
Conjunctive Query Answering in Finitely-valued
Fuzzy Description Logics?

Theofilos Mailis1, Rafael Peñaloza1,2, and Anni-Yasmin Turhan1

1 Chair for Automata Theory, Theoretical Computer Science, TU Dresden, Germany
2 Center for Advancing Electronics Dresden
mailis,penaloza,turhan@tcs.inf.tu-dresden.de

Abstract. Fuzzy Description Logics (DLs) generalize crisp ones by pro-
viding membership degree semantics for concepts and roles. A popular
technique for reasoning in fuzzy DL ontologies is by providing a reduction
to crisp DLs and then employ reasoning in the crisp DL. In this paper we
adopt this approach to solve conjunctive query (CQ) answering problems
for fuzzy DLs. We give reductions for Gödel, and Łukasiewicz variants
of fuzzy SROIQ and two kinds of fuzzy CQs. The correctness of the
proposed reduction is proved and its complexity is studied for different
fuzzy variants of SROIQ.

1 Introduction

Description Logics (DLs) are a class of knowledge representation languages with
well-defined semantics that are widely used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood
way. DLs have been successfully employed to formulate ontologies for several
knowledge domains such as bio-medical applications. DLs provide the formal
foundation for the standard web ontology language OWL, a milestone for the
Semantic Web. In this paper we focus on the DL SROIQ, the DL underlying
(full) OWL 2.

DLs represent knowledge by means of concepts that correspond to sets of
objects, and roles that relate pairs of objects. Ontology axioms are used to
restrict the possible interpretations of our domain of interest. For example, we
can express the fact that a CPU cpuA is overutilized and that a server that has
a part that is overutilized is a server with limited resources by stating:

(CPU u Overutilized)(cpuA) (1)
Server u ∃hasPart.Overutilized v ServerWithLimitedResources (2)

Some applications require to describe sets for which there exists no sharp, un-
ambiguous distinction between the members and nonmembers. In our running
example Overutilized is such a notion. We can say that cpuA is overutilized to
? Partially supported by DFG SFB 912 (HAEC) and the Cluster of Excellence
‘cfAED’.



Table 1. Families of fuzzy logic operators.

Family t-norm a⊗b t-conorm a⊕b negation 	a implication α⇒b

Gödel min(a, b) max(a, b)

{
1, a = 0

0, a > 0

{
1, a 6 b

b, a > b

Łukasiewicz max(a+ b− 1, 0) min(a+ b, 1) 1− a min(1− a+ b, 1)

a certain degree Overutilized(cpuA) > 0.8. To represent this kind of information
faithfully, fuzzy variants of DLs were introduced. Fuzzy DLs generalize crisp
DLs by providing membership degree semantics for their concepts and roles by
fuzzy sets. The membership degree of an individual to a fuzzy concept can be
understood as a weight extending the logic with the possibility of expressing im-
precision. Likewise, axioms describing the domain knowledge are equipped with
a weight that gives additional flexibility in the restrictions of the membership
degrees used. In fuzzy DLs, all crisp set operations are extended to the fuzzy
case. The intersection, union, complement and implication set operations are
performed by a t-norm function ⊗, a t-conorm function ⊕, a negation function
	, and an implication function →, respectively. These functions or fuzzy opera-
tors are grouped in families, also simply called fuzzy logics. It is well known that
different families of fuzzy operators lead to fuzzy DLs with different properties.
In this paper we concentrate on the families of fuzzy logic operators displayed
in Table 1. We use the prefixes fG and fŁn to distinguish between Gödel and
Łukasiewicz based semantics. We investigate the reasoning task of conjunctive
query answering in these settings. Conjunctive queries are a very powerful way
to access the facts in the ontology and it has been widely studied in the recent
years for crisp DLs. We are considering finitely-valued fuzzy DLs, since unre-
stricted fuzzy DLs easily turn undecidable [1,8]. An alternative to implementing
a fuzzy DL reasoner from scratch is to reduce reasoning within fuzzy DLs to
reasoning in crisp DLs, which allows for the use of existing DL reasoners and to
benefit from new optimizations implemented in these systems.

