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Today’s agenda

1. Basics information regarding the course.
2. An informal definition of a logic with examples.
3. Potential applications and further research options.

Query languages? Formal verification? Formal languages? Complexity?

4. Recap from BSc studies: Syntax & Semantics of First-Order Logic (FO).
5. Basic notations, provability, and Gödel’s theorem “|= equals `”.
6. Gödel’s Compactness theorem with a proof and an application.

Feel free to ask questions and interrupt me!
Don’t be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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Course Information

https://iccl.inf.tu-dresden.de/web/Finite_and_algorithmic_model_theory_(22/23)_(WS2022)/en

Contact me via email: bartosz.bednarczyk@cs.uni.wroc.pl

1. Lectures: Wednesday 14:50-16:20 (APB/E007), Tutorials: Thursday 13:00-14:50 (???) (important!)
2. Course website: (at [ICCL]) ← check for slides, notes, and exercise lists.
3. Each week a new exercise list will be published. Do not worry if you can’t solve all of them.
4. Oral exam: question about the basic understanding + selected theorems. Intended to be easy!
5. Goal: understand power/limitations of 1st-order logic and selected fragments (with a bit of complexity).

Books and literature.
+ Lecture notes by Martin Otto [HERE] and lecture notes by Erich Grädel [HERE]

Last but Not Least: I offer MSc/PHD research projects for motivated students!
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What is a “logic”? A running example.

Naively: a “formal language” for expressing properties of relational structures (≈ hypergraphs).
Made formal via abstract model theory, c.f. article at ncatlab.org and Lindström’s theorems.

A := 1 2 3 4
over a signature τ := {G(1),R(1),E(2)}

GA := {1, 4}, RA := {2, 3}
EA := {(1, 2), (2, 3), (3, 1), (3, 3)(3, 4), (4, 3)}

A signature contains (at most countably∗ many) constant and relation symbols (each with a fixed arity).
Structure = Domain + interpretation of symbols, e.g. A := (A, ·A) depicted above,

where A = {1, 2, 3, 4} and ·A(G), ·A(R), ·A(E) are as above.
Constants ≈ elements, unary relations ≈ colours, binary (resp. higher-arity) relations ≈ (hyper)edgesExample (of a First-Order Logic (FO) Formula)

(in a coloured graph:) Any node is either green or red.
ϕ := ∀x (G(x)∨R(x)) ∧ (G(x)↔ ¬R(x))

We write A |= ϕ to indicate that
A satisfies ϕ or A is a model of ϕ.

Formulae often employ: Variables: x , y , z ,X ,Y , . . . Boolean connectives: ∧,∨,¬,↔, ∨∞i=0, . . .

Quantifiers: ∀,∃,∃even,∃=42,∃35%,∃Set,♦, Predicates (relational symbols): P,∈,=,∼, and more?
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More examples I.

Exercise (An FO[{E(2)}] formula/query testing if a graph is a 4-element clique [here E = edge relation].)

|= ϕ4clique

1

2

3

4
1. There are precisely 4 elements . . .
∃x1∃x2∃x3∃x4

(
x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 ∧ x2 6= x3 ∧ x2 6= x4 ∧ x3 6= x4
∧∀x

[
x = x1 ∨ x = x2 ∨ x = x3 ∨ x = x4

])
2. and any two of them are linked by E.
∧ ∀x∀y E(x , y).

Exercise (Write a formula over {E(2)} checking if a graph is two-colorable.)
G := 1 2 3 4

ϕ2COL = ∃G∃R (x ∈ G ∨ x ∈ R) ∧ (x ∈ G↔ x 6∈ R) ∧ ϕok

ϕok = ∀x(x ∈ G→ (∀y E (x , y)→ y ∈ R)) ∧ ∀x(x ∈ R → (∀y E (x , y)→ y ∈ G))

Quantification over sets:
There exists a colouring with G and R and it is correct

G′ := |= ϕok

|= ϕ2COL

1 2 3 4
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More examples II.

Exercise (Write an FO[{E(2), a, b}] formula ϕreach(a,b)
k testing if there is a path from a to b of length k .)

