent survey can be found in (Dvořák and Dunne, 2018). Table 1 provides
an overview. We thereby assume familiarity with basic concepts such as com-
pleteness and the polynomial hierarchy (see (Arora and Barak, 2009) for more
details). The class ⇥

P
k is a refinement of the class �

P
k : it contains the problems

that can be decided in polynomial time by a deterministic Turing machine with
at most O(logm) calls to a ⌃

P
k�1 oracle, where m is the input size. By nOP we

denote that the enumeration problem is not contained in the class OutputP (also
called TotalP), i.e. it is not solvable in polynomial time in the size of the input and
the output (Johnson et al., 1988; Strozecki, 2010)4. Containment in DelayP on
the other hand means that the extensions can be enumerated with a delay which is
polynomial in the size of the input.

3. Format of ICCMA’17

This section presents the main design of the competition. The competition is
organized into tracks, which are divided into tasks. Two sub-sections are devoted
to their definitions. A third sub-section then presents the scoring system, which
changed from ICCMA’15 in order to focus more on correctness of answers. Re-
lated to this issue, a fourth sub-section outlines how we verified correctness of

4Note that the result for ID is not published, but immediate by the fact that VerID is coNP-
complete (Dunne, 2009) and therefore the ideal extension is not computable in polynomial time.

8

answers. Finally, information about I/O requirements is given.

3.1. Tasks
A task is a reasoning problem under a particular semantics. We consider the

semantics CO, PR, ST, and GR which have already been employed in the first
edition, and additionally the semantics SST, STG, and ID; the motivation to add
these three semantics is due to the fact that their complexity differs from the
semantics already considered. Following ICCMA’15 we consider four different
problems:

DC-s : Given F = (A,!) and a 2 A, decide whether a is credulously accepted in
F under s ,

DS-s : Given F = (A,!) and a 2 A, decide whether a is skeptically accepted in
F under s ,

SE-s : Given F = (A,!), return some set E ✓ A that is a s -extension of F ,

EE-s : Given F = (A,!), enumerate all sets E ✓ A that are s -extensions of F ,

for the seven semantics s 2 {CO,PR,ST,SST,STG,GR,ID}.
For single-status semantics (GR and ID) some problems collapse, i.e. SE and

EE require to compute the unique extension; and DC and DS are equivalent. Thus,
for GR and ID only the problems SE and DC are considered. At this point, we
also recall the well known fact that DS-CO coincides with DC-GR and DC-PR

coincides with DC-CO.
The combination of problems with semantics amounts to a total number of 24

tasks.

3.2. Tracks
All tasks for a particular semantics constitute a track. Therefore, there is one

track for each semantics.
Moreover, the competition features an eighth special track, the Dung’s Triathlon.

It is named after Phan Minh Dung, and involves enumerating three of the main se-
mantics (grounded, stable, and preferred) from his seminal paper (Dung, 1995).
The aim of this track is to evaluate solvers also with respect to their capability of
exploiting interrelationships between different semantics.

More concretely, the problem to solve in this track is defined as follows:

D3: Given F = (A,!), enumerate

9

• all sets E ✓ A that are GR-extensions5 of F , followed by

• all sets E ✓ A that are ST-extensions of F , followed by

• all sets E ✓ A that are PR-extensions of F .

3.3. Scoring system
Each solver can compete in an arbitrary set of tasks. If a solver supports all

tasks of a track, it also participates in the track.
To compute the score for a solver, we start by defining the number of points a

solver can get for each instance:

• 1 point, if it delivers a correct result;

• �5 points, if it delivers an incorrect result; or

• 0 points otherwise.

The precise understanding of what is a correct, or an incorrect, answer will be
given in the next sub-section. Here, we focus on explaining how the solvers are
ranked.

But before going into these details, we would like to stress a difference to
ICCMA’15: in this edition wrong answers are penalized, while in ICCMA’15
they were treated as being neither correct nor incorrect, and got 0 points. The
objective, as already stated before, is to put focus on solvers’ correctness.

The score of a solver for a particular task is the sum of points over all instances.
The ranking of solvers for a task is then based on the scores in descending order.
Ties between solvers with the same score are broken by the total time it took the
solver to return correct results.

The ranking of solvers for a track is based on the sum of scores over all tasks of
the track, where each task is guaranteed to have the same impact on the evaluation
of the track by all having the same number of instances (see Section 5 for details
about the number of instances). Again, ties are broken by the total time it took the
solver to return correct results.

As far as the Dung’s triathlon in concerned, scoring and ranking follow the
same method as for the single tasks.

5Although grounded semantics is a single-status semantics, we treat it here like a multi-status
semantics for the sake of uniformity.

10

3.4. Verification of answers
In this sub-section we discuss how the solvers’ answers have been verified.

Before going into the details, in the following we precisely define the concepts of
correct and incorrect answers:

• DC-s (resp. DS-s): if the queried argument is credulously (resp. skepti-
cally) accepted in the given AF under s , the result is correct if it is YES and
incorrect if it is NO; if the queried argument is not credulously (resp. not
skeptically) accepted in the given AF under s , the result is correct if it is
NO and incorrect if it is YES.

• SE-s : the result is correct if it is a s -extension of the given AF and incor-
rect if it is a set of arguments that is not a s -extension of the given AF. If
the given AF has no s -extensions, then the result is correct if it is NO and
incorrect if it is any set of arguments.

• EE-s : the result is correct if it is the set of all s -extensions of the given
AF and incorrect if it contains a set of arguments that is not a s -extension
of the given AF.

• D3: the result is correct if it is the set of all GR-extensions, followed by the
set of all ST-extensions, followed by the set of all PR-extensions, and incor-
rect if the first set contains a set of arguments that is not the GR-extension,
the second set contains a set of arguments that is not a ST-extension, or the
third set contains a set of arguments that is not a PR-extension.

Intuitively, a result is neither correct nor incorrect (and therefore gets 0 points)
if (i) it is empty (e.g. the timeout was reached without answer) or (ii) it is not
parsable with respect to the required output format (e.g. due to some unexpected
error message). For EE-s there is also the case that the result (iii) contains s -
extensions, but not all of them. Case (iii) applies also to the Dung’s triathlon,
recursively on the three sub-problems.

To verify the correctness of results, we employ the following checking pro-
cedure. First, we generate reference solutions by running ASPARTIX-D (Egly
et al., 2010; Gaggl et al., 2015), extended by the encodings for the new seman-
tics,6 on all benchmarks selected for the competition (see Section 5). For the

6The ICCMA’15 version can be found at https://iccl.inf.tu-dresden.de/web/

11

instances that ASPARTIX-D is able to solve, we compare the solutions with
the reference solutions in order to assess correctness. For the other instances,
we then use dedicated ASP encodings to check single extensions (available at
http://argumentationcompetition.org/2017/SE_encodings.zip) to ver-
ify answers for the SE and EE reasoning problems. These ASP encodings are
directly derived from the ASPARTIX encodings – the part for guessing an exten-
sion is replaced by the given extension which is to be checked. For the other tasks
as well as these cases where also checking all single extensions was not feasible,
we then consider the solution provided by the majority of solvers as correct (other
solutions could always be checked to be wrong though). The detailed number
of uniquely solved instances by a certain solver will be given in Section7, also
including the number of instances for each track and solver which could not be
verified. In total only approx. 0.1% out of the 105350 solutions could not be
verified and thus have been rated with 1 point. In none of the tracks these had an
influence on the ranking of the solvers.

3.5. Solver requirements
Participant systems were required to support the same input-output format as

used in 2015. Details on the input and output formats can be found in (ICCMA’17-
Solreq, 2017).

4. Benchmark Suite

In this section we outline the benchmark suite available for ICCMA’17, which
has been the starting point for the selection phase (described in the next section).
The suite is composed both by domains employed in ICCMA’15 and by new do-
mains, the latter received in response to a dedicated call for benchmarks. The next
two sub-sections are devoted to the presentation of these two sets of domains.

4.1. Previous domains
ICCMA’15 introduced three new AF generators, called GroundedGenerator,

StableGenerator, and SccGenerator, each of them aiming to produce challenging

Sarah_Alice_Gaggl/ASPARTIX-D; the additional encodings are available at https://www.
dbai.tuwien.ac.at/proj/argumentation/systempage. The choice of this particular solver
is due to (i) its declarative nature, (ii) its good results in 2015, (iii) the fact that it is “third-party”
in 2017 given that it does not participate, and (iv) its reputation in the community (“state of the art
of ASP-based solvers” Bistarelli et al. (2014)).

12

AFs addressing certain aspects of computational difficulty. They have been imple-
mented (Cerutti et al., 2014b) and employed to generate the AFs that constituted
the benchmark suite of ICCMA’15. In the following, we briefly describe the gen-
erators, but refer to (Thimm and Villata, 2017) for more details.

GroundedGenerator This generator aims at producing AFs with large grounded
extensions. It takes the number of arguments n and probability probAttacks
as parameters, linearly orders the arguments and adds an attack from argu-
ment a to argument b in case a < b with probability probAttacks. Finally,
it adds random attacks between the arguments not yet connected and the
graph component obtained in the first part.

SccGenerator This generator aims at producing AFs such that the graph features
many Strongly Connected Components (SCCs). It first partitions the ar-
guments (the number of which is given by parameter n) into nSCCs (also
given as parameter) components which are linearly ordered. Within each
component, attacks between any pair of arguments are added with prob-
ability given by parameter innerAttackProb. Among arguments of dif-
ferent components, attacks are added with probability given by parameter
outerAttackProb, but under the condition that the component of the at-
tacking arguments is ranked lower with respect to the linear order on com-
ponents than the component of the attacked argument.

StableGenerator This generator aims at producing AFs with a large number of
stable extensions. It first identifies a set of arguments to form an acyclic
subgraph of the AF and, consequently, to contain the grounded extension.
Among the other arguments, subsets are iteratively singled out to form sta-
ble extensions by attacking all other arguments. Besides the parameter n
for the number of arguments, the algorithm is further guided by the param-
eters minNumExtensions, maxNumExtensions, minSizeOfExtensions,
maxSizeOfExtensions, minSizeOfGroundedExtension, and
maxSizeOfGroundedExtension, which determine heuristic values for the
minimum and maximum number of stable extensions, the minimum and
maximum size of stable extensions, and the minimum and maximum size
of grounded extensions, respectively.

4.2. New Domains
ICCMA’17 takes advantage, for the first time, of a dedicated call for bench-

marks, which is customary in other competitions. The goal of this call has been to

13

enlarge the set of domains that are considered in the competition, and thus possibly
having a more heterogeneous set of benchmarks in the evaluation. Contributors
were asked to provide an instance set for the benchmark they submitted, and/or
an instance generator, possibly with an indication about the estimated difficulty
of the instances. We have received 6 submissions, among them AF generators as
well as concrete sets of AFs, thus meeting our desiderata to have a heterogeneous
set of benchmarks, i.e. random, crafted, and application-oriented, as a benchmark
suite of the competition.

Herewith we briefly describe the domains that were submitted:

“ABA2AF” by Tuomo Lehtonen (University of Helsinki, Finland), Johannes P.
Wallner (TU Wien, Austria), Matti Järvisalo (University of Helsinki, Fin-
land), are assumption-based argumentation (ABA) benchmarks translated to
AFs. ABA problems are one of the prevalent forms of structured argumen-
tation in which, differently from AFs, the internal structure of arguments is
made explicit through derivations from more basic structure (Toni, 2014).
The translation employed is described in (Lehtonen et al., 2017). The orig-
inal ABA set contains randomly generated cyclic and acyclic ABAs that,
after a selection from the authors, resulted in a total of 426 instances.

AdmBuster by Martin Caminada (Cardiff University, UK), Mikolaj Podlaszewski
(Talkwalker), is a crafted benchmark example for (strong) admissibility. It
is made of a fixed structure composed of 4 sets of arguments and prede-
termined sets of attacks. The number n is a parameter of the generator.
Two “starting” and “terminal” sets are composed of only one element, one
having only outgoing edges and the other only incoming edges. The two
“intermediate” sets have cardinality n�2, and their attack relations are con-
structed in order to have only one complete labelling. Details can be found
in (Caminada, 2014). At the competition, 13 instances generated with dif-
ferent values of n are considered.