Although there has been a significant amount of work regarding the reduction
from fuzzy to crisp DLs, this body of work concentrates mainly on the following
problems: instance checking or concept satisfiability [4,23]. In this paper we ex-
tend these reductions to the interesting problem of conjunctive query answering.
By which we can answer queries that ask for all pairs of servers and CPUs such
that the CPU is a part of the server and also is over utilized to an at least 0.6
degree:

Server(x) > 1 ∧ hasPart(x, y) > 1 ∧ CPU(y) > 1 ∧ Overutilized(y) > 0.6.

The contributions made in this paper are the following:

– We give a reduction from fuzzy SROIQ under Gödel and Łukasiewicz se-
mantics to SROIQ for answering conjunctive queries in the finitely-valued



setting and prove its correctness. The presented proof builds on the reduc-
tions presented in [2,3,4].

– We prove that, if there exists a reduction from the fuzzy DL f -L to the
corresponding crisp DL L and there exists an algorithm for conjunctive query
answering w.r.t. L, then it can also be applied to answer conjunctive queries
w.r.t. f -L in the finitely-valued setting.

– We assess the complexity of the presented conjunctive query answering tech-
nique for different fuzzy extensions of the DL SHIQ. SHIQ is a sublan-
guage of SROIQ for which the query answering problem has been studied
and solved [12].

– Finally, in order to ensure the correctness of our approach, we have extended
the correctness proof sketched in [4] for the Łukasiewicz based extension of
SROIQ (for a detailed proof see the technical report accompanying this
paper [16]).

The rest of the paper is structured as follows: Section 2 presents the syntax and
semantics of classic and fuzzy DLs based on the DL SROIQ, along with the
reduction procedure from the fuzzy to the crisp DL. Section 3 defines the dif-
ferent types of conjunctive queries in the fuzzy setting, while Section 4 presents
the actual reduction from fuzzy to crisp conjunctive query answering, along
with a proof of its correctness. Finally, Section 5 presents the current litera-
ture on reduction techniques and conjunctive query answering for fuzzy DLs,
while Section 6 gives an overview of the paper and refers to future work and
implementations.

2 Preliminaries

We start with a brief introduction to DL syntax and semantics and present
the DL SROIQ [13]. This specific DL was chosen since: it is one of the most
expressive decidable DLs, it provides the direct model-theoretic semantics of
OWL 2, and there exists a reduction technique from fuzzy to classic SROIQ
ontologies [2,4,23]. DL ontologies are constructed from countable, and pairwise
disjoint sets of individual names NI , of concept names NC , and of role names
NR. Individuals correspond to elements of the domain, concept names are used
to describe sets of elements, and role names describe binary relations between
elements. The set NS is the subset of NR containing only simple roles. Based on
these, concept and role descriptions can be built using different constructors.

In the first and the second column of Table 2 we see most of the concept
and role constructors of the highly expressive DL SROIQ –for a more detailed
presentation of the crisp SROIQ language the reader may refer to [13], while the
Gödel and Łukasiewicz fuzzy variants of the language are thoroughly presented
in [4,23]–. In Tables 2–4 we have the following notation: o1, . . . , om, a, b ∈ NI ;
r, r1, . . . , rn ∈ NR; s ∈ NS ; d1, . . . , dm, d ∈ (0, 1]O, C, D correspond to concept
descriptions, while B ∈ {>, >} and ./∈ {6, <,>, >}. As usual the simplest form
of a concept description is an element A ∈ NC .



Table 2. Concept constructors from SROIQ

Syntax Crisp Semantics Fuzzy Semantics

Conjunction C ⊓ D CI ∩ DI CI(x)⊗DI(x)
Disjunction C ⊔ D CI ∪ DI CI(x)⊕DI(x)
Negation ¬C ∆I \ CI ⊖CI(x)
Value restriction ∀r.C {x | ∀y, (x, y) ̸∈ RI or y ∈ CI} inf

y∈∆I
{RI(x, y)⇒CI(y)}

Existential restr. ∃r.C {x | ∃y, (x, y) ∈ RI and y ∈ CI} sup
y∈∆I

{RI(x, y)⊗CI(y)}

Nominals {o} {oI} 1 if x ∈ {o}, 0 otherwise
fuzzy {d/o} — sup{d | x = oI}

At-least restr. ≥ n s.C
{

x | ♯{y : (x, y) ∈ sI and

y ∈ CI} ⩾ n
}

sup
y1,...yn∈∆I

(
n

min
i=1

{sI(x, yi)⊗CI(yi)})

⊗
(

⊗
1⩽j<k⩽n

{yi ̸= yk}
)

At-most restr. ≤ n s.C
{

x | ♯{y : (x, y) ∈ sI and

y ∈ CI} ⩽ n
}

inf
y1,...yn+1∈∆I

(
n+1
min
i=1

{sI(x, yi}⊗CI(yi)})

⇒
(

⊕
1⩽j<k⩽n+1

{yi = yk}
)

Table 3. SROIQ TBox axioms.