1. Case k = 0 is trivial: Take ϕreach(a,b)
0 := a = b

2. Case k = 1 is easy too: Take ϕreach(a,b)
1 := E(a, b)

3. Case k = 2 is a tiny bit harder: Take ϕreach(a,b)
2 := ∃x1E(a, x1) ∧ E(x1, b)

4. Case k = 3 is a similar: Take ϕreach(a,b)
3 := ∃x1∃x2E(a, x1) ∧ E(x1, x2) ∧ E(x2, b)

5. So for any k ≥ 2 just take: Take ϕreach(a,b)
k := ∃x1 . . . ∃xk−1 E(a, x1) ∧ ∧k−2

i=1 E(xi , xi+1) ∧ E(xk−1, b)

Question (Can we do better in terms the total number of quantifiers?)
Current state of the art: log2(k)−O(1) ≤ ??? ≤ 3 log3(k) +O(1) by Fagin at al. [MFCS 2022]

Exercise (Write a formula ϕconn over {E(2)} testing if a structure is E-connected.)

ϕreach(a,b) := ∀x∀y ∨∞
i=0 ϕ

reach(a,b)
k [a/x , b/y ].

Is there a chance to get an FO formula?
No. And we will show it today!
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Question (Can we do better in terms the total number of quantifiers?)
Current state of the art: log2(k)−O(1) ≤ ??? ≤ 3 log3(k) +O(1) by Fagin at al. [MFCS 2022]

Exercise (Write a formula ϕconn over {E(2)} testing if a structure is E-connected.)

ϕreach(a,b) := ∀x∀y ∨∞
i=0 ϕ

reach(a,b)
k [a/x , b/y ].

Is there a chance to get an FO formula?

No. And we will show it today!
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Motivations I: why do we care about logic?

Query: Give me IDs of all candidates who applied for “computer science”.

ϕ(i) 
ϕ(i) = ∃n∃s Candidate(i , n, s) ∧Appl("Computer Science", i)

Theorem (Codd 1971)
Basic SQL ≈ First-Order Logic

Other useful logic: Datalog ≈ SQL + recursion
1. VLog: a rule engine for querying data graphs

2. Vadalog: querying data graphs based on Datalog

Nice lecture on VadaLog by Gottlob [here], and a course on knowledge graphs by Krötzsch [here].

Description logics: a family of logics for knowledge representation.
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Motivations II: why do we care about logic?

1. Temporal logics as specification languages
2. COQ: verified algorithms!, c.f. [here]

3. Separation logic: verifying Cpp/Java
Nice lecture [here].(I’m there running with a mic!)

Check also Infer tool by Facebook!
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Motivations III: why do we care about logic?

In “standard” computational complexity we measure resources, e.g. space and time.
O(n) time Θ(n log(n)) memory? solvable in PSpace? decidable?Descriptive complexity: how strong the language must be to describe the problem?
A logic L characterises the complexity class C if
for every property of finite structures P :
1. P is expressible in L if and only if
2. There is an algorithm in C deciding P .

Theorem (Fagin’1973)
Existential Second Order Logic
characterises NP.

Is there a logic for PTime?
No idea since 1988.
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Motivations IV: why do we care about logic?

Meta algorithms: say what you want instead of writing a code! Hot topic nowadays!
Is every property of graphs expressible in FO is

checkable in linear time for all graphs from class C?

Theorem (Courcelle 1990)
C := graphs of bounded-treewidth.
Theorem (Seese 1996)
C := graphs of bounded-degree.
Theorem (Dvorák et al. 2010)
C := graphs of bounded-expansion.
Theorem (Bonnet et al. 2022)
C := graphs of bounded-twinwidth.
Theorem (Grohe, Kreutzer, Siebertz 2014)
O(|ϕ|1+ε) for C := nowhere-dense graphs.
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Signatures (vocabularies)

Signature σ is a (countable) collection of symbols: (c1, c2, . . . ,R1,R2, . . .)
Constant symbols, e.g. ∅, 7, Bartek

Relational symbols, e.g. ∈,⊆, isEven with an associated arity, e.g. ar(⊆) = 2, ar(isEven) = 1
Structures

Over a signature σ we define σ-structures A = (A, ·A) composed of:
• Non-empty set A called the domain of A + Interpretation function ·A such that:
1. For each constant symbol c, we have ·A : c 7→ (cA ∈ A)
2. For each relational symbol R, we have ·A : R 7→ (RA ⊆ Aar(R))

1

23

4

EG

EG

EG

EG

Morphisms
Let A,B be σ-structures. A homomorphism from A to B is h : A→ B satisfying:
• For all constant symbols c ∈ σ we have h(cA) = cB, and
• For all relational symbols R ∈ σ, RA(a1, . . . , aar(R)) implies RB(h(a1), . . . , h(aar(R))).

a EG′

h(x) = a

An isomorphism h between A and B is a bijection s.t. h, h−1 are homomorphisms.
In this case we write: A ∼= B. Important! A ∼= B implies A |= ϕ⇔ B |= ϕ for all formulae ϕ.
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Syntax of FO[σ]

• Let Var := {x , y , z , u, v , . . .} be a countably-infinite set of variables.
• The set of terms is Terms(σ) := Var ∪ {c | c is a constant from σ}.
• The set of atomic formulae Atoms(σ) is the smallest set such that:
1. If t1, t2 are terms from Terms(σ) then t1 = t2 belongs to Atoms(σ).
2. If t1, . . . , tar(R) ∈ Terms(σ), and R ∈ σ is relational implies R(t1, . . . , tar(R)) ∈ Atoms(σ).
• The set FO[σ] of First-Order formulae over σ is the closure of Atoms(σ) under

∧,∨,→,↔,¬,∃x ,∀x (for all variables x ∈ Var).
Free variables

∃x (E (x , y) ∧ ∀z (E (z , y)→ x = z)) ∃x (E (x , y) ∧ ∃y ¬E (y , x))
Formally, we define the set of free variables of ϕ, denoted with FVar(ϕ), as follows:
• FVar(x) = {x}, FVar(c) = ∅ for all x ∈ Var and constant symbols c from σ.
• FVar(t1 = t2) = FVar(t1) ∪ FVar(t2) for all t1, t2 ∈ Terms(σ).
• FVar(¬ϕ) = FVar(ϕ) and FVar(ϕ ∧ ψ) = FVar(ϕ) ∪ FVar(ψ). (and similarly for →,↔,∨,>,⊥)
• FVar(∃x ϕ) = FVar(ϕ) \ {x} for all x ∈ Var.
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Notation regarding formulae

We write ϕ(x1, x2, . . . , xk) to indicate that the variables x1, . . . , xk are free in ϕ.
Formula without free-variables is called a sentence.
Formula without occurrences of ∀,∃ is called a quantifier-free.
A set of sentences is called a theory.

Semantics of FO
For a σ-structure A we define inductively, for each term t(x1, x2, . . . , xn)

the value of tA(a1, . . . , an), where (a1, . . . , an) ∈ An as follows:
1. For a constant symbol c ∈ σ, the value of c in A is cA.
2. The value of xi in tA(a1, a2, . . . , an) is ai .

Now we define |= for ϕ(x1, x2, . . . , xn):
• If ϕ ≡ t1 = t2, then A |= ϕ(a) iff tA1 (a) = tA2 (a).
• If ϕ ≡ R(t1, t2, . . . , tn), then A |= ϕ(a) iff (tA1 (a), . . . , tAn (a) ∈ RA.
• A |= ¬ϕ iff not A |= ϕ; A |= ϕ ∧ ψ iff A |= ϕ and A |= ψ (similarly for other connectives)
• If ϕ ≡ ∃x ψ(x , y), then A |= ϕ(a) iff A |= ψ(a′, a) for some a′ ∈ A (similarly for ∀ quantifier)
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The last bunch of notations. Proof systems.

A formula ϕ is satisfiable if it has a model (there is a structure A s.t. A |= ϕ).
For a theory T (set of sentences) we write A |= T instead of A |= ∧

ϕ∈T ϕ.
ϕ is a tautology iff every structure satisfies ϕ (written: |= ϕ). Note: ϕ is a tautology iff ¬ϕ is unsatisfiable.
We write T |= ϕ to say that every model of T is a model of ϕ. Note: T |= ⊥ iff T is unSAT.

Warning! Models can be of any size: finite, countably-infinite and larger!
Löwenheim–Skolem 1922: If a countable T has a model then T has a countable one.

FO has dedicated proof systems, e.g. Gentzen’s sequents. Check Tim Lyon’s lectures! [HERE]
T ` ϕ means ϕ is provable from T with sequents.

(we treat T as extra axioms, note that proofs are finite)

Gödel 1929: T |= ϕ iff T ` ϕ
SAT for FO is Recursively Enumerable
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The Gödel’s Compactness Theorem

Let T be an FO-theory and let ϕ be an FO sentence.
1. If T |= ϕ then there is a finite T0 ⊆ T such that T0 |= ϕ.
2. If every finite T0 ⊆ T is satisfiable then T is satisfiable.

Use case:
Showing

inexpressivity

1st excursion: Proving (1)
Assume T |= ϕ.“|= = `” Then by Gödel’s completeness theorem T ` ϕ.
So there is a formal proof P of T ` ϕ.

Proofs are finite

Since proofs are finite
the proof P uses only finitely many axioms of T .

Craft T0

Call them T0.
Thus T0 ` ϕ holds (use the same proof as before!). After asking Gödel about “|= = `” again we are done.

2nd excursion: Proving (2)Ad absurdum

Towards a contradiction suppose T is unsatisfiable.T unSAT iff T |= ⊥ So T |= ⊥.

Employ (1)

By (1) there is a finite T0 ⊆ T s.t. T0 |= ⊥. A contradiction!
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Employing compactness I: Reachability in {E}-structures

The general proof scheme to show that the property P is not FO-definable.
Ad absurdum suppose that ϕ defines P .  Manufacture a theory T containing ϕ.  
 Prove that T is unsatisfiable  but its every finite subset is satisfiable.  Contradict Compactness.

There is no FO[{E}] formula for connectivity over {E}-structures.
So there is no formula saying that between any two nodes there is a directed {E}-path.

Proof:
Assume that there is such ϕ, and let T be Employ reachability!

ϕ
reach(a,b)
0 := a = b, ϕreach(a,b)

1 := E(a, b), ϕreach(a,b)
k :=

∃x1 . . . ∃xk−1 E(a, x1) ∧ ∧k−2
i=1 E(xi , xi+1) ∧ E(xk−1, b)

T := {ϕ} ∪ {¬ϕreach(a,b)
k | k ≥ 0}.

Since a and b are disconnected, T is unSAT.
Let T0 be any non-empty finite subset of T .
Let N be max such that ¬ϕreach(a,b)

N is in T0. Then:

1 . . . N+1 a . . . 2N+3 b . . . 3N+5 |= T0. A contradiction!

No info about the finite models!
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Employing compactness II: Parity of the domain

The previous proof does not give us any information about the finite domain reasoning.
Even worse, Compactness fails in the finite setting (exercise). Can we use it nevertheless?

There is no FO[∅] formula expressing the domain is even over ∅-structures.

Proof:
Suppose that such a ϕ exists. Consider two theories T1 and T2: Exploit ∞!

Let λk say “there are ≥ k elem.”.
T1 := {ϕ} ∪ {λk | k ≥ 0}, T2 := {¬ϕ} ∪ {λk | k ≥ 0}.
It’s easy to see that any finite subset of T1 and T2 is satisfiable (WHY?).
So by compactness T1 and T2 are also satisfiable (∞ models!).

Löwenheim–Skolem!Thus, by Löwenheim–Skolem, T1, T2 have countably-inf models A and B.
By A |= T1 we get A |= ϕ, and A |= T2 we get B |= ¬ϕ.

∅-structures = sets
As there is a bijection between any two countably-inf sets, we get A ∼= B.
Formulae are preserved by isomorphisms, so B |= ¬ϕ implies A |= ¬ϕ:
By A |= T1 we get A |= ϕ. A contradiction (with the semantics of |=)!
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Employing compactness II: Parity of the domain
The previous proof does not give us any information about the finite domain reasoning.
Even worse, Compactness fails in the finite setting (exercise). Can we use it nevertheless?

There is no FO[∅] formula expressing the domain is even over ∅-structures.

Proof:
Suppose that such a ϕ exists. Consider two theories T1 and T2: Exploit ∞!

Let λk say “there are ≥ k elem.”.
T1 := {ϕ} ∪ {λk | k ≥ 0}, T2 := {¬ϕ} ∪ {λk | k ≥ 0}.
It’s easy to see that any finite subset of T1 and T2 is satisfiable (WHY?).
So by compactness T1 and T2 are also satisfiable (∞ models!).
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