AFBenchGen2 by Federico Cerutti (Cardiff University, UK), Mauro Vallati (Uni-
versity of Huddersfield, UK), Massimiliano Giacomin (University of Bres-
cia, Italy), is a generator of random AFs of three different graph classes,
with a configurable number of arguments (Cerutti et al., 2016a). The three
classes correspond to Erdös-Rényi (Erdös and Rényi, 1959), which selects
attacks randomly, Watts-Strogatz (Watts and Strogatz, 1998), which aims
for a small-world topology of networks being not completely random nor

14

regular, and Barabasi-Albert (Barabasi and Albert, 1999) for large networks.
For each graph class, the generator takes the number of arguments n as
parameter. 1400 instances have been generated, of which 500 are from
Barabasi-Albert class, 500 are from Erdös-Rényi class, and 400 are from
Watts-Strogatz class. In the following, we provide some more details for
such three classes:

• Barabasi-Albert: This graph class is motivated by a common prop-
erty of many large networks, i.e. that the node connectivities fol-
low a scale-free power-law distribution. Therefore, the generator of
a Barabasi-Albert graph iteratively connects a new node by preferring
sites that are already well connected. In addition, a postprocessing
procedure adds attacks in order to ensure a certain amount of cycles in
the graph. This amount is controlled by the parameter probCycles.
An attack is added as long as the number of SCCs of the AF is higher
than n · (1�probCycles).

• Erdös-Rényi: Graphs are generated by randomly selecting attacks be-
tween arguments. For any two distinct arguments, the probability of
an attack between them is given by the parameter probAttacks. The
direction of the attack is chosen randomly.

• Watts-Strogatz: First, a ring of n arguments is generated where each
argument is connected to its k (a parameter of the generator) nearest
neighbors in the ring. Then, each argument is connected to the remain-
ing arguments with a probability b (another parameter of the genera-
tor). Finally, as in Barabasi-Albert, random attacks are added as long
as the number of SCCs of the AF is higher than n · (1�probCycles).

“Planning2AF” by Federico Cerutti (Cardiff University, UK), Massimiliano Gi-
acomin (University of Brescia, Italy), Mauro Vallati (University of Hudder-
sfield, UK), are AFs obtained from translating the well-known Blocksworld
and Ferry planning domains. Each planning instance is first encoded as a
propositional formula, by using the method in (Sideris and Dimopoulos,
2010); then, each clause is transformed into a material implication; and, fi-
nally, to each material implication the transformation in (Wyner et al., 2015)
is applied. This domain comprises 385 instances.

SemBuster by Martin Caminada (Cardiff University, UK), Bart Verheij (Rijks-
universiteit Groningen, Netherlands), is a crafted benchmark example for

15

semi-stable semantics. It has a fixed structure composed by 3 sets of ar-
guments of equal cardinality, and predetermined sets of attacks. Given a
parameter n, attack relations are defined in a way that each instance has ex-
actly n+1 complete labellings that correspond also to preferred labellings,
but only one among those corresponds to a semi-stable extension. Details
can be found in (Caminada and Verheij, 2010). At the competition, 16 in-
stances generated with different values of n are considered.

“Traffic” by Martin Diller (TU Wien, Austria), are graphs obtained from real
world traffic networks data available at https://transitfeeds.com/ ex-
pressed as AFs. Given a graph, the corresponding AF contains the same set
of vertices as the graph, and the attack relation is defined as follows: Given
an existing edge, and a probability for the attack of being symmetric, the
generator decides whether there are both attacks, or randomly selects the
attack. A total of 600 instances are provided, 200 for each of the proba-
bilities 0.2, 0.5, and 0.8. Although these instances do not directly relate to
argumentation applications, we decided to include them in the competition,
in order to have an orthogonal class of sparse graphs with certain structural
features.

More detailed descriptions for such domains can be found in the ICCMA’17
home page at (ICCMA’17-Soldes, 2017).

Table 2 gives details on the collected benchmarks by stating, for each do-
main, the number of instances as well as the parameters used for generating the
instances. If the benchmark submission consists of a set of instances, we sim-
ply considered them all. For domains emerging from submissions of benchmark
generators, we produced instances randomly with the aim of covering a possibly
broad range of difficulty. The exact parameters used for generating the instances
can be read off from Table 2. In some cases, parameters are chosen randomly
from an interval. This is denoted by random[a,b]. In other cases, all values in a
set are considered, denoted by {v1,v2, . . . ,vn}.

Thus, the benchmark suite of ICCMA’17 is finally composed of 3990 instances
over 11 domains. This yields a healthy mixture of benchmarks ranging from ran-
dom instances to more structured AFs which are either handcrafted or instantiated
from different application domains.

16

Domain Inst. Parameters

ABA2AF 426 all submitted instances
AdmBuster 13 n in {1000,2000,4000, . . . ,10000,20000,50000,100000,200000,500000,1000000,2000000}
Barabasi-Albert 500 5 random instances for each (n, probCycles) in {20,40, . . . ,200}⇥{0,0.1, . . . ,0.9}
Erdös-Rényi 500 10 random instances for each (n, probAttacks) in {100,200, . . . ,500}⇥{0.1,0.2, . . . ,1.0}
GroundedGenerator 50 n = random[100,1500]; 10 random instances for each probAttacks in {0.01,0.02, . . . ,0.05}
Planning2AF 385 all submitted instances
SccGenerator 600 n = random[100,1500]; nSCCs= random[1,50]; 25 random instances for each

(innerAttackProb, outerAttackProb) in {0.3,0.4, . . . ,0.7}⇥{0.05,0.1,0.15,0.2}.
n = random[5000,10000]; no. SCCs random[40,50]; 5 random instances for each
(innerAttackProb, outerAttackProb) in {0.3,0.4, . . . ,0.7}⇥{0.05,0.1,0.15,0.2}.

SemBuster 16 n in {60,150,300,600, . . . ,1800,2400,3000,3600,4200,4800,5400,6000,7500}
StableGenerator 500 n = random[100,800]; 500 random instances with parameters minNumExtensions= 5,

maxNumExtensions= 30, minSizeOfExtensions= 5, maxSizeOfExtensions= 40,
minSizeOfGroundedExtension= 5, maxSizeOfGroundedExtension= 40

Traffic 600 all submitted instances
Watts-Strogatz 400 (n, k, b , probCycles) in {100,200, . . . ,500}⇥{log2(n),2 · log2(n),3 · log2(n),4 · log2(n)}⇥

{0.1,0.3, . . . ,0.9}⇥{0.1,0.3,0.5,0.7}

Table 2: Description of (generated) benchmarks constituting the benchmark suite.

5. Benchmark Selection

With the benchmark suite described in the previous section, the goal of this
phase is to select the instances that are indeed run in the competition. In order to
guide this selection, the instances are classified into hardness categories according
to the performance of a set of solvers from the previous competition. Finally, the
instances to be run at the competition are selected based on this classification,
following a predefined distribution over hardness categories.

As the tasks of the competition span over a wide range of complexity (cf. Ta-
ble 1), a single set of benchmarks for the whole competition might not be suitable.
Therefore we aim to adjust the benchmarks to the complexity of the tasks, while
keeping the total amount of different benchmarks manageable. To this end, we
introduce a grouping of tasks according to their difficulty, such that each of the
groups gets a dedicated set of benchmarks. The classification into groups A to
E is based on known complexity results and corroborated by the analysis of the
results of ICCMA’15. The applied grouping is the following:

Group A: DS-PR, EE-PR, EE-CO.

Group B: DC-ST, DS-ST, EE-ST, SE-ST, DC-PR, SE-PR, DC-CO.

Group C: DS-CO, SE-CO, DC-GR, SE-GR.

Group D: DC-ID, SE-ID.

Group E: DC-SST, DS-SST, EE-SST, SE-SST, DC-STG, DS-STG, EE-STG,
SE-STG.

Hence, the classification and selection has to be done for each group. However,
since there are no reference solvers for the tasks of groups D and E (these are the
ones newly employed in this edition), we do not perform a dedicated selection for
these groups. Instead, the tasks of these groups are assigned the same benchmark
set as group A, because they are of high complexity and we expect solvers to be
less mature since ICCMA’15 did not feature these tasks yet.

The following sub-sections present how instances are classified, how instances
are selected, and, finally, how the query arguments for the DC and DS tasks are
selected.

18

5.1. Benchmark Classification
To classify the hardness of instances, competitions in other research fields such

as SAT (SAT-Comp, 2009; Järvisalo et al., 2012; Balint et al., 2015), ASP (Geb-
ser et al., 2017), and IPC for automated planning (Vallati et al., 2015), employ
best solvers from the most recent competition in the series. We follow this idea
by also doing a classification of benchmarks based on the performance of solvers
from ICCMA’15. However, in ICCMA the situation shows two significant dif-
ferences. On the one hand, the number of tasks and tracks employed in ICCMA
(significantly) exceeds the number of tasks and tracks in other competitions. On
the other hand, ICCMA’17 features new semantics (and, consequently, new tasks
and tracks), so no reference results are at disposal.

Due to the second point, the option of selecting the best solvers from the pre-
vious edition for each task is not feasible. But, even considering only tasks which
are being conducted for the second time, this option would lead to a very high
number of solvers to run for the classification. Instead, we identify “represen-
tative” tasks for each task group A, B, and C which have also been conducted in
ICCMA’15. Moreover, as mentioned earlier, we abstain from classifying instances
for tasks in groups D and E, but merge these tasks with the ones from group A
and employ the same set of benchmarks. We identify the following representative
tasks which will be used for classification:

• Group A: EE-PR

• Group B: EE-ST

• Group C: SE-GR

All task groups contain enumeration as well as decision tasks. We select enu-
meration tasks as representative, as the performance of solvers on decision tasks
highly depends on the argument for which acceptance is to be decided. Therefore,
enumeration tasks can give a better estimate of the difficulty of instances.

(Best) Solver selection. For each representative task we aim to select “representa-
tive” solvers from ICCMA’15, to get a proper estimate of the instances’ hardness.
Solvers to run for each group are thus selected by (i) considering best perform-
ing solvers from 2015 for the tasks, and (ii) ensuring that the selected solvers are
based on different solving approaches, in order not to have results biased through
a single solving approach. The following solvers from ICCMA’15 are selected
(see (Thimm and Villata, 2015) for system descriptions):

19

• Group A: Cegartix, CoQuiAAS, Aspartix-V

• Group B: Aspartix-D, ArgSemSAT, ConArg

• Group C: CoQuiAAS, LabSATSolver, ArgSemSAT

Both Cegartix (Dvořák et al., 2014) and ArgSemSAT (Cerutti et al., 2014a)
implement (iterative) SAT based approaches; CoQuiAAS (Lagniez et al., 2015)
makes use of Partial Max-SAT; Aspartix-V and Aspartix-D (Egly et al., 2010;
Gaggl et al., 2015) employ a translation to ASP; ConArg (Bistarelli and Santini,
2011) is based on Constraint Programming; and LabSATSolver (Beierle et al.,
2015) implements a direct approach (for SE-GR). All of the solvers have been
among the top 5 solvers in the respective tasks in ICCMA’15. Hence, the selection
is in line with (i) and (ii).

Hardness categories. The obtained performance results of the 3 selected solvers
in each group are then taken to classify instances into hardness categories by pick-
ing the upmost category such that the following conditions apply:

[very easy] Instances completed by all systems in less than 6 seconds solving
time.

[easy] Instances completed by all systems in less than 60 seconds solving time.

[medium] Instances completed by all systems in less than 10 minutes solving
time.

[hard] Instances completed by at least one system in 20 minutes (twice the time-
out) solving time.

[too hard] Instances such that none of the systems finished solving in 20 minutes.

The results of the classification are summarized in Tables 3, 4, and 5 for task
groups A, B, and C7, respectively. It can be seen that almost every combination of
domain and difficulty category contains instances. Only for the “too hard” cate-
gory we are not able to obtain instances for every domain (even for no domain for
task group C). If at least two of the representative solvers crashes for an instance,
the instance is not classified (abbreviated by “n. c.” in the tables), and therefore
not considered for selection.

7AdmBuster domain in Table 5 contains two additional instances with n of 1500000 and
2500000.

20

Table 3: Classification results for task group A.

A: EE-PR total very easy easy medium hard too hard n. c.
ABA2AF 426 381 19 16 10 0 0
AdmBuster 13 4 3 2 4 0 0
Barabasi-Albert 500 267 25 20 42 145 1
Erdös-Rényi 500 180 109 43 46 122 0
Watts-Strogatz 400 264 28 10 12 86 0
GroundedGenerator 50 9 8 6 27 0 0
Planning2AF 385 95 35 34 187 33 1
SccGenerator 600 398 78 44 79 0 1
SemBuster 16 2 1 3 9 1 0
StableGenerator 500 260 34 24 182 0 0
Traffic 600 164 11 11 284 127 3
Total 3990 2024 351 213 882 514 6

Table 4: Classification results for task group B.

B: EE-ST total very easy easy medium hard too hard n. c.
ABA2AF 426 407 18 1 0 0 0
AdmBuster 13 9 1 1 2 0 0
Barabasi-Albert 500 262 19 5 122 92 0
Erdös-Rényi 500 247 102 31 49 71 0
Watts-Strogatz 400 201 39 26 76 58 0
GroundedGenerator 50 19 25 5 1 0 0
Planning2AF 385 117 5 5 159 99 0
SccGenerator 600 248 66 65 218 3 0
SemBuster 16 6 6 4 0 0 0
StableGenerator 500 225 26 37 73 139 0
Traffic 600 275 7 2 70 245 1
Total 3990 2016 314 182 770 707 1

21

Table 5: Classification results for task group C.

C: SE-GR total very easy easy medium hard too hard n. c.
ABA2AF 426 404 21 1 0 0 0
AdmBuster 15 7 1 1 6 0 0
Barabasi-Albert 500 500 0 0 0 0 0
Erdös-Rényi 500 424 44 11 21 0 0
Watts-Strogatz 400 296 36 21 47 0 0
GroundedGenerator 50 20 25 1 4 0 0
Planning2AF 385 359 23 3 0 0 0
SccGenerator 600 485 84 31 0 0 0
SemBuster 16 3 1 0 12 0 0
StableGenerator 500 308 62 42 88 0 0
Traffic 600 459 42 51 50 0 0
Total 3992 3265 339 162 228 0 0

5.2. Benchmark selection
The final benchmark set for each task group is made up of 350 instances,

distributed over the difficulty categories as follows:

• 50 very easy,

• 50 easy,

• 100 medium,

• 100 hard,

• 50 too hard.

Due to the lack of “too hard” instances for group C (cf. Table 5), the number
of “hard” instances is increased to 150 there.

We aim for an even distribution of benchmarks over levels of difficulty, but
also among domains. Now, in order to select n instances for a certain task group
and a certain class of difficulty, we apply the following procedure: for each
domain d, we are given the set Id of instances and want to select a subset Sd
of these instances. Now for each domain such that Id is non-empty, we select
one element of Id at random, i.e. remove it from Id and add it to Sd . We re-
peat this process until we have selected n instances, i.e. the sum over all |Sd| is
n. In the last iteration, when the number of domains where Id is non-empty is

22

Table 6: Number of selected instances for each task group, difficulty class, and domain, where
difficulty classes 1 to 5 stand for very easy, easy, medium, hard, and too hard, respectively. “T”
indicates the total number of selected instances.

Task group A B C
Difficulty class 1 2 3 4 5 T 1 2 3 4 5 T 1 2 3 4 5 T
ABA2AF 5 5 12 10 0 32 5 5 1 0 0 11 5 6 1 0 0 12
AdmBuster 4 3 2 4 0 13 4 1 1 2 0 8 4 1 1 6 0 12
Barabasi-Albert 5 5 11 10 10 41 5 5 5 14 8 37 5 0 0 0 0 5
Erdös-Rényi 5 5 11 10 9 40 5 5 19 13 7 49 5 6 11 21 0 43
Watts-Strogatz 5 5 10 10 10 40 5 5 20 14 8 52 5 6 21 36 0 68
GroundedGenerator 4 5 6 9 0 24 4 4 5 1 0 14 5 6 1 4 0 16
Planning2AF 5 6 12 10 10 43 5 5 5 14 8 37 5 6 3 0 0 14
SccGenerator 5 5 11 9 0 30 4 5 19 14 3 45 4 6 21 0 0 31
SemBuster 2 1 3 9 1 16 4 5 4 0 0 13 3 1 0 12 0 16
StableGenerator 5 5 11 9 0 30 4 5 19 14 8 50 4 6 20 35 0 65
Traffic 5 5 11 10 10 41 5 5 2 14 8 34 5 6 21 36 0 68
Total 50 50 100 100 50 350 50 50 100 100 50 350 50 50 100 150 0 350

higher than the number of instances that remains to be selected, the domains to
be chosen from are determined randomly. A more rigorous description of this
procedure can be found at http://argumentationcompetition.org/2017/
benchmark-selection-algorithm.pdf.

Example 2. Assume domains D = {a,b ,g,d} such that we have 1 instance for
domain a , 2 for b , 4 for g , and 11 for d , i.e. |Sa | = 1, |Sb | = 2, |Sg | = 4, and
|Sd |= 11. Further assume that we want to select n = 10 instances. The selection
algorithm will return all instances from a and b , 3 instances from g and d , and 1
additional instance randomly selected from either g or d .

The numbers of selected instances for every domain, task group, and difficulty
category can be read off from Table 6.

The instances for Dung’s triathlon are selected based on the classification for
task group A, but by a separate process. That means that the numbers of instances
per domain coincide with group A, but instances are not necessarily the same.

No stable extensions. Semi-stable and stage extensions coincide with stable ex-
tensions if at least one of the latter exists. In this case, the complexity of the
reasoning tasks drops to the level of the corresponding tasks for stable semantics
(cf. Table 1). Therefore, in order to force solvers to deal with the “full hardness”
of semi-stable and stage semantics, we want to make sure that the selection for

23

these semantics contains a sufficient amount of benchmarks possessing no sta-
ble extensions. To this end, we checked the selected instances on existence of
stable extensions by running ASPARTIX-D from ICCMA’15 (winning solver for
all tasks involving stable semantics). The numbers are shown in Table 7: for 22
instances no answer is provided by ASPARTIX-D. We consider the number of
instances without stable extensions (114) to be satisfactory.

Table 7: Analysis of the existence of stable extensions.

hardness category ST(F) 6= /0 ST(F) = /0 unknown
very easy 34 16 0
easy 34 16 0
medium 60 40 0
hard 56 33 11
too hard 30 9 11
total 214 114 22

5.3. Argument Selection
Due to the joint evaluation of all tasks for a semantics, making up a track, the

number of benchmarks has to be constant among the tasks. Therefore, for the
acceptance tasks we cannot select multiple arguments for every instance. Instead,
we select only one argument for each instance, with the exception that we dropped
the “very easy” instances for acceptance tasks and selected two arguments to be
queried for the “too hard” instances, which again amounts to 350 instances in
total.

For each task group except group D the query arguments are selected at ran-
dom, maintaining a minimum number of yes- and no-instances, respectively. For
group A and E, the same arguments are used.

Ideal Semantics. While the selection of arguments for the decision tasks DC and
DS in all task groups except D was done randomly, for the task DC-ID we were
aiming for a more sophisticated selection in order to select the “interesting” argu-
ments for the acceptance task.

That selection was based on the following insights:

• if the query argument is contained in the grounded extension, then the an-
swer to DC-ID is always yes;

24

Table 8: Distribution of selected arguments for DC-ID, with F being the AF and G its grounded
extension.

G
T

PR(F)\G A\
T

PR(F)
easy 14 15 21
medium 21 21 58

• if the query argument is not contained in every preferred extension, then the
answer to DC-ID is always no.

Hence, we aimed for a considerable number of instances for which we select an
argument contained in all preferred extensions, but not in the grounded extension.

We did so by considering the following strategy: Given an AF F = (A,R), let
G2GR(F) be its grounded extension. Moreover, let a and b be random variables
with a uniform distribution in the interval [0,1].

1. if
T

PR(F)\G 6= /0 and a < 0.9, select an argument randomly fromT
PR(F)\G;

2. otherwise, if G 6= /0 and b < 0.6, select an argument randomly from G;
3. otherwise, select an argument randomly from A\

T
PR(F).

That is, if arguments that we consider “interesting” as described before exist,
we select one of them with a high probability (0.9). Otherwise we give a slight
preference (probability of 0.6) to the arguments contained in the grounded exten-
sion, given that the grounded extension is not empty.

This strategy is applied to the selection of query arguments for instances in the
easy and medium hardness category. The obtained distributions of the selected
arguments is given in Table 8. We randomly select the arguments for the hard and
too hard instances.

6. Participants

Sixteen solvers participate in the competition, and are listed in Table 9, to-
gether with the list of contributors and their institutions, and a main reference in
the last column. New entries compared to the previous edition are marked by ?.

System descriptions for all solvers can be found on the competition webpage
at http://argumentationcompetition.org/2017/submissions.html. The
set of participants is characterized by a great variety of solving approaches. We
provide a grouping based on these approaches and provide some highlights for
each group. Detailed results will be presented in Section 7.

25

Solver Contributors Reference

argmat-clpb? Fuan Pu (Tsinghua University, China) Pu et al. (2017)
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Yucheng Chen (Tsinghua University, China)

argmat-dvisat? Fuan Pu (Tsinghua University, China) Pu et al. (2017)
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

argmat-mpg? Fuan Pu (Tsinghua University, China) Pu et al. (2017)
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

argmat-sat? Fuan Pu (Tsinghua University, China) Pu et al. (2017)
Guiming Luo (Tsinghua University, China) https://sites.google.com/site/argumatrix/
Ya Hang (Tsinghua University, China)

ArgSemSAT Federico Cerutti (Cardiff University, UK)
Mauro Vallati (University of Huddersfield, UK) Cerutti et al. (2014a)
Massimiliano Giacomin (University of Brescia, Italy) https://sourceforge.net/projects/argsemsat/
Tobia Zanetti (University of Brescia, Italy)

ArgTools Samer Nofal (German Jordanian University, Jordan) Nofal et al. (2016)
Katie Atkinson (University of Liverpool, UK) https://sourceforge.net/projects/argtools
Paul E. Dunne (University of Liverpool, UK)

ASPrMin? Wolfgang Faber (University of Huddersfield, UK)
Mauro Vallati (University of Huddersfield, UK) Faber et al. (2016)
Federico Cerutti (Cardiff University, UK) https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz

Massimiliano Giacomin (University of Brescia, Italy)
cegartix Wolfgang Dvořák (TU Wien, Austria) Dvořák et al. (2014)

Matti Järvisalo (University of Helsinki, Finland) http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/

Johannes P. Wallner (TU Wien, Austria)
Chimærarg? Federico Cerutti (Cardiff University, UK) Cerutti et al. (2018)

Mauro Vallati (University of Huddersfield, UK) https://github.com/federicocerutti/Chimaerarg
Massimiliano Giacomin (University of Brescia, Italy)

ConArg Stefano Bistarelli (University of Perugia, Italy) Bistarelli and Santini (2011)
Fabio Rossi (University of Perugia, Italy) http://www.dmi.unipg.it/conarg/
Francesco Santini (University of Perugia, Italy)

CoQuiAAS Jean-Marie Lagniez (University of Artois, France) Lagniez et al. (2015)
Emmanuel Lonca (University of Artois, France) http://www.cril.univ-artois.fr/coquiaas
Jean-Guy Mailly (University of Artois, France)

EqArgSolver? Odinaldo Rodrigues (King’s College London, UK) Gabbay and Rodrigues (2016)
http://nms.kcl.ac.uk/odinaldo.rodrigues/eqargsolver

gg-sts? Tomi Jahunen (Aalto University, Finland) Bogaerts et al. (2016)
Shahab Tasharrofi (Aalto University, Finland) https://research.ics.aalto.fi/software/sat/gg-sts/

goDIAMOND Stefan Ellmauthaler (Leipzig University, Germany) Ellmauthaler and Strass (2014)
Hannes Strass (Leipzig University, Germany) https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/

heureka? Nils Geilen (University of Koblenz-Landau, Germany) Geilen and Thimm (2017)
Matthias Thimm (University of Koblenz-Landau, Germany) https://github.com/nilsgeilen/heureka

pyglaf? Mario Alviano (University of Calabria, Italy) Alviano (2017)
http://alviano.com/software/pyglaf/

Table 9: List of participants, with contributors, main reference paper, and link to the solver home
page. ? means newly submitted in the ICCMA series.