Syntax Crisp Semantics Fuzzy Semantics

GCI C ⊑ D CI ⊆ DI inf
x∈∆I

{CI(x)⇒DI(x)} = 1

fuzzy ⟨C ⊑ D, ▷d⟩ — inf
x∈∆I

{CI(x)⇒DI(x)} ▷ d

RI r1 . . . rn ⊑ r rI
1 ◦ . . . ◦ rI

n ⊆ rI inf
x,y∈∆I

{[rI
1 ◦⊗ . . . ◦⊗ rI

n](x, y)⇒rI(x, y)} = 1

fuzzy ⟨r1 . . . rn ⊑ r ▷ d⟩ — inf
x,y∈∆I

{[rI
1 ◦⊗ . . . ◦⊗ rI

n](x, y)⇒rI(x, y)} ▷ d

Inverse role r− {(y, x) | (x, y) ∈ rI} (r−)
I
(x, y) = rI(y, x)

Transitive role trans(r) rI ◦ rI ⊆ rI

An ontologyO comprises of the intentional and extensional knowledge related
to an application domain. The intensional knowledge, i.e. general knowledge
about an application domain, is expressed via the Terminological Box (TBox) T
and the Role Box (RBox) R. The extensional knowledge, i.e. particular knowl-
edge about specific situations, is expressed via an Assertional Box (ABox) A
containing statements about individuals. Table 3 presents the syntax of state-
ments for TBoxes and Table 4 that of ABoxes for the crisp and fuzzy variants
of SROIQ. As depicted in Tables 3,4, fuzzy ABoxes and TBoxes have the same
syntax as their crisp counterparts, while they may also contain fuzzy assertions,
fuzzy General Concept Inclusions (GCIs), and fuzzy Role Inclusions (RIs). In
order to ensure decidability of the crisp DL, a set of restrictions regarding the
use of roles and simple roles in GCIs and RIs is imposed, e.g. a simple role cannot
subsume any transitive role, for more details see [13]. The same restrictions are
also adopted for the fuzzy versions of SROIQ [2,3,4].



Table 4. SROIQ ABox axioms.

Syntax Crisp Semantics Fuzzy Semantics

Concept a. C(a) aI ∈ CI CI(aI) = 1
fuzzy C(a) ▷◁ d — CI(aI) ▷◁ d

Role a. r(a, b) (aI , bI) ∈ rI rI(aI , bI) = 1
fuzzy r(a, b) ▷◁ d — rI(aI , bI) ▷◁ d

Negated role a. ¬r(a, b) (aI , bI) ̸∈ rI rI(aI , bI) = 0
fuzzy ¬r(a, b) ▷◁ d — ⊖rI(aI , bI) ▷◁ d

Inequality a. a ̸= b aI ̸= bI aI ̸= bI

Equality a. a = b aI = bI aI = bI

Example 1. Based on the concept assertion and inclusion axioms presented and
explained in equation 2 we can create the following crisp ABox and TBox:

A := {CPU(cpuA),Overutilized(cpuA)}
T := {Server u ∃hasPart.Overutilized v ServerWithLimitedResources}

where cpuA ∈ NI ; CPU,Overutilized,ServerWithLimitedResources,Server ∈ NC ;
and hasPart ∈ NR. As expected Server u ∃hasPart.Overutilized corresponds to a
complex concept description. A fuzzy version of the previous ABox can occur if
for example we add a degree of truth to the concept assertion Overutilized(cpuA).
The fuzzy assertion Overutilized(cpuA) > 0.8 states that cpuA is overutilized with
a degree of at least 0.8.

The semantics of crisp SROIQ are given via an interpretation I that is a
pair (∆I , ·I) consisting of a non empty set ∆I and an interpretation function
·I mapping every individual a ∈ NI onto an element aI ∈ ∆I , every concept
name A ∈ NC to a set AI ⊆ ∆I , every atomic role r ∈ NR onto a relation
rI ⊆ ∆I × ∆I . The interpretations of complex concepts, GCIs and assertions
are presented on the third column of Tables 2,3, and 4.

In a fuzzy extension of SROIQ, concepts denote fuzzy sets of individuals
and roles denote fuzzy binary relations. Likewise fuzzy axioms may hold to some
degree. The semantics of f -SROIQ is given via interpretations I that are pairs
(∆I , ·I) consisting of a non empty set ∆I and an interpretation function ·I
mapping every individual a ∈ NI to an element aI ∈ ∆I , every concept name
A ∈ NC onto a membership function AI : ∆I → [0, 1], every atomic role r ∈
NR onto a membership function rI : ∆I × ∆I → [0, 1]. In the finitely-valued
setting, which we consider here, the membership function mapps to a finite
subset of [0, 1]. The interpretations of complex concepts, TBox axioms, and ABox
assertions are presented on the fourth column of Tables 3,4, for the different
families of fuzzy logic operators (⊗, ⊕, 	, ⇒) presented in Table 1. Based on
the semantics reasoning services can be defined. In this paper we are interested
in conjunctive query answering.

Definition 2 (Conjunctive Query for classic DLs - CQ [12]). Let NV be
a countably infinite set of variables disjoint from NC , NR, and NI . An atom
is an expression A(x) ( concept atom) or r(x, y) ( role atom), where A ∈ NC ,



r ∈ NR, and x, y ∈ NV ∪ NI . A conjunctive query q is a non-empty set of
atoms. Intuitively, such a set represents the conjunction of its elements. We
use Var(q) to denote the set of variables occurring in the query q. Let I be an
interpretation, q a conjunctive query, and π : Var(q)→ ∆I a total function, s.t.
π(a) = aI for all a ∈ NI . We write: I |=π C(x) if π(x) ∈ CI and I |=π r(x, y) if
(π(x), π(y)) ∈ rI . If I |=π at for all atoms at ∈ q, we write I |=π q and call π a
match for I and q. We say that I satisfies q and write I |= q if there is a match
π for I and q. If I |= q for all models I of an ontology O, we write O |= q and
say that O entails q.

Finally, a union of conjunctive queries qUCQ is a set of conjunctive queries. We
write O |= qUCQ and say that O entails qUCQ if for every model I of O we have
that I |= q for some conjunctive query q ∈ qUCQ.

Reduction to the Crisp Case

The goal is to devise a reduction of answering UCQs over a fuzzy ontology O
to answer UCQs over a crisp ontology OC . The basic idea is that each concept
and role in O is mapped onto a set of concepts and roles corresponding to their
α-cuts, which is the crisp set containing all elements that belong to a fuzzy set
up to a given degree. For example, if the concept Overutilized in O maps each
CPU to the degree to which it is overutilized, then the concept Overutilized>0.6

in OC represents the set of CPUs that are overutilized to a degree of at least 0.6.
We present the reduction algorithm for the fuzzy versions of SROIQ cor-

responding to the Gödel, and Łukasiewicz based semantics. We employ the no-
tation [0, 1]O in order to represent the finite set of degrees that appear in our
ontology. We also use the notation (a, b)O to represent the (a, b)∩ [0, 1]O subset
of [0, 1]O.

It has been proved for fuzzy ontologies under Gödel logics that the set
of degrees of truth that must be considered for any reasoning task is the set
[0, 1]O ∪ {0, 1} [4]. In order to ensure that the reduction technique can be ap-
plied for f -SROIQ with Łukasiewicz based semantics, we need restrict to a finite
number of degrees that have the form of {0, 1

n , . . . ,
n−1
n , 1} where n is a natural

number [4]. From now on when using the notation [0, 1]O we consider that the
corresponding set satisfies this restriction when referring to a Łukasiewicz based
fuzzy DL.

