
Chasing Streams with Existential Rules

Jacopo Urbani1 , Markus Krötzsch2 , Thomas Eiter3
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Abstract

We study reasoning with existential rules to perform query
answering over streams of data. On static databases, this
problem has been widely studied, but its extension to rapidly
changing data has not yet been considered. To bridge this
gap, we extend LARS, a well-known framework for rule-
based stream reasoning, to support existential rules. For
that, we show how to translate LARS with existentials into
a semantics-preserving set of existential rules. As query an-
swering with such rules is undecidable in general, we de-
scribe how to leverage the temporal nature of streams and
present suitable notions of acyclicity that ensure decidability.

1 Introduction
Streaming data arises in many applications, fostered by the
need of deriving timely insights from emerging informa-
tion and the inherent impossibility of storing all available
data (Margara et al. 2014). Stream reasoning has become a
productive area of KR with many formalisms (Anicic et al.
2011; Le-Phuoc et al. 2011; Barbieri et al. 2010; Tiger and
Heintz 2016; Dell’Aglio et al. 2017; Kharlamov et al. 2019;
Wałega, Kaminski, and Cuenca Grau 2019). This multiplic-
ity is justified by the breadth of scenarios where stream pro-
cessing is useful. Many of the approaches are distinguished
from classical temporal reasoning, e.g., since data snapshots
(windows) play an important role to reduce data volumes.

A well-known formalism in this space is LARS (Beck,
Dao-Tran, and Eiter 2018), which is a rule-based language
for stream reasoning that combines concepts from logic pro-
gramming with dedicated stream operators to express win-
dows and temporal quantifiers. For example, the LARS rule
r1: �3 �beltTmp(X,Y ) ∧ high(Y ) → warn(X) issues a
warning if the temperature on a conveyor belt has been high
for all (�) last three time points (�3).

Another prominent field in KR are existential rules, which
are also used as a basis for ontological models, especially in
applications with large amounts of data (Baget et al. 2011;
Cuenca Grau et al. 2013; Gottlob, Lukasiewicz, and Pieris
2014). Other common names for these rules include tuple-
generating dependencies (Abiteboul, Hull, and Vianu 1994)
and Datalog± (Calı̀ et al. 2010). As a simple example, the
rule r2: belt(X)→∃Y.beltOperator(X,Y ) expresses that
every belt has an operator (even if unknown). Existential
quantification is central for ontologies and provides high

expressivity beyond plain Datalog (Krötzsch, Marx, and
Rudolph 2019). While reasoning with existential rules is
known to be undecidable in general (Beeri and Vardi 1981),
many well-behaved language fragments and practical imple-
mentations exist (Benedikt et al. 2017; Urbani et al. 2018;
Bellomarini, Sallinger, and Gottlob 2018).

Until now, however, these areas have not been combined,
and stream reasoning approaches do not support existential
rules. Even for logic-based ontology languages in general,
solutions only seem to exist for specific cases where queries
are rewritable (Kharlamov et al. 2019; Kalaycı et al. 2019).
As a consequence, it is often unclear how existing ontologi-
cal background knowledge can be used in stream reasoning.

Additionally, the lack of existential quantification pre-
vents useful modelling techniques for stream analysis. In
particular, existential quantification can be used to represent
temporal events, possibly spanning multiple time points, or
to track unknown individuals. For instance, it can be used to
create a new incident ID if the temperature on a belt is high
for too long, or to track a not-yet-recognized object within a
bounding box in a video stream. Notice that while in prin-
ciple events could be modeled without value invention, i.e.,
using ad-hoc relations, doing so would put an upper bound to
the number of possible events which might be undesirable as
the future stream is typically unknown. A similar argument
applies to the example above about objects within bounding
boxes: it is arguably more natural to introduce new values
and treat them as first-class individuals.

With this motivation in mind, we developed an extension
of existential rules with LARS-based temporal quantifiers
called LARS+. Due to the undecidability of query answer-
ing with existential rules, our objective are decidable frag-
ments, with the following contributions:
• We introduce LARS+ as an existential stream reasoning
language with a model-theoretic semantics.

• We give a semantics-preserving transformation from
LARS+ to existential rules to allow query answering. Doing
so allows us to exploit existing decidability results, but these
are limited in their use of time. We thus present time-aware
extensions of acyclicity notions for LARS+ programs.

• Initial experiments suggest that our method is promising.1

1Source code is at https://github.com/karmaresearch/elars; this
is an extended version of the eponymous KR’22 paper.

https://github.com/karmaresearch/elars


2 LARS+

Currently, LARS and DatalogMTL (Brandt et al. 2017;
Wałega, Kaminski, and Cuenca Grau 2019) are popular for
rule-based reasoning on data streams. While we focus on
LARS, some of our work may be adapted to DatalogMTL.

To cope with big data volumes, LARS allows one to re-
strict streams to data snapshots (i.e., substreams) taken by
generic window operators �. Typically, windows are used
to consider only the knowledge in the most recent past, but
this is not enough to avoid a complexity explosion or even
undecidability that could arise from reasoning over an in-
definite future. To overcome this problem, it is common in
this domain to restrict future predictions up to a horizon of
interest h, which is moved forward indefinitely.

Our language LARS+ can be viewed as an extension of
existential rules with temporal features of LARS. In the
choice of data-snapshot operators, we take inspiration from
plain LARS, which is a LARS fragment that is apt for effi-
cient implementation (Bazoobandi, Beck, and Urbani 2017).
Syntax We consider a two-sorted logic with abstract ele-
ments and the natural numbers N as time points. We assume
infinite sets VA of abstract variables, VT of time variables,
N of labelled nulls, and C of constants that are mutually dis-
joint and disjoint from N. Abstract terms (resp. time terms)
are elements of VA ∪N ∪ C (resp., VT ∪ N).

Predicates p are from a set P of predicates and have arity
ar(p) ≥ 0, with each position typed (abstract or time sort).
A normal atom is an expression p(t), t = t1, . . . , tar(p),
where ti is a term of proper sort. An arithmetic atom has the
form t1 ≤ t2 or t1 = t2 + t3 for time terms t1, t2, t3. The
set of all atoms (normal and arithmetic) is denotedA. For an
atom α (or any other logical expression introduced below),
the domain dom(α) of α is the set of all terms in α; we write
α[x] to state that x = dom(α)∩ (VA ∪VT ); and we say that
α is ground if it contains no variables.

A predicate p∈P is simple if it has no position of time
sort, while an atom is simple if it normal and has a simple
predicate. A LARS+ atom α has the form

α := a | b | @T b | �n@T b | �n♦b | �n�b (1)

where a is an arithmetic atom, b is either a null-free simple
atom or > (which holds true at all times), T is a time term,
and n ∈ N. Window operators �n restrict attention back to
n time points in the past, and @T (resp. �, ♦) indicates that
a formula holds at time T (resp., every, some time point).

Arithmetic atoms do not depend on time, whereas atoms
@T b refer to a specific time T . All other LARS+ atoms
are interpreted relative to some current time point. Simple
atoms b can equivalently be written as �0♦b or as �0�b.
Definition 1. A LARS+ rule is an expression of the form

r = �∀x,y.(B[x,y]→ ∃v.H[y,v]) (2)

where x, y, and v are mutually disjoint sets of variables,
and v contains only abstract variables; the body B[x,y] is
a conjunction of LARS+ atoms; and the head H[y,v] is a
conjunction of atoms of the form b or @T b in (1). We set
b(r) := B and h(r) := H , and we usually omit the leading
� and universal quantifiers when writing rules.

A LARS+ program is a finite set of LARS+ rules; we de-
note the set of all such programs by L+.
Semantics Like for LARS, the semantics of LARS+ is
based on streams. Formally, a stream S = (T, v) consists
of a timeline T = [0, h] ⊂ N and an evaluation function
v : N→ 2A such that, for all t ∈ N, v(t) is a set of ground
normal atoms and v(t) = ∅ if t /∈ T. We call S a data stream
if only extensional atoms occur in S, i.e., atoms with desig-
nated predicates not occurring in rule heads. Given n ∈ N
and t ∈ T, we writewn(S, t) for the stream ([0, t], v′) where
for any t′ ∈ N, v′(t′) = v(t′) if t−n ≤ t′ ≤ t, and v′(t) = ∅
otherwise; we call wn(S, t) a window of size n on S at t.