26

• Reductions to SAT: argmat-dvisat, argmat-sat, ArgSemSAT, cegartix, Co-
QuiAAS, gg-sts. All of these systems are implemented in C++. argmat-
dvisat, argmat-sat, ArgSemSAT, and cegartix rely on reductions to SAT or
(iterative) calls to SAT solvers. Two of them are among the top five solvers
for each track except GR. While the backbone of both ArgSemSAT and ce-
gartix is MiniSAT (Eén and Sörensson, 2003), argmat-dvisat and argmat-sat
use CryptoMiniSat (https://github.com/msoos/cryptominisat) for
SAT solving. gg-sts does not use SAT directly, but a reduction to an exten-
sion of the second-order logic system presented in (Bogaerts et al., 2016).
Finally, CoQuiAAS uses various constraint programming techniques such
as MaxSAT and Maximal Satisfiable Sets extraction.

• Reductions to CSP: argmat-clpb, argmat-mpg, ConArg. All of these sys-
tems are implemented in C++. argmat-clpb employs Constraint Logic Pro-
gramming over Boolean variables in Prolog, while argmat-mpg uses a re-
duction to CSP using Gecode (http://www.gecode.org/). Both are based
on formulations of argumentation problems in Boolean matrix algebra. Also
ConArg implements a CSP approach using Gecode.

• Reductions to circumscription: pyglaf. pyglaf is implemented in Python and
uses a circumscription solver extending the SAT solver glucose (Audemard
and Simon, 2009). pyglaf participated in all tracks and is one of the most
successful participants (see below).

• Reductions to ASP: ASPrMin, goDIAMOND. Both systems rely on the
state-of-the-art ASP system clingo (Gebser et al., 2014). While goDIA-
MOND consists of a suite of different encodings for all the considered
semantics (plus some native implementation for GR and ID), ASPrMIN
makes use of a particular feature of clingo to control the heuristics such that
only a certain form of subset-maximal answer-sets are delivered. This can
be used to enumerate prefererred extensions. Consequently, ASPrMIN only
participated in the EE-PR task (and, in fact, was the best solver for this sin-
gle task) , whereas goDIAMOND entered all tracks (and reached the 2nd
place in ST).

• Direct approaches: ArgTools, EqArgSolver, heureka. All of these solvers
implement genuine algorithms in C++. EqArgSolver is an enhancement of
GRIS (submitted to ICCMA’15, (Thimm and Villata, 2015)) and uses the
discrete version of the Gabbay-Rodrigues iteration schema (Gabbay and

27

Rodrigues, 2016). ArgTools and heureka use various forms of backtracking
algorithms on the basis of labellings of arguments.

• Portfolio-based approaches: Chimærarg. This system uses all the solvers
that took part in the EE-PR, and respectively, EE-ST tasks of ICCMA’15,
for generating a static schedule of solvers, whose performance are mea-
sured in terms of PAR10 score. Chimærarg participated in these two tasks
in ICCMA’17, running Cegartix, GRIS, LabSATSolver and ArgTools. Un-
fortunately, Chimærarg delivered some wrong results and thus did not rank
very well. Checking the number of solved instances however shows the po-
tential of this system. We shall provide a separate analysis of comparing
best solvers from ICCMA’15 and ICCMA’17 in Section 7.2.

In Table 10 we also provide information about the participation to tasks of each
solver. The table contains the solvers in its rows, and the tasks in its columns: a
“
p

” indicates that a solver competes in a task. The table is completed by a last
row reporting the number of solvers participating to each task, and a last column
with the number of tasks supported by each solver. Without taking into account
ASPrMin and Chimærarg, which are specifically designed for enumeration and
focus on very few semantics, all other solvers participate in at least 10 tasks. Half
of the submitted solvers participate in all 25 tasks. The number of participants
in single tasks ranges from 9 to 15 solvers. As far as participation in tracks is
concerned, each track includes between 9 (STG semantics) and 14 (CO, ST, and
GR semantics) solvers.

7. Results and Awards

In this section we present the results of our experiments, run on a cluster of
Intel Xeon (Haswell) with 2.60GHz, where time and memory limits have been
set to 10 minutes and 4 GB for all tasks but D3, and to 30 minutes and 6.5 GB
for D3. The first sub-section is devoted to announce the winners. In the second
sub-section we compare the award winners of this year and the best solvers from
the ICCMA’15 competition on this year’s benchmarks, on common tracks.

7.1. Award winners
In this sub-section we outline the winners of the competition. We remind that

the winner of each track has been awarded.

28

D3 CO PR ST SST STG GR ID

Solver DC DS SE EE DC DS SE EE DC DS SE EE DC DS SE EE DC DS SE EE DC DS DC SE #Task

argmat-clpb
p p p p p p p p p p

10
argmat-dvisat

p p p p p p p p p p p p p p p p p
17

argmat-mpg
p p

25
argmat-sat

p p
25

ArgSemSAT
p p p p p p p p p p p p p p p p p p

18
ArgTools

p p
24

ASPrMin
p

1
cegartix

p p
25

Chimærarg
p p

2
ConArg

p p
25

CoQuiAAS
p p

25
EqArgSolver

p p p p p p p p p p p p p p p
15

gg-sts
p p

25
goDIAMOND

p p
25

heureka
p p p p p p p p p p p p p p

14
pyglaf

p p
25

#Solver 10 14 14 14 14 13 13 13 15 14 14 14 15 10 10 10 10 9 9 9 9 14 14 10 10

Table 10: Tasks supported by solvers.

29

Results are presented in Figures 2–9, where at the top there is the ranking of
solvers, and at the bottom the companion cactus plots. More specifically, the rank-
ing of solvers is presented through tables organized as follows: the first column
contains the name of the solver, the second column is the score of the respec-
tive solver (computed as defined in Section 3), while the third column reports
the cumulative time of correctly solved instances. The fourth and fifth columns
count the number of correct and wrong solutions given by each solver. In the
sixth column the number of instances reaching timeout (TO) is given. The entries
in seventh column (Other) stand for all other instances which also got 0 points.
These are incomplete, memory-out and not-parseable solutions including those
where the solvers could only return some error messages. The last column with
USC (u) shows the unique solver contributions (USC), being the number of in-
stances where only one solver could give a solution. The additional entries (u)
stand for unchecked, that is the number of USC which could not be verified (this
is not specified when USC is 0). Solvers are ordered by score, and ties are broken
by cumulative time, as defined already in Section 3. Cactus plots, instead, present
another view of the results by showing the cumulative number of correctly solved
instances (x-axis) within a given CPU time (y-axis).

To sum up:

• pyglaf has been the winner of the CO, ST, and ID semantics;

• argmat-sat has been the winner of the SST and STG semantics;

• ArgSemSAT, CoQuiAAS and argmat-dvisat won the PR, GR, and D3 se-
mantics, respectively.

Interestingly, argmat-dvisat was not awarded as winner in any of the other
track, but is the best solver in the D3 track, where different semantics are consid-
ered. It is also worth to be noted that the set of winner solvers involves AF solvers
based on different forms of reductions to SAT, CSP and circumscription.

In the following we discuss the correctness of the solvers and the USC. The
solvers argmat-clpb, argmat-dvisat, argmat-mpg, argmat-sat, ArgSemSAT, EqArg-
Solver and heureka always returned correct solutions in all tracks. The solver
pyglaf had only one incorrect solution in DS-PR, ConArg returned 4 incorrect an-
swers in EE-CO, goDIAMOND had in total 15 wrong answers in tracks EE-CO

and EE-PR. ArgTools had wrong solutions in tracks DS-ST, DC-SST, DS-SST

and DC-STG, DS-STG and EE-STG. Although the solver CoQuiAAS is the

30

Solver Points Time Correct Wrong TO Other USC (u)
pyglaf 1229 28774.77 1229 0 168 3 0
cegartix 1188 19846.86 1188 0 205 7 1 (0)
argmat-sat 1167 10472.57 1167 0 204 29 0
goDIAMOND 1156 18166.98 1176 4 181 39 2 (0)
argmat-dvisat 1151 15259.38 1151 0 226 23 0
CoQuiAAS 1132 10785.98 1132 0 149 119 0
argmat-mpg 1126 15133.06 1126 0 227 47 2 (2)
heureka 1018 9869.94 1018 0 309 73 0
ConArg 1017 51015.41 1037 4 130 229 19 (11)
ArgTools 935 36134.08 935 0 444 21 0
ArgSemSAT 900 20077.48 900 0 299 201 0
EqArgSolver 401 5430.45 401 0 92 907 0
argmat-clpb 40 4779.14 40 0 1109 251 0
gg-sts -1170 18203.86 834 402 107 57 12 (12)

●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●

●

●
●

●

●

●

●

●

●

●●

●●

0 200 400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●
●●●
●●●
●
●●●●
●●●●
●●

●●
●●
●●●

●●
●
●●
●●
●
●●
●

●
●
●●

●
●
●

●

●

●

●

●

●

●●

●●
●●●

●●●
●●●

●●
●●

●●●●●●●●●●●●●●●●●
●●●●●
●●
●
●
●●●
●
●
●

●●
●
●
●
●

●

●

●

●

●

●

●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●
●●●●●●●●●●
●●●
●●●●●
●●●●
●●●
●●●

●●●●●●
●●●
●●●
●●
●●●

●●●●
●
●●●
●●●●
●
●●

●●●●

●
●●●●

●●●●
●

●

●

●
●

●●

●●

●

●

●

argmat−clpb
argmat−dvisat
argmat−mpg
argmat−sat
ArgSemSAT
ArgTools
cegartix
conarg
CoQuiAAS
EqArgSolver
gg−sts
goDIAMOND
heureka
pyglaf

Figure 2: CO track: Ranking of solvers (top). Cactus plot of runtimes (bottom).
31

winner of the track GR and had no sanity problems in CO, in all other tracks
many wrong answers were given. Finally gg-sts had wrong answers in all tracks.
From the ranking of the solvers in all tracks it is easy to see that the penalty of
-5 for each wrong answer had the desired effect to rank solvers with many wrong
answers at the very end of the ranking.

The solvers ChimaerArg and ASPrMin are not listed in the tables, as they
did not contribute in all tasks of a track, thus we summarize the results for them
in the following. ASPrMin was the winner of the task EE-PR with 285 correct
solutions, 0 wrong answers and thus obtained the score 285. The 2 USCs have
been verified and 63 instances resulted in timeouts while 2 fall into the category
Other. The solver ChimaerArg returned 255 correct solutions for the task EE-
ST and 95 wrong answers, this results in the score -220. From the 21 USCs, 12
could not be verified. For EE-PR, ChimaerArg had 207 correct solutions and 23
wrong answers resulting in the score 92. All 120 answers with 0 points fall into
the category Other.

Finally, Table 11 gives more details for the track winners. In particular it is
given, for each track, the number of points acquired by the winning system in
each domain. More in details, the table is organized as follows: the rows contain
the domains and the columns the track winners. Each column is then divided
in two sub-columns containing the number of points acquired by the solver and
the maximum acquirable number of points in a domain, respectively. The table
is complemented by a last row and a last column containing the total number of
points acquired (or, acquirable) by each solver and in a domain, respectively.

7.2. Comparison to the results of ICCMA’15
By comparing the award winners of the 2017 event with those of the first edi-

tion, which cumulatively awarded CoQuiAAS, ArgSemSAT, and LabSATSolver
in first, second and third place, respectively, we notice that CoQuiAAS and ArgSem-
SAT are in this year the winners of two tracks and ArgSemSAT is second-best in
another track, while for the remaining semantics other AF solvers, mainly new-
comers, have best performance.

Goal of this sub-section is to (qualitatively) compare the award winners of this
year’s event to the best solvers in the past competition on common tracks. The
comparison is done using the benchmarks from the current competition.

Given that the first competition awarded only global results, we applied the
Borda count to the tracks of 2015 to get track winners. Thus, the 2015 (version
of the) solvers ASPARTIX-D, ArgSemSAT, again ASPARTIX-D, and CoQuiAAs
have been run for CO, PR, ST, and GR semantics, respectively. Such additional

32

Solver Points Time Correct Wrong TO Other USC (u)
ArgSemSAT 1146 36607.37 1146 0 234 20 8 (0)
argmat-sat 1139 25110.57 1139 0 245 16 0
pyglaf 1122 43394.57 1127 1 272 1 5 (5)
argmat-dvisat 1075 28597.16 1075 0 307 18 2 (2)
cegartix 1075 58263.31 1075 0 302 23 0
goDIAMOND 1014 51717.30 1069 11 289 31 0
ArgTools 898 53147.54 898 0 501 1 0
ConArg 773 48197.84 773 0 433 194 1 (0)
heureka 745 19691.87 745 0 655 0 0
argmat-mpg 745 30744.76 745 0 470 185 0
EqArgSolver 652 6930.97 652 0 139 609 0
CoQuiAAS -863 7756.35 477 268 228 427 0
gg-sts -1107 32999.15 678 357 285 80 2 (1)

0 200 400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●
●●●●●●
●●
●
●●●●●
●●●
●●●●●
●●●
●●●
●●
●●
●
●●
●
●●
●

●●●●
●
●●
●●●●●●
●●
●●
●●
●●
●●
●
●●
●●●
●
●
●●
●
●
●●●

●●●
●

●●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●
●●●●●●
●●●●●
●●●
●●●●
●●●
●●●●
●●●●●
●●
●●●
●●
●●●
●●●●●
●●●
●●●
●
●●●●●
●
●
●
●●●
●●
●●
●●
●●
●●
●●
●●●●●●●
●●
●

●

●

●●

●●
●
●
●
●

●
●
●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●●
●●●
●●●●●●
●●●●●
●●●●
●●
●
●●●●
●●●●●
●●●●●
●●●
●●
●●●●
●●●●●
●●●
●●●●
●●●
●●●
●●
●
●●●
●

●
●

●

●●
●●●
●●

●●●●
●●
●●

●

●●●
●

●

●●
●
●
●

●

●

●

argmat−dvisat
argmat−mpg
argmat−sat
ArgSemSAT
ArgTools
cegartix
conarg
CoQuiAAS
EqArgSolver
gg−sts
goDIAMOND
heureka
pyglaf

Figure 3: PR track: Ranking of solvers (top). Cactus plot of runtimes (bottom).

33

Solver Points Time Correct Wrong TO Other USC (u)
pyglaf 1183 47155.98 1183 0 217 0 0
goDIAMOND 1143 30116.76 1143 0 224 33 5 (0)
argmat-sat 1129 22087.70 1129 0 247 24 0
cegartix 1102 33963.81 1102 0 283 15 1 (0)
argmat-mpg 1073 52284.56 1073 0 311 16 1 (1)
argmat-dvisat 1039 22591.20 1039 0 334 27 1 (0)
ConArg 1002 58792.29 1002 0 348 50 0
heureka 938 29417.69 938 0 439 23 0
ArgSemSAT 888 23200.99 888 0 291 221 1 (0)
ArgTools 687 45465.87 917 46 316 121 0
EqArgSolver 558 7820.17 558 0 118 724 0
argmat-clpb 135 8840.31 135 0 1133 132 0
CoQuiAAS -299 13647.26 821 224 297 58 0
gg-sts -1193 19037.19 782 395 187 36 1 (0)

●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●
●●●●●●●●●●●
●●
●●●
●
●●

●●●●
●
●
●●
●

●●
●

●●●
●●
●

●●
●

●

●

●
●
●

0 200 400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●●
●●
●
●●●●●●
●●●●●
●●●●
●●
●
●
●●
●●●●
●●●
●●●
●●●●
●●●●
●●
●●●●●●●
●●●
●●●●●●●●
●●
●●●●●●●
●●●●
●●

●●●●●
●●●●●●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●
●●●

●
●
●

●●
●●
●●●●
●
●
●●●●

●●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●
●●●●●
●●
●●●●●●●
●●
●●●
●●●
●●
●●●●●
●●●●●●
●●
●●●●
●●●●

●
●

●●
●
●
●

●
●●

●●
●●

●●●

●

●

●
●

●

●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●
●●●●●●●
●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●
●●●●●
●●●●●
●●
●●●
●●●●
●●
●●●
●

●●●●
●●●●
●●
●●●
●●●●●●
●●
●●●
●●●●●
●●●●
●●●
●●
●●●
●●●●
●●
●●
●●●●●●

●●●
●●
●●
●
●

●

●
●

●

●

●

argmat−clpb
argmat−dvisat
argmat−mpg
argmat−sat
ArgSemSAT
ArgTools
cegartix
conarg
CoQuiAAS
EqArgSolver
gg−sts
goDIAMOND
heureka
pyglaf

Figure 4: ST track: Ranking of solvers (top). Cactus plot of runtimes (bottom).
34

Solver Points Time Correct Wrong TO Other USC (u)
argmat-sat 1164 26043.50 1164 0 236 0 4 (1)
ArgSemSAT 1113 38816.07 1113 0 264 23 3 (0)
cegartix 1091 62543.78 1091 0 282 27 8 (0)
pyglaf 1047 41378.28 1047 0 349 4 1 (0)
goDIAMOND 1032 57957.15 1032 0 323 45 0
argmat-mpg 755 11464.36 755 0 419 226 3 (3)
ConArg 668 38572.13 668 0 437 295 24 (24)
ArgTools 268 52108.16 568 60 614 158 0
gg-sts -1321 22846.63 564 377 237 222 8 (2)
CoQuiAAS -1642 4855.65 218 372 215 595 0

0 200 400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●
●●●●●
●●●●
●●●
●●●●

●●
●●●
●●

●
●

●
●●

●●●●

●●●
●●

●●●
●

●●
●

●●
●●
●●●
●●●
●
●

●

●

●●
●●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●
●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●
●
●●●
●●
●●
●●
●
●●●
●
●●
●●●●

●

●
●●
●●●
●

●

●
●

●

●

●

●●●

●

●

●

●
●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●
●●●
●●●●●●●●
●●
●●●●●●●
●●●●
●●
●●
●●●●●
●●●
●●●
●●
●●
●●●
●●
●●●●
●●
●●●
●●●●●
●●●●
●●

●●●●
●

●●
●●

●

●●
●
●

●●
●●
●●
●●

●

●

●

●

argmat−mpg
argmat−sat
ArgSemSAT
ArgTools
cegartix
conarg
CoQuiAAS
gg−sts
goDIAMOND
pyglaf

Figure 5: SST track: Ranking of solvers (top). Cactus plot of runtimes (bottom).

35

Solver Points Time Correct Wrong TO Other USC (u)
argmat-sat 1065 19948.06 1065 0 332 3 50 (1)
pyglaf 909 32019.47 909 0 488 3 2 (0)
cegartix 898 62852.40 898 0 502 0 3 (0)
goDIAMOND 724 31394.75 724 0 629 47 0
ConArg 649 43482.21 649 0 490 261 29 (29)
argmat-mpg 618 8381.57 618 0 396 386 4 (0)
ArgTools 67 9558.97 172 21 1207 0 3 (3)
CoQuiAAS -305 4162.59 320 125 272 683 0
gg-sts -1325 8242.35 185 302 654 259 4 (0)

0 200 400 600 800 1000 1200 1400

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●
●●●

●●●●
●●●●●
●●
●●●●●
●●●●●●
●●●●●
●●
●●

●●●●
●●
●●●
●●●●●
●●
●●
●●

●●
●

●●
●
●●●
●●●●
●
●●●●
●●
●

●●●●
●

●
●●
●●

●●●
●

●

●

●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●

●●●
●
●

●
●
●

●●

●
●●

●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●
●●●●●●
●
●●
●●●
●●●●
●●
●●
●●●
●●
●●
●●●
●
●●●●
●●●●●●●●●
●●●●
●
●●
●
●●●
●●
●●

●●
●●●●

●●
●
●●
●●
●
●
●●●
●●●
●●
●

●●
●●

●●
●●
●●
●●●

●

●
●

●

●

●

argmat−mpg
argmat−sat
ArgTools
cegartix
conarg
CoQuiAAS
gg−sts
goDIAMOND
pyglaf

Figure 6: STG track: Ranking of solvers (top). Cactus plot of runtimes (bottom).

36

Solver Points Time Correct Wrong TO Other USC
CoQuiAAS 695 335.85 695 0 3 2 0
cegartix 695 1152.51 695 0 0 5 0
heureka 690 671.37 690 0 8 2 0
goDIAMOND 688 627.43 688 0 12 0 0
pyglaf 683 11595.16 683 0 14 3 0
argmat-dvisat 682 163.80 682 0 4 14 0
argmat-clpb 682 263.21 682 0 4 14 0
EqArgSolver 682 502.80 682 0 18 0 0
argmat-sat 682 504.75 682 0 4 14 0
ArgTools 674 15664.26 674 0 26 0 0
argmat-mpg 662 580.80 662 0 4 34 0
ConArg 588 703.33 588 0 0 112 0
ArgSemSAT 561 11444.85 561 0 119 20 0
gg-sts -1871 4246.95 264 427 0 9 0

●●●
●●●●●

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●
●●●●●
●●●●●●
●●●●●
●●●
●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●
●●

●●●●●
●●●
●●●●
●●
●●●●
●●
●●●
●●●
●●●●

●●●●

●●

●●●●
●●
●●

●●

●●

●●

●
●

●

●

●

●

argmat−clpb
argmat−dvisat
argmat−mpg
argmat−sat
ArgSemSAT
ArgTools
cegartix
conarg
CoQuiAAS
EqArgSolver
gg−sts
goDIAMOND
heureka
pyglaf

Figure 7: GR track: Ranking of solvers (top). Cactus plot of runtimes (bottom).
37

Solver Points Time Correct Wrong TO Other USC (u)
pyglaf 585 17341.50 585 0 88 27 4 (0)
argmat-dvisat 493 17650.83 493 0 199 8 0
argmat-sat 477 16605.80 477 0 215 8 2 (0)
goDIAMOND 414 22496.34 414 0 270 16 0
cegartix 368 25388.79 548 36 109 7 0
ArgTools 268 20089.40 268 0 385 47 0
argmat-mpg 217 16031.89 217 0 396 87 0
ConArg 181 13254.90 181 0 434 85 1 (0)
CoQuiAAS -794 2597.28 156 190 94 260 1 (0)
gg-sts -1050 13379.17 205 251 197 47 2 (0)

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●
●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●●
●●●●
●
●●●●
●●●●●
●●●●
●●
●●

●●●●●
●
●●
●●●●
●●●●●
●●●●
●●
●●

●
●

●●●●
●●●
●●●
●●
●
●

●●

●●●

●●
●●●●●●●●●●
●●●●●●
●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●
●●●
●
●

●●●
●

●●

●
●●

●
●●

●●●
●●
●

●●
●

●

●●
●
●

●

●
●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●
●●●●●
●●●●●●
●●●●●●
●●●
●●

●
●

●●●

●●
●●
●●

●●
●●
●
●

●
●

●
●

●●

●

●●
●
●●

●

●

●

argmat−dvisat
argmat−mpg
argmat−sat
ArgTools
cegartix
conarg
CoQuiAAS
gg−sts
goDIAMOND
pyglaf

Figure 8: ID track: Ranking of solvers (top). Cactus plot of runtimes (bottom).

38

Solver Points Time Correct Wrong TO Other USC (u)
argmat-dvisat 276 20222.07 276 0 68 6 5 (5)
pyglaf 275 25212.29 275 0 55 20 1 (1)
argmat-sat 271 22441.56 271 0 64 15 3 (3)
cegartix 259 35715.67 259 0 80 11 1 (0)
EqArgSolver 192 6577.89 192 0 32 126 0
ConArg 192 52007.99 192 0 20 138 2 (2)
goDIAMOND 179 28857.58 179 0 52 119 0
argmat-mpg 164 35916.74 164 0 158 28 0
gg-sts -326 25767.12 144 94 77 35 0
CoQuiAAS -498 441.22 32 106 43 169 0

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved correctly

C
PU

 ti
m

e

●●●
●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●

●●●
●●●
●●
●●●●●●
●●●●●●●●

●●●●●
●●●●
●●
●●●
●●
●
●●
●●

●●
●●
●●

●
●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●●●

●●
●●
●●●
●●
●●

●●●●●
●
●

●●
●●
●●●

●
●●
●●

●●

●

●
●

●
●

●

●

●●

●●

●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●
●
●●●●●
●●●●●
●
●●●●
●●●
●
●
●●●
●●●
●●
●●

●●●
●●●

●●
●
●
●●
●

●

●

●

●●●

●

●

argmat−dvisat
argmat−mpg
argmat−sat
cegartix
conarg
CoQuiAAS
EqArgSolver
gg−sts
goDIAMOND
pyglaf

Figure 9: D3 track: Ranking of solvers (top). Cactus plot of runtimes (bottom).

39

C
O

–
py

gl
af

PR
–

A
rg

Se
m

SA
T

ST
–

py
gl

af

SS
T

–
ar

gm
at

-s
at

ST
G

–
ar

gm
at

-s
at

G
R

–
C

oQ
ui

A
A

S

ID
–

py
gl

af

D
3

–
ar

gm
at

-d
vi

sa
t

To
ta

lo
fp

oi
nt

s

M
ax

.n
um

be
ro

fp
oi

nt
s

ABA2AF 57 57 76 76 34 34 118 118 118 118 19 19 59 59 32 32 513 513
AdmBuster 36 39 28 34 24 24 44 44 41 44 17 22 14 22 7 13 211 242
BA 71 86 130 164 146 154 156 174 156 174 5 5 87 87 31 41 782 885
ER 157 181 147 184 124 200 97 168 74 168 90 90 58 84 27 40 774 1115
GroundedGenerator 61 61 58 68 48 48 88 88 88 88 27 27 44 44 24 24 438 448
Planning2AF 81 106 136 168 147 154 169 182 169 182 23 23 91 91 38 43 854 949
SccGenerator 131 132 141 144 167 178 106 110 63 110 58 58 53 55 30 30 749 817
SemBuster 33 57 37 53 35 44 62 62 62 62 32 32 6 31 13 16 280 357
StableGenerator 198 224 126 159 165 208 82 110 73 110 140 140 33 55 21 30 838 1036
Traffic 203 224 121 158 134 142 149 174 148 174 146 146 87 87 22 41 1010 1146
WS 201 233 146 192 159 214 93 170 73 170 138 138 53 85 31 40 894 1242

1229 1400 1146 1400 1183 1400 1164 1400 1065 1400 695 700 585 700 276 350 7343 8750

Table 11: Points acquired by track winners for each domain.

experiments have been conducted on a separate machine, which is an Intel Xeon
CPU E5345, 2.33GHz; 2 processors with each 4 physical cores; no hyperthreading
enabled.

Results are reported in Figures 10–16, where each figure contains 4 plots com-
paring two solvers on two tasks with the following structure: the top and bottom
plots are devoted to each task, while the left and right plots present results in terms
of box (i.e. a per-instance analysis where a point represents the results of the two
compared solvers on the same instance) and cactus (i.e. a cumulative analysis that
shows the number of solved instances within a certain CPU time), respectively.
Moreover, in the left plots the 2015 solver is on the x-axis and the 2017 solver is
on the y-axis, while in the right plots the behavior of the 2015 solver is indicated
with a solid blue line with circle, while for the 2017 solver is used a dashed red
line with triangles. Figures 10, 12, and 14 contain the analysis for the DC and
DS decision tasks, in top and bottom plots, respectively, of the CO, PR, and ST

tracks, while Figures 11, 13, and 15 contain analysis for the SE and EE enumera-
tion tasks, in top and bottom plots, respectively, of the same semantics. Figure 16
contains the results of the single-status semantics GR.

Let us have a closer look on these comparisons. For the CO track (Figures 10-
11) we can see that pyglaf outperforms ASPARTIX-D on DS and SE tasks, while
it is the opposite for the EE task. They perform similarly on the DC task. In the
PR track (Figures 12-13) the general advantages of the 2017 solver winner corre-
sponds to the improvements of the 2017 version of ArgSemSAT in comparison to
the 2015 version. About ST track (Figures 14-15), we can note that ASPARTIX-D
performances are still state of the art, given that it performs (slightly) better on all
tasks than pyglaf. Finally, results of the comparison on the GR track (Figure 16)
show that the performances of the 2017 and 2015 versions of CoQuiAAs are quite
similar, still being the state of the art.

To sum up, we can see that in comparison to the best 2015 solvers on a track
basis, results are mixed: sometimes the best new solvers perform (much) better
than the best of 2015, sometimes is the opposite. When the solver is the same, it
is either the case that it improved from the 2015 edition, or basically has similar
performance. We think that this, on the one hand, shows that some significant
improvements in AF solving have been in place, on the other hand it further con-
firms that there is space for improvements, by either designing new solutions, or
re-importing and improving (ASP-based) solutions already employed.

41

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●
●●●●
●●●
●●●●
●●●●
●●●●

●●●
●
●
●●
●●

●●
●●
●
●

●

●

●●●

●

●

●●

●
●●●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●
●●●●
●●●
●
●●●●●
●●
●●
●●
●●
●●●
●
●●●●
●
●●●
●●●●
●●
●
●
●
●●●
●●●
●●●●
●●●●●
●

●●
●●●
●●●●
●●●
●●

●●

●
●●●
●

●

●●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

Figure 10: CO track, DC and DS tasks: Comparison between ASPARTIX-D (2015) and pyglaf
(2017).

8. Related Competitions

This section discusses how the introduced novelties in this year competition
are treated in related competitions. A paragraph is devoted to each of such novel-
ties.

Benchmark suite. For the first time, the competition has featured a call for bench-
marks, whose goal was to enlarge the set of domains to be included in the evalua-

42

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●
●●●
●

●●●●
●●
●●

●●●

●●

●

●

●●
●
●
●
●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●
●●●●
●●●●●●
●●●●●
●●●●●
●●
●●●●
●●●
●●●●●
●●
●●●
●
●●●
●●
●●
●●

●●
●●

●
●
●●●

●

●●

●●

●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

Figure 11: CO track, SE and EE tasks: Comparison between ASPARTIX-D (2015) and pyglaf
(2017.)

tion, possibly having a more heterogeneous set. As we can note from Section 4.2,
the response from the community was positive. Call for benchmarks are custom-
ary in other close competitions, especially in the first events where the benchmark
suite has to be developed.

Benchmark selection. Starting from the benchmark suite, the procedure for the
selection of instances follows similar procedures employed in SAT and ASP com-

43

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ArgSemSAT (2015)

Ar
gS

em
SA

T
(2

01
7)

●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●●
●●●●
●●
●●●●
●●●
●
●●

●●
●●

●●

●

●
●

●

●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ArgSemSAT (2015)
ArgSemSAT (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ArgSemSAT (2015)

Ar
gS

em
SA

T
(2

01
7)

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●
●●
●●●●
●●●
●●●
●●●
●●●
●

●
●
●●
●

●
●
●

●
●

●
●

●●

●

●
●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ArgSemSAT (2015)
ArgSemSAT (2017)

Figure 12: PR track, DC and DS tasks: Comparison between ArgSemSAT (2015) and ArgSem-
SAT (2017).

petitions (SAT-Comp, 2009; Järvisalo et al., 2012; Balint et al., 2015; Gebser et al.,
2017). The main differences in our benchmark selection, some of them due to
the intrinsic characteristics of AF, are detailed in the following. Differently from
ASP, and similarly to SAT, there is no “non-groundable” hardness category (Sec-
tion 5.1), given that the benchmarks are inherently ground. Moreover, the variety
of semantics and reasoning tasks considered posed additional challenges and de-
cisions to be made for the selection, which are explained in details in Section 5.2

44

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ArgSemSAT (2015)

Ar
gS

em
SA

T
(2

01
7)

●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●
●●●●
●●●
●●●●●
●
●

●●
●●●●
●●●
●
●●●●
●

●●
●
●●
●●

●●

●●●
●
●●
●
●
●●
●
●●●

●

●
●

●

●

●
●
●●

●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ArgSemSAT (2015)
ArgSemSAT (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ArgSemSAT (2015)

Ar
gS

em
SA

T
(2

01
7)

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●

●●●
●●●●●●●●

●●●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●●
●
●●●
●●
●●●

●
●●
●●
●
●

●

●
●
●

●●

●

●
●
●●

●●
●

●
●●

●
●●
●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ArgSemSAT (2015)
ArgSemSAT (2017)

Figure 13: PR track, SE and EE tasks: Comparison between ArgSemSAT (2015) and ArgSemSAT
(2017).

and 5.3. As far as solvers employed for the classification of the instances are
concerned, in the 2014 IPC competition (Vallati et al., 2015) actual participant
systems have been employed for evaluating the empirical hardness of instances.
With this choice, the risk is to have a selection biased toward the performance of
such systems.

45

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●
●
●
●
●●●
●●●
●●
●

●

●

●
●

●●

●

●

●

●

●
●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●
●●
●●●
●
●●
●●●
●●●●
●●●●
●●●●●
●

●

●

●
●
●
●●

●
●

●●
●
●
●
●

●●
●●

●
●
●●
●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

Figure 14: ST track, DC and DS tasks: Comparison between ASPARTIX-D (2015) and pyglaf
(2017).

Scoring schema. This edition’s scoring schema put focus on correctness by giv-
ing a high penalty to incorrect solutions. In the following, we briefly overview the
general scoring rules employed in most recent related competitions, even if the
details usually change from different events. In the SAT competitions, the total
number of solved instances is the main metric to award winners in the tracks. A
solver is disqualified in a track if it returns a wrong answer, or a wrong certificate
for SAT instances. Considering the last ASP competitions, instead, on Decision

46

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●
●●●●●
●
●●
●●●●●●
●●
●
●●
●●●
●
●

●
●

●

●
●●●●

●●

●
●
●
●

●
●
●
●●

●
●
●

●
●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

ASPARTIX−D (2015)

py
gl

af
 (2

01
7)

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●
●●●
●●
●●●
●●●●●
●
●●●
●●●
●●●●
●●

●
●●

●

●

●
●●●
●

●
●

●●●
●

●●
●●
●
●

●●

●●
●

●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● ASPARTIX−D (2015)
pyglaf (2017)

Figure 15: ST track, SE and EE tasks: Comparison between ASPARTIX-D (2015) and pyglaf
(2017).

and Query problems a solver can be disqualified for the same reasons, but the
disqualification is applied to the domain the instance belongs. The score of each
domain on such problems is computed by means of number of solved instances,
and ties are broken with the cumulative times of solved instances, while for opti-
mization problems a score based on the “quality” of returned solution and related
ranking of solvers is considered. Optimization issues are not considered in IC-
CMA. The global score then sums the score of each domain. In the IPCs, the

47

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

CoQuiAAs (2015)

C
oQ

ui
AA

S
(2

01
7)

●●●
●●●●●●●
●

●●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● CoQuiAAs (2015)
CoQuiAAS (2017)

0.01 0.10 1.00 10.00 100.00

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

CoQuiAAs (2015)

C
oQ

ui
AA

S
(2

01
7)

●●
●●●●●●●●

●

●

●

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

instances solved

C
PU

 ti
m

e

● CoQuiAAs (2015)
CoQuiAAS (2017)

Figure 16: GR track, DC and SE tasks: Comparison between CoQuiAAs (2015) and CoQuiAAs
(2017).

two main metrics for scoring planners are the solving times and the “quality” of
returned plan. In the deterministic track of the 2014 IPC competition focus was
put toward plan’s quality. In “optimal” tracks, only optimal solutions were taken
into account: a non-optimal solution disqualified a solver from a domain, and if
this happens in two domains the planner is disqualified from the track. In IPC
“satisfying” tracks, instead, the quality of the returned plans is taken into account.
Score of a solver in a track is the sum of the scores in each domain constituting a

48

track. Similar to our competition, the SMT competitions employ a “per-division”
constant penalty for erroneous results (see, e.g. (Cok et al., 2014)). For each di-
vision, if it contains a wrong answer, a penalty based on the number of instances
in the division is computed; instead, a positive score defined as a function of the
number of correctly solved instances and total number of evaluated instances in
computed. The global ranking for each track is given by the sum of the results in
all divisions.

Special tracks. Among the “most common” special tracks, we mention the
“Marathon” and “Parallel” tracks. The Marathon track has been introduced in
the 2006 QBF Competition (QBF-Comp, 2006), and then used since 2015; it has
been also run in the 2015 ASP Competition (Gebser et al., 2017). In this track the
best solvers of the “Regular” track are given more time (usually about one order
of magnitude more) to solve (a selection of) the benchmarks that were not solved
in the Regular track, in order to test their behavior when more time is given, and
ultimately the impact of time limits on performance results. The Parallel track,
instead, allows solvers to rely on multiple processors/cores for their computation.
This track is in place in several related competitions, e.g. SAT and ASP compe-
titions. The Dung’s Triathlon track we have introduced in ICCMA’17, differently
from these kinds of tracks, is made of a combination of tasks employed in the
competition, instead of strengthening a particular aspect.

9. Conclusions, Lessons Learned, and Future Developments

In this report we have presented the design and results of the Second Inter-
national Competition on Computational Models of Argumentation (ICCMA’17).
We have focused in particular on the novelties that have been introduced in com-
parison to the first edition in 2015. As far as the results are concerned, the fact that
about 2/3 of the tracks have been won by solvers newly introduced at ICCMA’17
shows that the field of computational models of argumentation is not only vibrant
but also highly amenable for further improvements and innovation. In particular,
pyglaf (winner of 3 tracks) uses a novel approach based on reduction to circum-
scription.

In the following, we outline some of the lessons that we have learned while
organizing the competition, and possible suggestions for the chairs of the third
event that will take place in 2019:

More variety in solving approaches. The results of the competition indicate
that even more variety of solving techniques can be fruitful for the development

49

of the field. This is related in particular to pyglaf, but not only, e.g. ASPrMin has
the best performance on the task it can deal with (EE-PR). Also portfolio-based
approaches, here followed by the Chimærarg solver, could be developed more,
possibly building on current work, e.g. (Vallati et al., 2017, 2018); in related
competitions, such portfolio-based approaches won some of the categories, e.g.
the multi-engine ME-ASP ASP solver (Maratea et al., 2014) ver. 2 won the single
processor category of the 5th ASP Competition (Calimeri et al., 2016). Other
alternatives can include the employment of QBFs, as e.g. the authors of gg-sts are
planning (see, (Jahunen and Tasharrofi, 2017)), and for which implementations
are already in place (Diller et al., 2015).

Maintain benchmark classification and selection. Our benchmark classifica-
tion and selection allowed to run the competition on a “meaningful” set of bench-
marks with a high variety of expected hardness, differently from ICCMA’15,
where a significant number of the instances were easy. This helped in particular
on the new domains which were unseen to solvers. Thus, also considering that, in
future editions, we expect more new domains, we think that ICCMA should stick
to a guided instance selection process as described in this report.

More variety in benchmarks. The community should aim for benchmarks from
more real-world domains to be included in future benchmark suites. In particular,
the existing formalisms that use instantiations of AFs such as structured argu-
mentation formalisms or defeasible knowledge bases could be explored towards
obtaining new AF benchmarks. An example was recently provided by Yun et al.
(2017), where AFs are instantiated with existential rules in a Semantic Web con-
text.

Verification of answers. As we have seen before, the verification of answers has
been a challenging issue. For decision tasks, which involve the computation of
(at most) a single extension, we have used an ASP encoding for the verification
of correctness. The resulting procedure was not particularly fast, but practical,
given that we managed to check all outputs. When the verification of answers in
enumeration tasks comes into play, the situation is more difficult. Some possible
directions that could be pursued in the future are: (a) an extension of the approach
for single extension, i.e. having an ASP encoding where answer sets corresponds
to extensions, (b) a more practical and a-priori solution, by aiming at selecting
benchmarks with a limited number of solutions, and/or (c) another practical ap-
proach where only part of the extensions (e.g., randomly picked) is selected for
verifying correctness.

50

Output format. On the more technical side, the output format adopted from the
first edition of the competition turned out to be unfavourable for checking solu-
tions of the EE task. In particular, the fact that the solution is to be provided in
a single line makes the processing of large solutions with customary text oriented
tools quite cumbersome. Introducing line breaks as well as requiring the exten-
sions to be in a format more amenable for verification could be beneficial for the
verification process in the next edition.

Acknowledgments. We thank the Center for Information Services and High Per-
formance Computing (ZIH) at TU Dresden for generous allocation of computer
time. We also thank Peter Steinke and Norbert Manthey for providing the scripts
to run the competition on the cluster, as well as Christian Al-Rabbaa for imple-
menting the evaluation scripts. We finally thank the TAFA’17 officials for the
co-location of the event, and all ICCMA’17 contributors, who worked hard on
their systems and benchmarks, and made the competition possible.

This work has been supported by the German Research Foundation (DFG)
(project BR 1817/7-2) and the Austrian Science Fund (FWF) (projects I2854 and
Y698).

References

Alviano, M., 2017. Model enumeration in propositional circumscription via un-
satisfiable core analysis. Theory and Practice of Logic Programming 17 (5-6),
708–725.

Amendola, G., Dodaro, C., Ricca, F., 2016. ASPQ: An ASP-based 2QBF solver.
In: Lonsing, F., Seidl, M. (Eds.), Proceedings of the 4th International Workshop
on Quantified Boolean Formulas (QBF 2016) co-located with 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2016),.
Vol. 1719 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 49–54.

Arora, S., Barak, B., 2009. Computational Complexity – A Modern Approach.
Cambridge University Press.
URL http://www.cambridge.org/catalogue/catalogue.asp?isbn=

9780521424264

Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari,
G., Thimm, M., Villata, S., 2017. Towards artificial argumentation. AI Maga-
zine 38 (3), 25–36.

51

Audemard, G., Simon, L., 2009. Predicting learnt clauses quality in modern SAT
solvers. In: Boutilier, C. (Ed.), Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009). pp. 399–404.

Balint, A., Belov, A., Järvisalo, M., Sinz, C., 2015. Overview and analysis of the
SAT challenge 2012 solver competition. Artificial Intelligence 223, 120–155.

Barabasi, A. L., Albert, R., 1999. Emergence of scaling in random networks. Sci-
ence 286, 509–512.

Baroni, P., Caminada, M., Giacomin, M., 2011. An introduction to argumentation
semantics. The Knowledge Engineering Review 26 (4), 365–410.

Baroni, P., Caminada, M., Giacomin, M., 2018. Abstract argumentation frame-
works and their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der
Torre, L. (Eds.), Handbook of Formal Argumentation. College Publications,
Ch. 4, pp. 159–236.

Beierle, C., Brons, F., Potyka, N., 2015. A software system using a SAT solver
for reasoning under complete, stable, preferred, and grounded argumentation
semantics. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (Eds.),
Proceedings of the 38th Annual German Conference on AI (KI 2015). Vol. 9324
of Lecture Notes in Computer Science. Springer, pp. 241–248.

Bench-Capon, T. J. M., Dunne, P. E., 2007. Argumentation in artificial intelli-
gence. Artificial Intelligence 171 (10-15), 619–641.

Bistarelli, S., Rossi, F., Santini, F., 2014. Benchmarking hard problems in random
abstract afs: The stable semantics. In: Parsons, S., Oren, N., Reed, C., Cerutti,
F. (Eds.), Proceedings of the 5th International Conference on Computational
Models of Argument (COMMA 2014). Vol. 266 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, pp. 153–160.

Bistarelli, S., Rossi, F., Santini, F., 2015. A comparative test on the enumeration
of extensions in abstract argumentation. Fundamenta Informaticae 140 (3-4),
263–278.

Bistarelli, S., Rossi, F., Santini, F., 2018. Not only size, but also shape counts:
abstract argumentation solvers are benchmark-sensitive. Journal of Logic and
Computation 28 (1), 85–117.

52

Bistarelli, S., Santini, F., 2011. Conarg: A constraint-based computational frame-
work for argumentation systems. In: Proceedings of the IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2011). IEEE
Computer Society, pp. 605–612.

Bogaerts, B., Janhunen, T., Tasharrofi, S., 2016. Declarative solver development:
Case studies. In: Baral, C., Delgrande, J. P., Wolter, F. (Eds.), Proceedings of
the 15th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2016). AAAI Press, pp. 74–83.

Calimeri, F., Gebser, M., Maratea, M., Ricca, F., 2016. Design and results of the
fifth answer set programming competition. Artificial Intelligence 231, 151–181.

Caminada, M., 2014. Strong admissibility revisited. In: Parsons, S., Oren, N.,
Reed, C., Cerutti, F. (Eds.), Proceedings of the 5th International Conference on
Computational Models of Argument (COMMA 2014). Vol. 266 of Frontiers in
Artificial Intelligence and Applications. IOS Press, pp. 197–208.

Caminada, M., Carnielli, W. A., Dunne, P. E., 2012. Semi-stable semantics. Jour-
nal of Logic and Computation 22 (5), 1207–1254.

Caminada, M., Sá, S., Alcântara, J., Dvořák, W., 2015. On the equivalence be-
tween logic programming semantics and argumentation semantics. Interna-
tional Journal of Approximate Reasoning 58, 87–111.

Caminada, M. W., Verheij, B., 2010. On the existence of semi-stable ex-
tensions. In: Danoy, G., Seredynski, M., Booth, R., Gateau, B., Jars, I.,
Khadraoui, D. (Eds.), Proceedings of the 22nd Benelux Conference on Arti-
ficial Intelligence (BNAIC 2010). Available at http://bnaic2010.uni.lu/
proceedings.html.

Cerutti, F., Giacomin, M., Vallati, M., 2014a. ArgSemSAT: Solving argumenta-
tion problems using SAT. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (Eds.),
Proceedings of the 5th International Conference on Computational Models of
Argument (COMMA 2014). Vol. 266 of Frontiers in Artificial Intelligence and
Applications. IOS Press, pp. 455–456.

Cerutti, F., Giacomin, M., Vallati, M., 2016a. Generating structured argumenta-
tion frameworks: AFBenchGen2. In: Baroni, P., Gordon, T. F., Scheffler, T.,

53

Stede, M. (Eds.), Proceedings of the 6th International Conference on Computa-
tional Models of Argument (COMMA 2016). Vol. 287 of Frontiers in Artificial
Intelligence and Applications. IOS Press, pp. 467–468.

Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M., 2014b. A benchmark
framework for a computational argumentation competition. In: Parsons, S.,
Oren, N., Reed, C., Cerutti, F. (Eds.), Proceedings of the 5th International Con-
ference on Computational Models of Argument (COMMA 2014). Vol. 266 of
Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 459–460.