A compact form of the reduction rules from fuzzy to crisp SROIQ is dis-
played in Table 5. It should be noted that the uppercase bold letters in this Table
correspond to the conditions illustrated in Table 6. For a detailed description of
the reduction rules the reader may refer to [3,4]. The reduced ontology OC has
the following form:

– In order to preserve the semantics of α-cuts of atomic concepts and roles the
following axioms are added to TC for every A ∈ NC , r ∈ NR:

A>di+1
v A>di A>di v A>di

r>di+1
v r>di r>di v r>di

(3)



Table 5. Mapping of concept and role expressions in fuzzy SROIQ.

Reduction of concepts
Gödel / !Lukasiewicz

and axioms

ρ(A, ! d) A!d

ρ(A, " d) ¬A>d

ρ(¬C, ! d) ρ(C, " 0) / ¬ρ(C, > 1 − d)

ρ(¬C, " d) ρ(C, > 0) / ρ(C, ! 1 − d)

ρ(C ⊓ D, ! d) ρ(C, ! d) ⊓ ρ(D, ! d) /
⊔

A

(
ρ(C, ! d1) ⊓ ρ(D, ! d2)

)

ρ(C ⊓ D, " d) ρ(C, " d) # ρ(D, " d) / ρ(¬C # ¬D, ! 1 − d)

ρ(C # D, ! d) ρ(C, ! d) # ρ(D, ! d) /

ρ(C, ! d) # ρ(D, ! d) # ⊔
B

(
ρ(C, ! d1) ⊓ ρ(D, ! d2)

)

ρ(C # D, " d) ρ(C, " d) ⊓ ρ(D, " d) / ρ(¬C ⊓ ¬D, ! 1 − d)

ρ(∃r.C, ! d) ∃ρ(r, ! d).ρ(C, ! d) /
⊔

A

(
∃ρ(r, ! d1).ρ(C, ! d2)

)

ρ(∃r.C, " d) ∀ρ(r, > d).ρ(C " d) / ρ(∀r.¬C, ! 1 − d)

ρ(∀r.C, ! d) ⊓C

(
∀ρ(r, ! d′).ρ(C, ! d′)

)
⊓ ⊓D

(
∀ρ(r, > d′).ρ(C, > d′)

)
/

⊓E

(
∀ρ(r, ! d1).ρ(C, ! d2)

)

ρ(∀r.C, " d)
⊔

F

(
∃ρ(r, > d).ρ(C, " d)

)
/ ρ(∃r.¬C, ! 1 − d)

ρ(∪m
i=1{di/oi}, ◃▹ d) {oi | di ◃▹ d, 1 " i " m}
ρ(≥ m s.C, ! d) ≥ m ρ(s, ! d).ρ(C, ! d) /⊔

G

(
∃ρ(s, ! d1).ρ(B1 ⊓ ρ(C, ! e1)) ⊓ . . .

⊓∃ρ(s, ! dm).(Bm ⊓ ρ(C, ! em))
)

ρ(≥ m s.C, " d) ≤ m − 1 ρ(s, > d).ρ(C, > d) /

¬
( ⊔

H

(
∃ρ(s, ! d1).ρ(B1 ⊓ ρ(C, ! e1)) ⊓ . . .

⊓∃ρ(s, ! dm).(Bm ⊓ ρ(C, ! em))
))

ρ(≤ n s.C, ! d) ≤ n ρ(s, > 0).ρ(C, > 0) / ρ(¬(≥ n + 1 s.C), ! d)

ρ(≤ n s.C, " d) ≥ n + 1 ρ(s, > 0).ρ(C, > 0) / ρ(¬(≥ n + 1 s.C), " d)

ρ(r, ! d) r!d

ρ(r, " d) ¬r>d

ρ(r−, ! d) r−
!d

ρ(r−, " d) ¬r−
>d

κ(C(a) ◃▹ d) ρ(C, ◃▹ d)(a)

κ(r(a, b) ◃▹ d) ρ(r, ◃▹ d)(a, b)

κ(⟨C ⊑ D ! d⟩) ⋃
C

(
ρ(C, ! d′) ⊑ ρ(D, ! d′)

)
∪ ⋃

D

(
ρ(C, > d′) ⊑ ρ(D, > d′)

)
/⋃

I

(
ρ(C, ! d1 ⊑ ρ(D, ! d2)

)

κ(⟨r1 . . . rn ⊑ r ! d⟩) ