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1 Introduction

Fuzzy description logics (FDLs) have arisen as suitable formalisms for repre-
senting and reasoning with the vague or imprecise knowledge that is intrinsic to
many application domains. They extend classical description logics by allowing
additional truth degrees that lie between the classical “true” and “false” values.
These truth degrees typically belong to a subset of the interval [0, 1].

For example, in a cloud computing environment, one might be interested
in modeling the notion of an overused component. This is a typical example
of an imprecise concept, since it is impossible to give a precise point where a
component starts being overused. Instead, in FDLs, all components are assigned
the degree to which they are being overused, where a higher degree implies a
more extensive usage. For example, an idle component is overused with degree 0,
while a component running at half its capacity might be overused to degree 0.8.
The axioms

〈Overused(cpuA) ≥ 0.8〉,
〈Server u ∃hasPart.Overused v ServerWithLimitedResources ≥ 0.9〉

express that object cpuA is overused to a degree of at least 0.8, and that every
server that has an overused part is a server with limited resources with a degree
of at least 0.9, respectively. The different concept constructors are interpreted
by a t-norm and its associated operators [13]. One important t-norm is the
Łukasiewicz t-norm, which is defined by x⊗ y := max{x+ y − 1, 0}.

Since dealing with infinitely many truth degrees easily leads to undecidability
of reasoning [1, 7, 12], we focus on finitely valued FDLs, where the degrees are
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ordered in a finite chain. In this case, standard reasoning in expressive FDLs has
been shown to be decidable, and in the same complexity class, as reasoning in
their classical counterparts [9–11]. One proposed method for reasoning in finitely
valued FDLs is based on crispification. The idea of this method is to transform
the fuzzy ontology into a classical ontology that preserves all the information
about the truth degrees expressed in the original ontology. This is achieved
through new concept and role names like Fast≥0.8 that intuitively contain all the
elements that belong to Fast to a degree of at least 0.8. In this way, one can reduce
reasoning in fuzzy DLs to reasoning in classical DLs, for which highly optimized
reasoners exist. However, this approach only works for DLs that include at least
the expressivity of ALCH.

2 Types of Fuzzy Queries

A reasoning problem extensively studied for DLs over the last years is (conjunc-
tive) query answering, together with the associated query entailment problem.
Briefly, a conjunctive query q is a finite set of concept and role atoms, which
intuitively are ABox assertions that might contain variables in place of individ-
uals. An ontology O entails the query q if every model I of O has a match for q;
that is, if all the variables in q can be mapped to elements of the domain of I
in a way that all the atoms are satisfied. In FDLs, the matches of an atom need
not be absolute, but might also hold with a truth degree between 0 and 1.

The existence of intermediate truth degrees gives rise to two different notions
of conjunctive queries that can be entailed by a fuzzy ontology. The first one,
called threshold conjunctive query, extends the notion of an atom to express
additionally the least degree to which the atom must be satisfied in each model.
Thus, for example, we can ask whether server1 is fast (to degree 0.8) and has an
overused (to degree 0.6) component through the threshold query

{Fast(server1) ≥ 0.8, hasPart(server1, x) ≥ 1, Overused(x) ≥ 0.6}. (1)

Such a query is entailed by O if every model of O has a match with at least
the given degrees. Notice that the result of a threshold query entailment check
is either “yes” (if the query is entailed by O) or “no.” There are no intermediate
degrees associated with these answers.

The second type of query, called fuzzy conjunctive query, asks for the best
entailment degree; i.e., the largest possible degree d such that every model of
the ontology has a match to degree at least d. For example, using the fuzzy
conjunctive query

{Fast(server1), hasPart(server1, x), Overused(x)}, (2)

we can find the best degree to which server1 is fast and has an overused compo-
nent, where the conjunction between the atoms is interpreted using a t-norm. In
the case of fuzzy conjunctive queries, there is only one degree that is global for
the whole match of the query. Thus, it is possible that the threshold query above
is not entailed (i.e., answers “no”) while this fuzzy conjunctive query returns a
positive degree.



3 Results

We propose a query answering procedure based on the crispification approach.
In addition to crispifying the ontology, we also translate a threshold query into
a classical conjunctive query that preserves the semantics w.r.t. the crispified
ontology. For example, the threshold query (1) is crispified into the classical
conjunctive query

{Fast≥0.8(server1), hasPart≥1(server1, x), Overused≥0.6(x)}.

Recall that Fast≥0.8 is a classical concept name from the crispified ontology. Thus,
deciding entailment of this conjunctive query suffices for deciding entailment of
the original threshold query.

A similar translation is used for fuzzy conjunctive queries, except that the
result is a union of conjunctive queries, where each conjunctive query considers a
certain combination of individual degrees whose combination leads to the entail-
ment of the fuzzy query. For example, to decide whether the fuzzy conjunctive
query (2) is entailed to a degree of at least 0.8, say in the presence of the degree
set {0, 0.2, 0.4, 0.6, 0.8, 1}, one has to consider a union of several CQs such as

{Fast≥0.8(server1), hasPart≥1(server1, x), Overused≥1(x)} and
{Fast≥1(server1), hasPart≥1(server1, x), Overused≥0.8(x)},

where the t-norm of the individual degrees is equal to 0.8. After the translation,
one can use any existing query answering system for classical DLs.

While studying the crispification approach for expressive FDLs, we encoun-
tered two issues. First, we noticed that some of the previous crispification ap-
proaches, such as those in [4,5], do not treat number restrictions correctly when
the Łukasiewicz t-norm is used. Second, the previously known crispifications (see
also [2, 6]) produce an exponential blow-up, which makes almost any instance
of the problem infeasible. We solved the second issue by introducing a linear
normalization step that ensures a polynomial bound on the size of the crispifica-
tion. Essentially, the normalization process introduces abbreviations that avoid
copying complex concepts during the crispification step.

Using this normalization step, we are able to prove tight complexity bounds
for answering threshold conjunctive queries; the complexity is always the same
as for classical conjunctive query answering (in DLs more expressive than ALCH
that do not have number restrictions). Unfortunately, the translation of fuzzy
conjunctive queries causes an exponential blow-up, which is avoided when the
simple Gödel t-norm x⊗y := min{x, y} is used. Moreover, the data complexity of
classical query answering in DLs is not affected when considering finitely valued
semantics, as the reduction of the ABox (the data) is linear. Finally, our method
for fuzzy query answering can be applied to any crispification approach, i.e. also
in the cases that correctly handle number restrictions [3].

More details can be found in [8], which has been submitted to a journal. A
preliminary version of these results appeared in [14].
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