Cerutti, F., Vallati, M., Giacomin, M., 2016b. Where are we now? state of the
art and future trends of solvers for hard argumentation problems. In: Baroni,
P., Gordon, T. F., Scheffler, T., Stede, M. (Eds.), Proceedings of the 6th Inter-
national Conference on Computational Models of Argument (COMMA 2016).
Vol. 287 of Frontiers in Artificial Intelligence and Applications. IOS Press, pp.
207–218.

Cerutti, F., Vallati, M., Giacomin, M., 2018. On the impact of configuration on
abstract argumentation automated reasoning. International Journal of Approxi-
mate Reasoning 92, 120–138.

Charwat, G., Dvořák, W., Gaggl, S. A., Wallner, J. P., Woltran, S., 2015. Methods
for solving reasoning problems in abstract argumentation - A survey. Artificial
Intelligence 220, 28–63.

Cok, D. R., Déharbe, D., Weber, T., 2014. The 2014 SMT competition. Journal
on Satisfiability, Boolean Modeling and Computation 9, 207–242.

Cyras, K., Fan, X., Schulz, C., Toni, F., 2018. Assumption-based argumentation:
Disputes, explanations, preferences. In: Baroni, P., Gabbay, D., Giacomin, M.,
van der Torre, L. (Eds.), Handbook of Formal Argumentation. College Publica-
tions, Ch. 7, pp. 365––408.

Diller, M., Wallner, J. P., Woltran, S., 2015. Reasoning in abstract dialectical
frameworks using Quantified Boolean Formulas. Argument & Computation
6 (2), 149–177.

Dimopoulos, Y., Torres, A., 1996. Graph theoretical structures in logic programs
and default theories. Theoretical Computer Science 170 (1-2), 209–244.

54

Dung, P. M., 1995. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence 77 (2), 321–358.

Dung, P. M., Mancarella, P., Toni, F., 2007. Computing ideal sceptical argumen-
tation. Artificial Intelligence 171 (10–15), 642–674.

Dunne, P. E., 2009. The computational complexity of ideal semantics. Artificial
Intelligence 173 (18), 1559–1591.

Dunne, P. E., Bench-Capon, T. J. M., 2002. Coherence in finite argument systems.
Artificial Intelligence 141 (1/2), 187–203.

Dunne, P. E., Dvořák, W., Woltran, S., 2013. Parametric properties of ideal se-
mantics. Artificial Intelligence 202, 1–28.

Dvořák, W., Järvisalo, M., Wallner, J. P., Woltran, S., 2014. Complexity-sensitive
decision procedures for abstract argumentation. Artificial Intelligence 206, 53–
78.

Dvořák, W., Dunne, P. E., 2018. Computational problems in formal argumentation
and their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre,
L. (Eds.), Handbook of Formal Argumentation. College Publications, Ch. 14,
pp. 631–687, also appears in IfCoLog Journal of Logics and their Applications
4(8):2557–2622.

Dvořák, W., Woltran, S., 2010. Complexity of semi-stable and stage semantics in
argumentation frameworks. Information Processing Letters 110 (11), 425–430.

Eén, N., Sörensson, N., 2003. An extensible SAT-solver. In: Giunchiglia, E., Tac-
chella, A. (Eds.), Proceedings of the 6th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003). Selected Revised Papers.
Vol. 2919 of Lecture Notes in Computer Science. Springer, pp. 502–518.

Egly, U., Gaggl, S. A., Woltran, S., 2010. Answer-set programming encodings for
argumentation frameworks. Argument & Computation 1 (2), 147–177.

Ellmauthaler, S., Strass, H., 2014. The DIAMOND system for computing with
abstract dialectical frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti,
F. (Eds.), Proceedings of the 5th International Conference on Computational
Models of Argument (COMMA 2014). Vol. 266 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, pp. 233–240.

55

Erdös, P., Rényi, A., 1959. On random graphs I. Publicationes Mathematicae De-
brecen 6, 290–297.

Faber, W., Vallati, M., Cerutti, F., Giacomin, M., 2016. Solving set optimization
problems by cardinality optimization with an application to argumentation. In:
Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., van Harmelen, F. (Eds.), Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI 2016). Vol. 285 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press, pp. 966–973.

Gabbay, D. M., Rodrigues, O., 2016. Further applications of the Gabbay-
Rodrigues iteration schema in argumentation and revision theories. In: Beierle,
C., Brewka, G., Thimm, M. (Eds.), Computational Models of Rationality, Es-
says dedicated to Gabriele Kern-Isberner on the occasion of her 60th birthday.
College Publications, pp. 392–408.

Gaggl, S. A., Linsbichler, T., Maratea, M., Woltran, S., 2016. Introducing the sec-
ond international competition on computational models of argumentation. In:
Thimm, M., Cerutti, F., Strass, H., Vallati, M. (Eds.), Proceedings of the 1st
International Workshop on Systems and Algorithms for Formal Argumentation
(SAFA 2016) co-located with the 6th International Conference on Computa-
tional Models of Argument (COMMA 2016). Vol. 1672 of CEUR Workshop
Proceedings. CEUR-WS.org, pp. 4–9.

Gaggl, S. A., Linsbichler, T., Maratea, M., Woltran, S., 2018. Summary report of
the second international competition on computational models of argumenta-
tion. AI Magazine. To appear.

Gaggl, S. A., Manthey, N., Ronca, A., Wallner, J. P., Woltran, S., 2015. Im-
proved answer-set programming encodings for abstract argumentation. Theory
and Practice of Logic Programming 15 (4-5), 434–448.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2014. Clingo = ASP +
control: Preliminary report. CoRR abs/1405.3694.

Gebser, M., Maratea, M., Ricca, F., 2017. The sixth answer set programming
competition. Journal of Artificial Intelligence Research 60, 41–95.

Geilen, N., Thimm, M., 2017. Heureka: A general heuristic backtracking solver
for abstract argumentation. In: Black, E., Modgil, S., Oren, N. (Eds.), Proceed-
ings of the 4th International Workshop on Theory and Applications of Formal

56

Argumentation (TAFA 2017). Revised Selected Papers. Vol. 10757 of Lecture
Notes in Computer Science. Springer, pp. 143–149.

Giunchiglia, E., Lierler, Y., Maratea, M., 2006. Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning 36 (4), 345–377.

ICCMA’17-Soldes, 2017. http://www.argumentationcompetition.org/

2017/submissions.html.

ICCMA’17-Solreq, 2017. http://www.argumentationcompetition.org/

2017/SolverRequirements.pdf.

Jahunen, T., Tasharrofi, S., 2017. http://www.argumentationcompetition.
org/2017/gg-sts.pdf.

Järvisalo, M., Berre, D. L., Roussel, O., Simon, L., 2012. The international SAT
solver competitions. AI Magazine 33 (1).

Johnson, D. S., Papadimitriou, C. H., Yannakakis, M., 1988. On generating all
maximal independent sets. Information Processing Letters 27 (3), 119–123.

Kröll, M., Pichler, R., Woltran, S., 2017. On the complexity of enumerating the
extensions of abstract argumentation frameworks. In: Sierra, C. (Ed.), Proceed-
ings of the 26th International Joint Conference on Artificial Intelligence (IJCAI
2017). ijcai.org, pp. 1145–1152.

Lagniez, J., Lonca, E., Mailly, J., 2015. CoQuiAAS: A constraint-based quick
abstract argumentation solver. In: Proceedings of the 27th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2015). IEEE Computer
Society, pp. 928–935.

Lehtonen, T., Wallner, J. P., Järvisalo, M., 2017. From structured to abstract ar-
gumentation: Assumption-based acceptance via AF reasoning. In: Antonucci,
A., Cholvy, L., Papini, O. (Eds.), Proceedings of the 14th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU 2017). Vol. 10369 of Lecture Notes in Computer Science. Springer,
pp. 57–68.

Maratea, M., Pulina, L., Ricca, F., 2014. A multi-engine approach to answer-set
programming. Theory and Practice of Logic Programming 14 (6), 841–868.

57

Modgil, S., Prakken, H., 2014. The ASPIC+ framework for structured argumen-
tation: A tutorial. Argument & Computation 5 (1), 31–62.

Nofal, S., Atkinson, K., Dunne, P. E., 2016. Looking-ahead in backtracking algo-
rithms for abstract argumentation. International Journal on Approximate Rea-
soning 78, 265–282.

Pu, F., Luo, G., Jiang, Z., 2017. Encoding argumentation semantics by Boolean
algebra. IEICE Transactions 100-D (4), 838–848.

Pulina, L., 2016. The ninth QBF solvers evaluation - preliminary report. In: Lon-
sing, F., Seidl, M. (Eds.), Proceedings of the 4th International Workshop on
Quantified Boolean Formulas (QBF 2016) co-located with 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2016).
Vol. 1719 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 1–13.

QBF-Comp, 2006. QBF Evaluation 2006. http://www.qbflib.org.

SAT-Comp, 2009. SAT Competition 2009. http://www.satcompetition.org/
2009/.

Sideris, A., Dimopoulos, Y., 2010. Constraint propagation in propositional plan-
ning. In: Brafman, R. I., Geffner, H., Hoffmann, J., Kautz, H. A. (Eds.),
Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS 2010). AAAI, pp. 153–160.

Strozecki, Y., 2010. Enumeration complexity and matroid decomposition. Ph.D.
thesis, Universit’e Paris Diderot – Paris 7.

Thimm, M., Villata, S., 2015. System descriptions of the first international
competition on computational models of argumentation (ICCMA’15). CoRR
abs/1510.05373.
URL http://arxiv.org/abs/1510.05373

Thimm, M., Villata, S., 2017. The first international competition on computational
models of argumentation: Results and analysis. Artificial Intelligence 252, 267–
294.

Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M., April 2016.
Summary report of the first international competition on computational models
of argumentation. AI Magazine 37 (1), 102–104.

58

Toni, F., 2014. A tutorial on assumption-based argumentation. Argument & Com-
putation 5 (1), 89–117.

Vallati, M., Cerutti, F., Giacomin, M., 2017. On the combination of argumentation
solvers into parallel portfolios. In: Peng, W., Alahakoon, D., Li, X. (Eds.), Ad-
vances in Artificial Intelligence - Proceedings of the 30th Australasian Joint
Conference (AI 2017). Vol. 10400 of Lecture Notes in Computer Science.
Springer, pp. 315–327.

Vallati, M., Cerutti, F., Giacomin, M., 2018. Predictive models and abstract ar-
gumentation: The case of high-complexity semantics. Knowledge Engineering
Review. To appear.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., Sanner, S.,
2015. The 2014 international planning competition: Progress and trends. AI
Magazine 36 (3), 90–98.

Verheij, B., 1996. Two approaches to dialectical argumentation: Admissible sets
and argumentation stages. In: Proceedings of the 8th Dutch Conference on Ar-
tificial Intelligence (NAIC’96). pp. 357–368.

Watts, D. J., Strogatz, S. H., 1998. Collective dynamics of ”small-world” net-
works. Nature 393, 440–442.

Wu, Y., Caminada, M., Gabbay, D. M., 2009. Complete extensions in argumenta-
tion coincide with 3-valued stable models in logic programming. Studia Logica
93 (2-3), 383–403.
URL https://doi.org/10.1007/s11225-009-9210-5

Wyner, A. Z., Bench-Capon, T. J. M., Dunne, P. E., Cerutti, F., 2015. Senses of
’argument’ in instantiated argumentation frameworks. Argument & Computa-
tion 6 (1), 50–72.

Yun, B., Vesic, S., Croitoru, M., Bisquert, P., Thomopoulos, R., 2017. A structural
benchmark for logical argumentation frameworks. In: Adams, N. M., Tucker,
A., Weston, D. J. (Eds.), Proceedings of the 16th International Symposium on
Advances in Intelligent Data Analysis (IDA 2017). Vol. 10584 of Lecture Notes
in Computer Science. Springer, pp. 334–346.

59