Models of LARS+ are special streams. For a stream S =
(T, v), a simple ground atom b, and t, t′, n ∈ N, we write:

S, t |= b if b ∈ v(t), S, t |= @t′b if S, t′ |= b,
S, t |= ♦b /�b if S, t′′ |= b for some / all t′′ ∈ T,
S, t |= �nβ if wn(S, t), t |= β.

Further, S, t |= > holds for all t ∈ T and S, t |= a for all
ground arithmetic atoms a that express a true relation on N.
To define satisfaction of rules on a stream S at time point
t, we introduce the auxiliary notion of T-match σ for a set
C of atoms on S and t as a sort-preserving mapping from
the variables of C to terms, s.t. (i) each time variable X is
mapped to T (Xσ ∈T) and (ii) S, t |= ασ for each α∈C.
Definition 2. A LARS+ rule r as in (2) is satisfied by a
stream S = (T, v), written S |= r, if either (i) h(r) contains
some time point t /∈ T (i.e., ignore inference out of scope),
or (ii) for all t ∈ T, every T-match σ of b(r) on S and t is
extendible to a T-match σ′ ⊇ σ of b(r) ∪ h(r) on S and t.

A program P ∈ L+ is satisfied by S, written S |= P , if
S |= r for all r ∈ P . A data stream D = (T′, v′) is satisfied
by S, written S |= D, if T′ ⊆ T and v′(t) ⊆ v(t) for all
t ∈ T′. We then call S a model of P resp. D.
Example 1. Consider the data stream D= ([0, 9], v), where
v(t) = {belt(b1), high(90), beltTmp(b1, tmp(t))} for each
t∈ [0, 9], where tmp(t) = 90 if t≤ 4 and tmp(t) = 70 other-
wise. Then any model S of the rules r1, r2 in Section 1 and
D fulfills S, 4 |=warn(b1)∧ beltOperator(b1, v) for some
constant or null v. Similarly S, 5 |= beltOperator(b1, v

′) for
some constant or null v′ while S, 5 |=warn(b1) may fail.

3 Query Answering with LARS+

The query answering problem in LARS+ is as follows.
Definition 3. A LARS+ Boolean Conjunctive Query (BCQ)
q has the form ∃x.Q[x], whereQ is a conjunction of LARS+

atoms. A stream S = (T, v) satisfies q at time t, written
S, t |= q, if some T-match σ of Q on S and t exists. A pro-
gram P ∈ L+ and data stream D entail q at time t, written
P,D, t |= q, if S, t |= q for every model S of P and D.

For instance, a BCQ could be ∃X. �5 �warn(X), which
asks if there has been a warning over the same belt in the last
5 time points. To solve BCQ answering with LARS+, we
propose a consequence-preserving rewriting rew(·) to exis-
tential rules with a time sort. This rewriting is useful because
it will allow us to exploit known results for existential rules,
e.g., acyclicity notions (Cuenca Grau et al. 2013).



Our proposed rewriting of P into rew(P ) has 5 steps:
(1) Each atom �n♦p(t) is replaced by �n@T p(t), where T
is a fresh variable used only in one atom.
(2) For any simple predicate p, we add auxiliary predicates
J�� pK and J�@ pK of arity ar(p)+2 resp. ar(p)+3. Intu-
itively, J�� pK(t, n, C) and J�@ pK(t, n, T, C) mean that
�n�p(t) and �n@T p(t) hold at time C, respectively.
(3) Using a fresh variable C to represent the current time,
we rewrite non-arithmetic atoms α in P (where > is >()) to

rew(α) =


J�� pK(t, 0, C) if α = p(t),
J�� pK(t, 0, T ) if α = @T p(t),
J�� pK(t, n, C) if α = �n�p(t),
J�@ pK(t, n, T, C) if α = �n@T p(t)

(4) We add J��>K(0, C) in rule bodies not containing C.
(5) For every predicate p (including >), we add the follow-
ing rules to P , where X is a list of variables of length ar(p)
and m = max(0, n | �n occurs in P ):

0≤C → J��>K(0, C) (3)
J�� pK(X, 0, 0)→ J�� pK(X,m, 0) (4)

J�� pK(X, N ′, C) ∧N ′=N+1→ J�� pK(X, N,C) (5)

J�� pK(X, N,C) ∧N ′=N+1 ∧N ′≤m ∧ C ′=C+1
∧ J�� pK(X, 0, C ′)→ J�� pK(X, N ′, C ′) (6)

J�� pK(X, 0, C)→ J�@ pK(X, 0, C, C) (7)

J�@ pK(X, N, T, C) ∧N ′≤m ∧N ′=N+1
∧ I ≤ 1 ∧ C ′=C+I → J�@ pK(X, N ′, T, C ′) (8)

We rewrite a LARS+ BCQ ∃x.Q and time point t sim-
ilarly to rew(∃x.Q, t) = ∃x.

∧
α∈Q rew(α) ∧ C≤t ∧ t≤C

(treating atoms �n♦p(t) as before), and a stream S= (T, v)
to facts rew(S) = {J�� pK(t, 0, s) | p(t) ∈ v(t), t ∈ T}.
Example 2. We illustrate the rewriting on r1. Step
(2) creates predicates J��beltTmpK, J��highK, and
J��warnK and Step (3) the rule J��highK(X,Y, 3, C)∧
J��highK(Y, 0, C)→ J��warnK(X, 0, C). Step (5) adds
auxiliary rules to implement the semantics; e.g., rule (6)
ensures that “��”-facts survive across time points, say
if J��beltTmpK(a, b, 0, 6) and J��beltTmpK(a, b, 2, 5)
hold, then J��beltTmpK(a, b, 3, 6) should hold as well.

Let us denote by P ′ |=T q′ entailment of a BCQ q′ from
existential rules P ′ with timeline T, which is defined using
T-matches as P,D, t |= q but disregarding D and t. Then:
Theorem 1. For any P ∈L+, BCQ q, data stream D on T,
and t∈T holds P,D, t |=q iff rew(P )∪rew(D)|=Trew(q, t).

Theorem 1 is important as it allows us to implement BCQ
answering in LARS+ using existential rule engines, e.g.,
GLog (Tsamoura et al. 2021); arithmetic atoms over T can
be simulated with regular atoms: simply add the set rew(T)
of all true instances of arithmetic atoms in P over T and
view rew(P )∪ rew(D)∪ rew(T) as a single-sorted theory.

4 Decidability
As BCQ entailment over existential rules is undecidable, we
desire that the rewriting rew(·) falls into a known decid-
able fragment. Such may be defined by acyclicity condi-
tions (Cuenca Grau et al. 2013), which ensure that a suitable

chase, which is a versatile class of reasoning algorithms for
existential rules (Benedikt et al. 2017) based on “applying”
rules iteratively, will terminate over a given input. We use a
variant of the skolem chase (Marnette 2009), using nulls in-
stead of skolem terms (aka semi-oblivious chase), extended
to the time sort .

Conditions like the canonical weak acyclicity (WA) (Fa-
gin et al. 2005) ensure in fact universal termination, i.e.,
chase termination for a given rule set over all sets of input
facts. We can thus apply such criteria to rew(P ) (viewed
as single-sorted theory) while ignoring rew(D) and rew(T).
Universal termination may here be seen as an analysis that
disregards time. To formalise this, let strip(P ) result from
P by deleting all arithmetic atoms, window operators, and
temporal quantifiers, and let CT and WA be the classes of
all rule sets on which the skolem chase universally termi-
nates and of all weakly acyclic rule sets, respectively. Then:
Theorem 2. For any P ∈ L+, we have (i) strip(P )∈CT
iff rew(P )∈CT and (ii) strip(P )∈WA iff rew(P )∈WA.

Analogous results hold for elaborated acyclicity notions
(Cuenca Grau et al. 2013). Notably, we can check acyclicity
on the simpler rule set strip(P ). With WA as a representative
notion, we let L+

LWA = {P ∈ L+ | strip(P ) ∈WA}.
While easy to check, universal termination also considers

situations that are impossible on properly encoded streams.
Example 3. Consider P = {@T p(X,Y ) ∧ T ′=T+1 →
∃V.@T ′ p(Y, V )}. The skolem chase on rew(P )∪ rew(D)∪
rew(T) terminates on all T and D, but not universally for
non-standard timelines where e.g., 0 = 0 + 1 holds. That is,
reasoning with P always terminates despite P 6∈ L+

LWA.
We thus introduce time-aware acyclicity, which retains

relevant temporal information instead of working with
strip(P ) only. First, to simplify P , we fix a fresh time vari-
able N and replace all LARS+ atoms in all rules as follows:

p(t) 7→ @N p(t) (9)
�n�p(t) 7→ @N p(t) (10)

�n@T p(t) 7→ @T p(t) (11)
�n♦p(t) 7→ @U p(t) (12)

where (9) refers to atoms with no surrounding LARS+ op-
erators and U in (12) is a fresh time variable unique for each
replacement; arithmetic atoms are kept unchanged. The re-
sulting program is denoted by wfree(P ) (“window-free”).
Example 4. Let P consist of the following rules:

�3� p(X)→ ∃Y.q(X,Y ) (13)
@T q(X,Y ) ∧ U =T + 1→ @U p(Y ) (14)

As in Example 3, the skolem chase on rew(P ) terminates if
the given input data encodes a valid timeline, else it may not
(indeed, P 6∈ L+

LWA). In wfree(P ), (13) is changed to
@N p(X)→ ∃Y.@N q(X,Y ) (15)

Intuitively, in wfree(P ), N is the time at which rules are
evaluated and localises all simple atoms to it; windows are
removed and their restrictions relaxed: �n� (“at all times
in window up to now”) becomes @N (“now”); �n@T (“at
T if in window”) becomes @T ; and �n♦ (“at some time
in window”) becomes @U (“at some time”). As this logi-
cally weakens rule bodies, wfree(P ) has more logical con-
sequences than P . We obtain the following useful insight:



Theorem 3. For every P ∈ L+ and data stream D, if
the skolem chase terminates on rew(wfree(P )) and rew(D),
then it also terminates on rew(P ) and rew(D).

To exploit Theorem 3, we study the chase termination
over rew(wfree(P )) while restricting to actual timelines,
which are incorporated by partial grounding.
Definition 4. The partial grounding grndA(P ) of a pro-
gram P for a set A of null-free facts over a set PA of predi-
cates not occurring in rule heads of P , is the set of all rules
(B\BA→∃z.H)σ, whereBA are the atoms inB with pred-
icate in PA, s.t. a rule B→∃z.H ∈P and a homomorphism
σ between BA and A exist, i.e., a sort- and constant- pre-
serving mapping σ : dom(BA)→ dom(A) s.t. BAσ⊆A.

As long as A comprises all facts over PA, grndA(P ) has
the same models as P and the chase is also preserved. We
use this to ground the time sort in LARS+:
Definition 5. Given a program P , the temporal grounding
of wfree(P ) for a timeline T, denoted tgrndT(P ), is the
partial grounding grnda(T,P )(P

′) where

• P ′ results from rew(wfree(P )) by adding, for each T ∈
VT in each rule body B, an atom T ≤ T to B and

• a(T, P ) is the set of all ground instances of arithmetic
atoms in P with values from T that are true over N.

Example 5. For wfree(P ) from Example 4 and timeline
T = [0, 1], the temporal grounding is as follows (the deleted
ground instances of BA are shown in parentheses):

J�� pK(X, 0, 0)→ ∃Y.J�� qK(X,Y, 0, 0) (0≤ 0)

J�� pK(X, 0, 1)→ ∃Y.J�� qK(X,Y, 0, 1) (1≤ 1)

J�� qK(X,Y, 0, 0)→ J�� pK(Y, 0, 1) (1 = 0 + 1)

While universal termination on tgrndT(P ), which can be
recognized in Example 5 using e.g. MFA (Cuenca Grau et
al. 2013), ensures chase termination on rew(P ) and rew(D)
for all data streams D on T, simpler, position-based notions
like WA still fail. We thus encode time into predicate names:
Definition 6. Let P be an existential rules program with
atoms of form J�� pK(s, 0, t) only, where t is a time point.
Then tfree(P ) is obtained by replacing each J�� pK(s, 0, t)
with JpKt(s) for a fresh predicate JpKt of proper signature.

Let tfgrndT(P ) := tfree(tgrndT(P )). The following re-
sult shows that this is a good basis to check for acyclicity.
Theorem 4. If tfgrndT(P ) is weakly acyclic for P ∈L+

and timeline T, then the skolem chase terminates on rew(P )
and rew(D) for all data streams D on T.
Example 6 (cont’d). As tfgrndT(P ) is WA, by Theorem 4
the skolem chase on rew(P ) and rew(D) always terminates.

In view of Theorem 4, we call P ∈L+ temporally weakly
acyclic (TLWA) over T if tfgrndT(P ) is WA, and denote by
L+
TLWA(T) the class of all such programs P . We then have:

Theorem 5. L+
LWA⊂L+

TLWA(T) holds for all T s.t. |T| ≥ 2.
Regarding complexity, as rew(T) is polynomial in the

length of T, it is exponential if T is encoded in binary. How-
ever, a polynomial axiomatisation of time is feasible, follow-
ing the idea to encode numbers 0,1,. . . ,m using sequences of

Table 1: Preliminary experiments for scenario SA and SB

SA: p1/p2/p3 Run Mem Out
0.0/0.0/0.0 13.12ms 21.9 10.5k
0.3/0.3/0.5 13.34ms 22.7 10.7k
0.7/0.7/1.0 13.67ms 22.9 10.7k

SB :n Run Mem Out
0 0.6s 45.0 36k
2 1.3s 81.8 64k
4 2.6s 114.4 82k

dlog2me bits and to define predicates on them, cf. (Dantsin
et al. 2001), such that for the resulting rewriting rewT(·) in-
stead of rew(·), Theorems 1 and 2 hold analogously.

BCQ answering for L+
TLWA(T) is as for WA rules

2EXPTIME-complete in general (on extensional streams, i.e,
all v(t), t∈T, are listed). The P-complete data complexity
for WA rules carries over to L+

LWA but gets 2EXPTIME-hard
for L+

TLWA(T), as hardest WA programs with bounded predi-
cate arities (Calı̀, Gottlob, and Pieris 2010) can be emulated.

5 Preliminary Evaluation and Conclusion
We implemented an experimental prototype in Python,
which is fed with the stream pointwise. At each time point,
it computes the LARS+ model with the stream collected up
to the last ` time points, using the rewriting in Section 3 and
the chase implementation of GLog (Tsamoura et al. 2021).

We considered two scenarios SA and SB . The first, SA,
is a toy example with conveyor belts and sensors that mea-
sure speed and temperature. The program contains 5 simple
rules and the stream is parametrized by probability values
p1, p2, and p3 that regulate the number of rule executions
(higher values lead to more reasoning). Scenario SB is much
more complex than SA. We considered the dataset Deep100
from the ChaseBench suite (Benedikt et al. 2017), which is
a stress test of chase engines. We created a stream by copy-
ing all facts on each time point and rewrote the original rules
using LARS+ operators and different window sizes n. More
details are available in Appendix D.

Table 1 reports multiple metrics obtained using a lap-
top, viz. avg. runtime (Run), avg. peak use of RAM (in
MB, Mem), and avg. model size (# facts, Out). Notably,
a LARS+ model can be computed rather quickly, viz. in
≈13ms with an hypothetical input like SA. This suggests
that our approach can be used in scenarios that need fast re-
sponse times. For “heavier” scenarios like SB , the runtime
increases but still stays within few seconds. Moreover, rea-
soning used at most 114MB of RAM; thus it may be done
on limited hardware, e.g., sensors or edge devices.

Conclusion. Our work shows that combining existential
rules with LARS can give rise to a versatile stream reason-
ing formalism with expressive features which is still decid-
able. A worthwhile future objective is to develop more ef-
ficient algorithms to compute the models. Our translation
to existential rules is a good basis, but many optimisations
are conceivable. On the theoretical side, a study of further
decidability paradigms, especially related to guarded log-
ics, is suggestive. Finally, further extensions towards non-
monotonic reasoning or other issues, like window validity
(Ronca et al. 2018), are challenging for existential rules, but
would be very useful for stream reasoning.
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Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity no-
tions for existential rules and their application to query an-
swering in ontologies. J. Artif. Intell. Res. 47:741–808.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.

Dell’Aglio, D.; Della Valle, E.; van Harmelen, F.; and Bern-
stein, A. 2017. Stream reasoning: A survey and outlook.
Data Science 1(1-2):59–83.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89 – 124.
Gottlob, G.; Lukasiewicz, T.; and Pieris, A. 2014.
Datalog+/-: Questions and Answers. In KR, 682–685.
Kalaycı, E. G.; Brandt, S.; Calvanese, D.; Ryzhikov, V.;
Xiao, G.; and Zakharyaschev, M. 2019. Ontology-based
access to temporal data with ontop: A framework proposal.
Applied Mathematics and Computer Science 29(1):17–30.
Kharlamov, E.; Kotidis, Y.; Mailis, T.; Neuenstadt, C.; Niko-
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A Proofs Section 3
Theorem 1. For any P ∈L+, BCQ q, data stream D on T,
and t∈T holds P,D, t |=q iff rew(P )∪rew(D)|=Trew(q, t).

Proof. Let η be the function that maps a stream S to the de-
ductive closure of rew(S) under the rules (3)–(8). We show
that, for any t ∈ T, we have S, t |= q iff η(S) |=T rew(q, t),
where q = ∃x.Q. Analogous results will also be established
for P and D.

Therefore, let S = (T, v) be such that S, t |= q as in Def-
inition 2. We show that η(S) |=T rew(q, t). By S, t |= q,
there is a T-match σ of Q on S and t. Therefore, for ev-
ery atom α in Q, S, t |= ασ. Our rewriting replaces atoms
α = �n♦p(t) by α′ = �n@T p(t) for a fresh T . Clearly,
whenever S, t |= ασ, there is a suitable s ∈ T such that
S, t |= α′σ{T 7→ s}. We can therefore construct a query
without ♦ and a suitable T-match over S and assume with-
out loss of generality that ♦ does not occur in the query.

We claim that σt := σ ∪ {C 7→ t} is a match for
rew(q, t) = ∃x.

∧
α∈Q rew(α) ∧ C ≤ t ∧ t≤C over η(S).

Clearly, η(S), t |=T (C ≤ t)σt and likewise for t≤C. For
the other atoms rew(α) with α ∈ Q, we can show η(S), t |=
ασt by considering each possible form of atom:

• For α = p(t), we obtain p(t)σ ∈ v(t). Since rew(α) =
J�� pK(t, 0, C) and rew(α)σt = J�� pK(tσ, 0, t), we
get η(S) |=T rew(α)σt as required.

• For α = @t′ p(t), we obtain p(t)σ ∈ v(t′), and the claim
follows with a similar argument as in the previous case.

• For α = �n�p(t), we obtain p(t)σ ∈ v(t′) for all
t′ ∈ T with t − n ≤ t′ ≤ t; hence, we get η(S) |=T

J�� pK(tσ, 0, t′) for every such t′ by a similar argu-
ment as before. We have rew(α) = J�� pK(t, n, C).
Since η(S) satisfies rules (4)–(6), we find that η(S) |=T

J�� pK(t, n, C)σt: we can apply rule (6) on true atoms of
the form J�� pK(tσ, 0, t′) to infer windows of increasing
sizes up until n; if t− n < 0, then rule (4) is used to start
with a maximal window at time 0, which can be reduced
in size by rule (5), before we again apply (6) to infer the
required J�� pK(tσ, n, t).

• For α = �n@t′ p(t), we obtain p(t)σ ∈ v(t′) and
t − n ≤ t′ ≤ t. Using a similar argument as before,
we can use rule (7) to derive facts J�@ pK(t, 0, t′, t′), and
rule (8) to modify the window size and position to obtain
J�@ pK(t, n, t′, t).

• The cases of atoms α that use> instead of p(t) are shown
in the same way, with the only difference that facts of the
form J�� pK(tσ, 0, s) are now replaced by facts of the
form J��>K(0, s), which are provided by rule (3).

• For arithmetic atoms α, the rewriting does not change the
atom, and the claim is immediate.

This completes the argument that η(S) |=T rew(q, t).
Conversely, assume that there is a model S′ |=T rew(q, t)

that satisfies (3)–(8), and such that S′ = η(S) for a suit-
able S. We show that S, t |= q. The argument proceeds as
before, but now using that η(S) contains only facts of form
J�@ pK(t, n, s, t′) or J�� pK(t, n′, t′) with n′ > 0 that are
needed to satisfy some rule (3)–(8).

We now also find that, for any rule r ∈ P , it holds
that S |= r iff η(S) |=T rew(r), where rew(r) denotes
the result of rewriting a single rule r as described before.
This is an easy consequence from the previous statement
for queries, since T-matches for rule heads and bodies be-
have like query matches. Note that b(rew(r)) may contain
not only the atoms in rew(b(r)) but also an additional atom
J��>K(0, C). However, the previous argument for queries
still applies, since we can assume w.l.o.g. that b(r) con-
tains the atom >, in which case b(rew(r)) = rew(b(r))
does again hold. Finally, we also note that S |= D iff
η(S) |=T rew(D) for data streams D.

These correspondences already show that, whenever there
is a stream S with S |= P and S |= D but S, t 6|= q,
we find that η(S) |=T rew(P ) and η(S) |=T rew(D) but
η(S) 6|=T rew(q, t). For the converse direction, we note that,
for any model S′ with S′ |=T rew(P ) and S′ |=T rew(D),
there is a model of the form η(S) ⊆ S′ for some stream S
for which η(S) |=T rew(P ) and η(S) |=T rew(D), i.e., we
can restrict attention to models of the form η(S), which pro-
vide the semantic correspondences shown above. Indeed,
a suitable η(S) can be obtained by removing from S′ all
facts of the form J�@ pK(t, n, s, t′) or J�� pK(t, n′, t′) with
n′ > 0, and deductively closing the result under the rules
(3)–(8).

B Proofs Section 4
First, we provide a more description of the (skolem) chase
and of the standard notion of weak acyclicity.

The chase is a versatile class of reasoning algorithms for
existential rules (Benedikt et al. 2017), which is based on
“applying” rules iteratively until saturation (or, possibly, for-
ever). We present a variant of the skolem chase (Marnette
2009), using nulls instead of skolem terms (this version is
sometimes called the semi-oblivious chase), and extended to
the time sort.

Let r be an existential rule of the form:

r = ∀x,y. B[x,y]→ ∃z. H[y, z] (16)

where B and H are conjunctions of normal atoms, and
x,y, z are mutually disjoint lists of variables. B is the body
(denoted b(r)), H the head (denoted h(r)), and y the fron-
tier of r. Notice that below we may treat conjunctions of
atoms as sets, and we omit universal quantifiers in rules.

Moreover, let A a set of facts. A T-match σ for b(r)
(defined on x and y) is extended to a term mapping σ+ by
setting, for each Z ∈ z, vσ+ = nr,Zyσ , which is a fixed named
null specific to r, Z, and yσ. The T-match σ is active for A
if h(r)σ+ 6⊆ A.

The skolem chase sequence F0, F1, . . . over a program P
and a set of null-free facts A is specified as follows: (1)
F0 = A and (2) Fi+1 is obtained from Fi by adding h(r)σ+

for every rule r ∈ P and active T-match σ over b(r) and Fi.
The result of the skolem chase is

⋃
i≥0 F0 in this case. The

chase terminates if Fi+1 = Fi for some i ≥ 0. As usual, the
(skolem) chase over R and A refers to this computation pro-
cess or to its result, depending on context. Our definitions
also apply to single-sorted existential rules without time.



For some (finite) I , a chase procedure might not termi-
nate and determining this is undecidable in the most general
case (?). Fortunately, many decidable conditions that guar-
antee chase termination were proposed (Cuenca Grau et al.
(2013) give an overview and comparison). Among them,
weak acyclicity can be seen as a simple representative of
these approaches (Fagin et al. 2005). Intuitively, the idea
is to construct a graph that we can use to track how vari-
ables “propagate” across the rules. If such propagations do
not generate any cycle that involves existentially quantified
variables, then we are sure the chase will always terminate.
We describe the procedure more formally below.

Definition 7. For a program P , we define a directed graph
G whose nodes are predicate positions 〈p, i〉, where p∈P
and 1≤ i≤ ar(p). For a variable X and set A of atoms, let
pos(X,A) := {〈p, i〉 | p(t)∈A and ti =X} be the set of
all positions where X occurs in A. For every rule r as in
(16), frontier variable Y ∈ y, position π ∈ pos(Y, b(r)),
and existential variable Z ∈ z, we add two kinds of edges to
G:

• a normal edge π → π′ for all π′ ∈ pos(Y, h(r))

• a special edge π ∗→ π′ for all π′ ∈ pos(Z, h(r))

Then P is weakly acyclic (WA) if G does not have a cycle
through a special edge.

Recall that we denote the class of all weakly acyclic pro-
grams with WA. We are now ready to discuss Theorem 2.

Theorem 2. For any P ∈ L+, we have (i) strip(P )∈CT
iff rew(P )∈CT and (ii) strip(P )∈WA iff rew(P )∈WA.

Proof. 1) We begin with the first claim, which refers to
chase termination. Let C be the set of all possible ground
instances of arithmetic atoms, including “nonsensical” ones
like, e.g., 0=1+0, in rew(P ) using values from T, and let
CT be the analogous set of all ground instances of rewritten
arithmetic atoms in rewT(P ) (where numbers are encoded
in binary as explained before).

Let F be an arbitrary set of input facts for rew(P ) such
that C ⊆ F and F does not contain facts for predicates
of the form J�@ pK. Then the skolem chase on rew(P ) ∪
F contains a fact J�� pK(t, 0, t) iff it contains every fact
of the form J�� pK(t, 0, s) for s ∈ T. This follows from
rules (5) and (6) using the atoms of C. Similarly, facts of
the form J�@ pK(X, N, T, C) hold at all times and for all
window sizes if J�� pK(t, 0, t) is true for any t ∈ T. In
other words, the skolem chase for rew(P ) ∪ F effectively
merges deductions for all time points.

The skolem chase on rew(P ) ∪ F therefore corresponds
to the skolem chase on strip(P ) ∪ F ′, where F ′ = {p(t) |
J�� pK(t, 0, t) ∈ F}. Indeed, arithmetic atoms are always
true on F since C ⊆ F and can therefore be ignored, and all
temporal operators can be omitted when all time points are
merged. In particular, the skolem chase on rew(P ) ∪ F ter-
minates iff the skolem chase on strip(P )∪F ′ terminates. An
analogous result holds for rewT(P ) with inputs that contain
CT.

Now to finish the proof of the first claim, consider
strip(P ) ∈ CT iff rew(P ) ∈ CT. First assume that there is

a set of facts F ′ such that strip(P ) ∪ F ′ does not terminate.
Every F ′ is of the form F ′ = {p(t) | J�� pK(t, 0, t) ∈ F}
for some F with C ⊆ F that contains no facts for predicates
J�@ pK. Hence we find that rew(P ) ∪ F has no terminating
skolem chase.

Conversely, assume that the skolem chase does not ter-
minate on rew(P ) ∪ G for some set of input facts G that
may not satisfy the previous conditions on F . We extend
G by adding, for every fact α@ = J�@ pK(t, n, s, t) a new
fact α� = J�� pK(t, 0, t). This addition preserves non-
termination of the chase, as every addition of input facts
does for the skolem chase. As argued above, α@ follows
from α� using rules (4)–(8), hence we can delete α@ from
G while preserving non-termination. This leads to a non-
terminating set G without predicates J�@ pK. To satisfy the
other condition on F , we can simply add C to G, which
again preserves non-termination. The skolem chase on the
resulting set G then again corresponds to a skolem chase on
strip(P ), which establishes non-termination. The case for
strip(P ) ∈ CT iff rewT(P ) ∈ CT is analogous.

2) For the second claim, we first address strip(P ) ∈WA
iff rew(P ) ∈ WA. Consider the graphs Gr and Gs as in
Definition 7 for rew(P ) and strip(P ), respectively. The for-
ward direction can be shown by establishing the following:
(a) for every normal edge 〈p, i〉 → 〈q, j〉 in Gs, there is
a path 〈J�� pK, i〉 → · · · → 〈J�� qK, j〉 in Gr; and (b)
for every special edge 〈p, i〉 ∗→ 〈q, j〉 in Gs, there is a path
〈J�� pK, i〉 → · · · ∗→ 〈J�� qK, j〉 in Gr. Together, (a) and
(b) imply that every cycle in Gs that involves a special edge
also leads to such a cycle in Gr, showing the first part of the
claim.

There are two kinds of rules in rew(P ): rewritten ver-
sions of rules in P and auxiliary rules to axiomatise tem-
poral operators. To show (a) and (b), note that the heads
of rewritten rules in rew(P ) only contain atoms of the
form J�� pK(t, N, T ), and that normal and special edges
in rewritten rules are analogous to those in Gs. However,
rewritten rules may also contain body predicates J�@ pK.
The claim follows by noting that, for every predicate po-
sition 〈p, i〉, Gr contains a normal edge 〈J�� pK, i〉 →
〈J�@ pK, i〉 due to rule (7).

For the converse direction, we can use a similar corre-
pondence between paths in Gr and paths in Gs. However,
we additionally need to observe that, for any predicate p of
arity a, the additional argument positions 〈J�� pK, a + 1〉,
〈J�@ pK, a + 1〉, and 〈J�@ pK, a + 2〉 do not occur in any
cycle that involves a special edge. This is an easy conse-
quence of the fact that those positions represent arguments
of the time sort. Therefore, we find that every cycle in Gr
that has a special edge corresponds to such a cycle in Gs.
The argument for strip(P ) ∈ WA iff rewT(P ) ∈ WA is
again similar.

Remark. For the following Theorem 3 and the definitions
of grndT(wfree(P )) (Definition 5) and L+

TLWA(T), we as-
sume that rew(wfree(P )) does not contain any of the aux-
iliary rules (6)–(8). Indeed, these rules are not relevant for
chase termination in an existential rule set where atoms of



the form J�� pK(t, n, c) only occur with n = 0 and predi-
cates J�@ pK do not occur at all.
Theorem 3. For every P ∈ L+ and data stream D, if
the skolem chase terminates on rew(wfree(P )) and rew(D),
then it also terminates on rew(P ) and rew(D).

Proof. The claim follows from our previous observation that
the rules in wfree(P ) have more consequences than those in
P . Indeed, the skolem chase is monotonic with respect to the
amount of entailments, hence the result of a skolem chase on
rew(wfree(P )) is a superset of the result of a skolem chase
on rew(P ).

Consider the partial grounding introduced in Definition 4.
We stated that as long as A comprises all facts over PA,
grndA(P ) has the same models as P and the chase is also
preserved. This statement can be restated as follows.
Lemma 1. Consider a program P and a set A of null-free
facts over PA as in Definition 4. If B is a fact set such that
A = {p(t) ∈ B | p ∈ PA}, then the skolem chase on P and
B is the same as the skolem chase on grndA(P ) and B.

Proof. The claim follows because every T-match on a rule
of P must, by definition, instantiate all body atoms for a
predicate in PA to a fact in A. Since the program grndA(P )
contains a rule for every possible choice of fact from A,
an analogous T-match is applicable on grndA(P ), and the
chases are based on applications of the same ground rule in-
stances.

We now consider that universal termination on tgrndT(P )
ensures chase termination on rew(P ) and rew(D).
Lemma 2. If the skolem chase universally terminates on
tgrndT(P ) for P ∈L+ and timeline T, then it terminates
on rew(P ) and rew(D) for all data streams D on T.

Proof. Combine Theorem 3 and Lemma 1.

Finally, the following lemma is easy to show.
Lemma 3. For P as in Defn. 6 and a fact set A over predi-
cates in P , the results of the skolem chase on P and A resp.
on tfree(P ) and tfree(A) are in a bijective correspondence.
We are now ready to discuss Theorem 4.
Theorem 4. If tfgrndT(P ) is weakly acyclic for P ∈L+

and timeline T, then the skolem chase terminates on rew(P )
and rew(D) for all data streams D on T.

Proof. Suppose that the set tfree(tgrndT(P )) of existen-
tial rules is weakly acyclic. Then the skolem chase uni-
versally terminates for it. Then, Lemma 3 ensures that the
skolem chase universally terminates for tfgrndT(P ). From
Lemma 2, it then follows that the skolem chase terminates
on rew(P ) and rew(D) for every data streamD over T.

Theorem 5. L+
LWA⊂L+

TLWA(T) holds for all T s.t. |T| ≥ 2.

Proof. From tfree(tgrndT(P )) we can obtain strip(P ) by
a surjective renaming of predicates JpKt 7→ p, and likewise
the graph for WA by collapsing vertices, which preserves
cycles. By Example 6, L+

TLWA(T) 6⊆L+
LWA for a timeline of

size 2.

C Notes on complexity
Below, we provide a more detailed description of the com-
plexity of the proposed procedures to ensure decidability
and to perform BCQ answering with LARS+ programs.

C.1 Complexity of deciding L+
LWA and L+

TLWA

Theorem 6. Given a LARS+ program P , deciding whether
P ∈L+

LWA is NL-complete.

Proof (Sketch). To decide whether P ∈L+
LWA holds, we

need to check whether the dependency graph G for strip(P )
has no cycle containing a special edge. Each node ofG (con-
sisting of a pair 〈p, i〉) can be stored in logarithmic space,
and deciding whether between two given nodes a normal
resp. special edge exists is feasible in logarithmic space.
Therefore, a cycle that contains a special edge can be non-
deterministically guessed and checked stepwise in logarith-
mic space. Since NL = co-NL, this establishes NL mem-
bership of the problem.

The NL-hardness is inherited from the NL-hardness of
WA checking of existential rules, which can be proved by a
simple reduction from the graph reachability problem. In-
deed, given a directed graph G = (V,E) and a starting/end
node s/t from V , we introduce a unary predicate pv for each
v ∈ V , and a binary predicate q. We then set up rules
pv(X) → pv′(X) for all edges v → v′ in E and for the
start resp. terminal node the rules pt(X)→ ∃Y.q(X,Y ) and
q(X,Y ) → ps(Y ), respectively. Then G has a cycle with a
special edge iff there is a path from s to t.

Turning to temporal acyclicity, we first note that already
computing the temporal grounding of rules is intractable.

Proposition 1. Deciding, given a rule r and a set A of null-
free facts over predicates not occurring in b(r), whether
groundA({r}) is non-empty is NP-complete, and NP-hard
even if groundA({r}) is a temporal grounding as in Defini-
tion 5 over any timeline with at least two elements.

Proof. Partial grounding requires to find a homomorphism
from the conjunction b(r)A (BA in Definition 5) toA, which
is NP-complete in general. For the special case of tem-
poral grounding, we can show that it is still NP-complete
to find a homomorphism from a conjunction of arithmetic
atoms to the fact encoding of a timeline. For example, to
encode three-colourability of a graph, every vertex v is as-
signed three variables Vr, Vg , Vb. We use atoms to express
0 ≤ Vx ≤ 1 and Vx + Vy ≤ 1, for all x, y ∈ {r, g, b}
with x 6= y. Every edge v → w of the graph is encoded as
Vx +Wy ≤ 1 for all x ∈ {r, g, b}.

Deciding temporal acyclicity has presumably higher com-
plexity.

Theorem 7. Given a LARS+ program P and a timeline T,
deciding whether P ∈L+

TLWA(T) is PSPACE- complete.

Proof sketch. Membership in PSPACE follows as the re-
quired check corresponds to a reachability check on a graph
of exponential size whose edge relation can be validated in
PSPACE. For hardness, we can simulate acceptance of a



BCQL

Data complexity Combined complexity
L+
LWA PTIME-c 2EXPTIME-c

L+
TLWA(T) 2EXPTIME-c 2EXPTIME-c

Table 2: Complexity of LARS+ classes (c=complete).

polynomial space bounded Turing machine by using posi-
tions of the form 〈pt, 1〉 to represent configurations of the
TM, where the binary encoding of t represents the (poly-
nomial size) tape contents and p one of the (polynomi-
ally many) combinations of state and head positions. TM
transitions are encoded by normal edges that are based on
rules that use (polynomially long) conjunctions of arithmetic
atoms to extract bits from time points, and to relate bits of
consecutive configurations. The key for bit extraction is to
define variables Xn that must be one of {0, 2n} for any po-
sition n on the tape. For n = 0, we can encode 0 ≤ Xn ≤ 1.
For n + 1, we can (recursively) define an auxiliary variable
X ′n with values in {0, 2n} and require Xn+1 = X ′n + X ′n.
Note that one more auxiliary variable is used on each level,
so the encoding of the polynomially many Xn is still poly-
nomial. We can then render a given timepoint as a sum∑`
i=0Xi to obtain a binary decoding. It is then easy to

define rules for each TM transition. To reduce TM accep-
tance to weak acyclicity, it remains to create special edges
from each accepting configuration to each starting configu-
ration.

C.2 BCQ Answering
The decision problem that corresponds to BCQ answering,
defined in Definition 3, is stated below.

Problem LARS+ BCQ Answering (BCQ)
Input: LARS+ program P , data stream D = (T, vD),

time point t ∈ T, and LARS+ BCQ q.
Question: Does P,D, t |= q hold?

Below, we will add a subscript to BCQ to indicate which
class P belongs. For instance, BCQL means that P is sup-
posed to be in L.
Theorem 8. The complexity of the problem BCQL is for
L ∈ {L+

LWA,L
+
TLWA(T)} as reported in Table 2.

This result is obtained from several lemmas presented in
the following subsections. We make some useful observa-
tions about instances of BCQ:
Proposition 2. Given an instance P,D, t, q of BCQ, let P ′
result from P by replacing each window size n occurring
in P such that n ≥ |T| with |T| − 1. Then P,D, T, q is a
yes-instance of BCQ iff P ′, D, t, q is a yes-instance of BCQ.

As P ′ in Proposition 2 is easily constructed from P and
T, we thus may assume assume without loss of generality
that the largest window size m occurring in P of an BCQ
instance satisfies m ≤ |T| − 1.
Proposition 3. Given an instance P,D, t, q of BCQ, let P ′
result from P by adding the rule rq := q ∧ @N timeq ∧
�0@N > → @0 yes, where timeq and yes are fresh nullary

predicates. Then P,D, t, q is a yes-instance of BCQ
iff P ′, D′, t, yes is a yes-instance of BCQ, where D′ =
(T, v′d}) with v′d(t) = vd(t) ∪ {timeq} and v′d(t

′) = vd(t
′)

for t′ 6= t.

That is, we can compile the query q into the program P
such that the new query is a simple propositional atom, with
little effort. The membership of P ′ in any of the classes
L ∈ {L+

LWA,L
+
TLWA(T)} that we consider coincides with

the membership of P in the respective class BCQL.
In the sequel, we exploit Propositions 2 and 3 and restrict

without loss of generality our attention for deriving upper
boundes to BCQ instances where the largest window size
is at most |T| − 1 and the query is a simple nullary (i.e.,
propositional) atom. Furthermore, we assume without loss
of generality that for any atom @T b occurring in rules of
P , the term T is a time variable (if not, we can replace the
atom by @′T b and add T ′ = T in the rule body,2 where T ′
is a fresh time variable). We call instances of BCQ which
satisfy these properties trimmed.

BCQ Answering with L+
LWA

Lemma 4. Problem BCQL+
LWA

is (i) in PTIME under data
complexity and (ii) in 2EXPTIME under combined complex-
ity.

Proof (Sketch). Without loss of generality, the instance
is trimmed. (i) For P ∈ L+

LWA, the number of ab-
stract constants and nulls generated in a chase of P ′ =
grndT(wfree(P )) can bounded similarly as in Lemma 6
below, but with a smaller value of s = np× a, since
the time arguments can be ignored and each null value
must be generated at stage s. Thus, in the naive bound
b = (k× |P | × |T|`× `×nc)`

s

the exponents ` and `s are
constant; furthermore also the bound for n′r

`s in (18) is
then polynomial, and so overall we obtain that the num-
ber of abstract constants and nulls generated is polynomially
bounded.

Along a similar argumentation as in Lemma 7, it can be
shown that only a polynomial number of atoms will be gen-
erated, and each step can be done in polynomial time; hence
we obtain overall a polynomial time algorithm for BCQ an-
swering.

In case (ii), the result follows from Theorem 5 and
Lemma 7.

Lemma 5. Problem BCQL+
LWA

is (i) PTIME-hard under data
complexity and (ii) 2EXPTIME-hard under combined com-
plexity.

Proof. In case (i), the result follows from Theorem 5 and
from the fact that the complexity of BCQ answering from
datalog programs is PTIME-complete under data complex-
ity.

In case (ii), the result is trivially inherited from the com-
plexity of BCQ answering from WA existential rules, which
is 2EXPTIME-complete under combined complexity (Calı̀,

2We use t1 = t2 for time terms t1 and t2 as a shorthand for
t1≤ t2 ∧ t2≤ t1.



Gottlob, and Pieris 2010), taking into account that the prob-
lem can be simply reduced to an empty data stream D with
timeline T = [0, 0].

BCQ Answering with L+
TLWA(T)

The following lemma is the key for obtaining upper
bounds for BCQ answering with programs in L+

TLWA(T).
Lemma 6. Given a trimmed instance of BCQL+

TLWA(T), in
the skolem chase of P ′ = grndT(wfree(P )) over rew(D) ∪
rew(T ), at most double exponentially many abstract con-
stants and nulls in the size of P and D occur. This number
can be (naively) bounded by

b = (k× |P | × |T|`× `×nc)`
s

(17)

where
• ` is the maximal rule length in P ;
• nc is the number of abstract constants in P and D;
• s = |T| ×np× a, where np and a are the number of pred-

icates and the maximal predicate arity in P , respectively.

Proof. We consider the application of the existential rules in
P ′ for null value generation as in the skolem chase. Start-
ing from constants, the first null values are generated by ap-
plying rules where all frontier variables are substituted with
constants; then the null values generated can take part in
generating further null values etc. Each null value is gener-
ated at a stage i ≥ 0, which corresponds to the step of the
skolem chase sequence where it first appears.

As P is in L+
TLWA(T), the program P ′ is weakly acyclic.

We claim that each null value will be generated up to at most
stage s = |T| ×np× a.

Recall that, as remarked earlier, the rules (6)–(8) are not
included in the rewriting for P ′.

The program P ′ therefore is of the form in Lemma 3, and
we have in tfree(P ′) predicates JpKt where p is a simple
predicate from P and t is a time point in T.

In the dependency graph G for tfree(P ′), the number of
nodes is thus bounded by |T| ×np× a (note that the nullary
predicates J>Kt do not create nodes in G).

Each null value ω of stage i can flow by rule applications
along different predicate argument positions, reflected by
normal edges in G, until it is used in creating a null value
ω′ of stage i + 1. As P ′ is weakly acyclic, also tfree(P ′)
is weakly acyclic and so the newly created null value ω′ can
not flow to any predicate argument positions at which ω was
present. Hence, the number of stages for null value genera-
tion is bounded by |T| ×np× a.

We will now argue that the bound b claimed in (17), i.e.
b = (k× |P | × |T|`× `×nc)`

s

holds and that it is double
exponential in the size of P and D.

Now let nr = |P ′| denote the number of rules in |P ′|. Let
vi denote the number of abstract constants and null values
that we have up to the ith stage of null value generation. If
i = 0, then we have not have applied any rules to generate
null values and we thus have v0 = nc.

If we apply the rules to generate null values for the first
time, their number is bounded by nr×`×v0` as we have nr

rules, each rule has at most ` existential variables, and we
have at most ` frontier variables that generate a null value.

So v1 will satisfy

v1 ≤ v0 + nr × `× v0` ≤ n′r × `× v0`,

where n′r = nr + 1.
Now we just iterate to obtain v2 in a similar way, and we

get

v2 ≤ v1 + nr × `× v1` ≤ (n′r × `)`+1 × v0`
2

.

If we continue this, we can get the form

vi ≤ (n′r × `)`
i

× v0`
i

= (n′r × `× v0)`
i

.

That is, we get a value that for i = s fulfills

vs ≤ (n′r × `× v0)`
s

= ((nr + 1)× `× v0)`
s

.

Now ` and v0 = nc are polynomial in the size of P and
D; hence the terms ``

s

and v`
s

0 are double exponential in the
size of P and D. The number nr of rules in P ′ obeys

nr < k× |P | × |T|`, thus n′r ≤ k× |P | × |T|`

for some constant k (each rule in P induces one rule in
rew(P ) and assuming P is nonempty k accounts for the ex-
tra rules (3–8)), and thus is single exponential in the size of
P and D. Consequently,

n′r
`s ≤ (k× |P | × |T|`)`

s

= (k× |P |)`
s

× |T|`
s+1

(18)

is double exponential in the size of P and D; this shows the
claim.

We note that under data complexity, the bound in
Lemma 6 is still double exponential in the length |T| of
the timeline T, and in fact instances where double exponen-
tially many null values are created do exist (see the proof of
Lemma 7). However, if in addition |T| is bounded by a con-
stant, then the bound is polynomial. Hence, BCQ answering
with programs in BCQL+

TLWA(T) is tractable in this case.
Based on Lemma 6, we obtain the following result.

Lemma 7. Problem BCQL+
TLWA(T) is in 2EXPTIME under

data and combined complexity.

Proof. Without loss of generality, the instance is trimmed.
We note that the program wfree(P ) is a logical strengthening
of P , as in each rule r in P the body of r is weakened; that is,
more rule applications to derive null-free facts are possible
for wfree(P ) over D than for P . Hence, an upper bound for
deriving the query atom q with wfree(P ) over D will give
us an upper bound for deriving q with P over D as well. In
the sequel, we thus consider wfree(P ) and use Theorem 2.

By Lemma 6, the number of abstract constants and nulls
created by evaluating the program P ′ = grndT(wfree(P ))
over rew(D) ∪ rew(T ) is bounded by a double exponential
number b = (k× |P | × |T|`× `×nc)`

s

. Recall again that
rules (4)–(8) are omitted from P ′, as remarked before.

By Lemma 3, instead of P ′ we can equivalently consider
tfree(P ′), in which the number of predicates is bounded by



‖P‖ · |T| and their arities are bounded by the maximal rule
length ` in P . Hence, no more than

c1‖P‖ · |T|b` = c1‖P‖ · |T|((k× |P | × |T|`× `×nc)`
s

)`

= c1‖P‖ · |T|(k× |P | × |T|`× `×nc))`×`
s

many ground atoms, where c1 is a constant, will be derived
by the skolem chase to answer the query q, which is double
exponential in the size of P and D. As each derivation step
can be done, relative to the already derived atoms, in time
exponential in the maximal number of variables in a rule (by
simple rule matching) and thus in double exponential time,
the overall time to run the skolem chase is bounded dou-
ble exponentially. Furthermore, computing P ′ is feasible
in exponential time in the size of P and D, and computing
rew(D) ∪ rew(T ) is feasible in polynomial time in the size
of P and D. Summing up, this yields a double exponential
time upper bound for problem BCQL+

TLWA(T).

Lemma 8. Problem BCQL+
TLWA(T) is 2EXPTIME-hard under

data complexity and combined complexity.

Proof. This result can be accomplished by adjusting a
2EXPTIME-hardness proof for BCQ Answering from a set
of WA existential rules by Calı̀, Gottlob, and Pieris (2010).
Their proof presents an encoding of the acceptance prob-
lem for a (deterministic) Turing machine M that oper-
ates on a given input I in double exponential time. At
the core of the encoding are existential rules that generate
double exponentially many null values with a linear order
(given by a successor relation succ and predicates min and
max that single out the first and the last element, respec-
tively). The rules are schematic and use indexed predicates
succi,mini,maxi, ri, si which are defined inductively for
i = 0, . . .m.

The machine computation is then simulated using stan-
dard Datalog rules at m, which are fixed (independent of the
machineM ); further rules serve to describe the tape contents
of the initial configuration. For a machine description M , a
Boolean query q = accept(X), where X refers to a time
instant of the computation (represented by a null), evaluates
to true iff M accepts the input.

We now describe the construction following (?), adapted
to our needs for L+

TLWA(T) programs. The key observation
is that each indexed predicate pi from above can be replaced
by a predicate p, such that pi(x) is represented by @ip(x),
where we use a timeline T = [0, . . . ,m].

LetM = 〈S,Λ, , δ, s0, F 〉 be an (one-tape) deterministic
Turing machine (DTM), where S is a finite (non-empty) set
of states, Λ is the finite (non-empty) set of the tape sym-
bols, ∈ Λ is the blank symbol, δ : (S \ F )× Λ →
S×Λ×{−1, 1, 0} is the transition function, s0 ∈ S is the
initial state, and F ⊆ S is the set of accepting states. We as-
sume that M is well-behaved and never tries to read beyond
its tape boundaries.

Without loss of generality, we can always assume that M
has exactly one accepting state, denoted as sacc, and that s0
and sacc are always the same (i.e., fixed). Furthermore, we
may assume that M operates on empty input (I is void; we

could in polynomial time construct a machine M ′ that first
writes I on the tape and then simulatesM ). This assumption
is not made in (?), but simplifies the construction.

We construct a fixed L+
TLWA(T) program P , a data stream

D, and a (fixed) BCQ q such that P,D |= q iff M accepts
the empty input I within time 22

m

-1 where m = nk, k > 0,
and n is the size of M ; here δ is represented by a table Tδ
that holds tuples t = (s, a, s′, a′, d), with the meaning that
if the machine reads a in state s at position k on the tape,
then it replaces a with a′, changes to state s′, and moves the
cursor to position k + d.

We use the following predicates:

• symbol/3 to hold the contents of a cell of the tape, where
symbol(τ, π, a) means that at time instant τ , cell π holds
symbol a;

• cursor/2 to hold the position of the cursor (read/write
head), where cursor(τ, π) means that at time instant τ ,
the cursor is at position π;

• state/2 to hold the state, where state(τ, s) means that at
time instant τ , the machine is in state s;

• transition/5 to store the transition function δ; for each
tuple t ∈ Tδ , we have an atom transition(t). This pred-
icate is extensional, i.e., it is in the data stream.

• accept/1 to hold that M accepts, where accept(τ) means
that it accepts at time instant τ ;

• succ/2, min/1, max/1, r/1, s/3: these predicates
are auxiliary predicates to generate double exponentially
many symbols for the simulation of M ;

• ≤/2: this is a linear order on the (double exponentially
many) elements of r at the end of the stream;

• end/0: an atom to mark the end of the stream.

The idea is that in the stream, at time point 0 we will have
22

0

= 2 many elements, c0 and c1, which are distinct con-
stants. Using r and s, these constants will create new nulls
in a progressive fashion along the timeline, such that at time
point m, we shall have 22

m

many elements.
The data stream D = (T, vD) has the timeline T =

[0,m], and we put at time m the description of the transi-
tion function of M , i.e., all facts transition(s, a, s′, a′, d),
and the atom end; there are no further atoms in D. That is,
vD = {m 7→ {transition(t) | t ∈ Tδ} ∪ {end}.

The program P consists of facts and rules as follows.

• @0min(c0), @0max(c0), @0succ(c0, c1), @0r(c0),
@0r(c1).

• (initialization rules) the tape of M will be initialized to
all blanks (owing to our assumption; recall that rules are
implicitly universally quantified over time):

end,min(X), r(Y )→ symbol(X,Y, );

the cursor is at the initial position:

end,min(X)→ cursor(X,X)

and the machine is in the initial state:

end,min(X)→ state(X, s0)



• (transition rules) three rules describe the moves of M :
– left move:

end, transition(S1, A1, S2, A2,−1),

symbol(T1, C2, A1), state(T1, S1),

cursor(T1, C2), succ(T1, T2), succ(C1, C2)→
symbol(T2, C2, A2), state(T2, S2), cursor(T2, C1)

– right move:

end, transition(S1, A1, S2, A2, 1),

symbol(T1, C1, A1), state(T1, S1),

cursor(T1, C1), succ(T1, T2), succ(C1, C2)→
symbol(T2, C1, A2), state(T2, S2), cursor(T2, C2)

– stay move:

end, transition(S1, A1, S2, A2, 0), symbol(T1, C,A1),

state(T1, S1), cursor(T1, C), succ(T1, T2)→
symbol(T2, C,A2), state(T2, S2), cursor(T2, C)

• (inertia rules) the contents of the tape not at the cursor
position has to be carried over:

end, cursor(T1, C2), succ(C,C2),≤(C1, C),

symbol(T1, C1, A), succ(T1, T2)→
symbol(T2, C1, A)

end, cursor(T1, C1), succ(C1, C),≤(C,C2),

symbol(T1, C2, A), succ(T1, T2)→
symbol(T2, C2, A)

• (acceptance rule)

end, state(T, sacc)→ accept(T )

In addition to these rules, we have rules that define the
auxiliary predicates. At the heart is the generation of nulls
at the time point m, which represent exponentially long bit
vectors. This is accomplished with the following rules:

r(X), r(Y )→ ∃Z.s(X,Y, Z)

s(X,Y, Z), T ′ = now + 1→ ∃Z.@T ′r(Z)

s(X,Y1, Z1), s(X,Y2, Z2),

succ(Y1, Y2), T ′ = now + 1→ @T ′succ(Z1, Z2)

s(X1, Y1, Z1), s(X2, Y2, Z2),max(Y1),min(Y2),

succ(X1, X2), T ′ = now + 1→ @T ′succ(Z1, Z2)

s(X,X,Z),min(X), T ′ = now + 1→ @T ′min(Z)

s(X,X,Z),max(X), T ′ = now + 1→ @T ′max(Z)

Intuitively, the effect of these rules is that, at each time point
i, the elements in r are paired, such that tuples of length 2i

yield tuples of length 2i+1, where nulls give names to these
tuples.

Finally, the order ≤ is defined as follows:

end, r(X)→ ≤(X,X)

end, succ(X,Y ),≤(Y,Z)→ ≤(X,Z).

This completes the description of the program P . Notice
that for varying inputs M , the rules of P are by our assump-
tions the same, thus fixed. Furthermore, only a single rule
has an existential variable in the head; however, no cycles
through special edges in the dependency graph of the tem-
poral grounding of the program P over D are possible.

It can be shown that some atom accept(t), where t is a
ground term (in fact, a null) can be derived with P over the
data stream D at time point m iff M accepts (the empty)
input.

To complete the construction, we thus set the BCQ q to
accept(X) for evaluation at time point m. Alternatively, we
could also introduce a rule

accept(X)→ q

and answer q at time point m.

Please notice that in the construction in Lemma 8, we may
change the accept rule to

accept(X)→ @0q

i.e., put the query atom at time point 0; thus asking whether q
can be entailed with P overD at time point 0 is 2EXPTIME-
hard, i.e., for BCQ at a fixed query time.

D Further experimental details
The experiments were conducted using a MacbookPro16,1
with Intel Core i7 2.6GHz and 32GB RAM. Scenario SA is
meant to simulate a stream with b conveyor belts and mul-
tiple sensors that measure the speed and the temperature.
When the speed is too slow or the temperature is too high,
the rules trigger warnings and errors. The rules used in this
scenario are the following:

belt(X)→ ∃Y.bOpr(X,Y ) (19)

�5♦bSpeed(X,Y ) ∧ slow(Y )→ ∃Z.brkG(X,Z) (20)

�3�bTmp(X,Y ) ∧ high(Y )→ ∃Z.incId(Z,X) (21)
incId(Y,X) ∧ bOpr(X,Z)→ assign(Y,Z) (22)

�3�incId(Z,X)→ block(X) (23)

where bOpr, brkG, incId is short for beltOperator,
brokenGear, incidentId, respectively. Here (19) and (20) use
existentials to introduce new potentially unknown individu-
als while (21) introduces a new incident ID if the temper-
ature is high; (22) assigns the incident to the current belt’s
operator, while (23) blocks the belt if the incident has been
persisting since three time points in the past.

Scenario SB is created as follows. Deep100 from the
ChaseBench suite (Benedikt et al. 2017) contains 1k facts
and 1.1k existential rules with 1 body atom and 3-4 head
atoms, and predicates having arity 3 or 4. We created a
stream by copying all 1k facts on each time point, and pre-
fixed in rules each body atom B in with either �n� (50%)
or �n♦ (50%) for some n. In both scenarios, we created
streams with 100 time points and set `= 6, which is large
enough to fill all windows.

The data stream contains b = 100 belts. For each belt, the
data stream contains 3 facts: the identifier of the belt (e.g.,



belt(b1), the value of the speed, which can be either high
or low (e.g., bSpeed(b1, low)), and the value of the temper-
ature, which is an integer from 1 to 9 (e.g., bTmp(b1, 3)).
At each time point, every belt has a slow speed with proba-
bility p1 (hence triggering rule (20)), and high temperature
with probability p2, which lasts for at least four consecutive
time points with probability p3 to trigger rules (21-23). The
computation of the LARS+ model is invoked at each time
point and the reported numbers contain the averages across
all time points.


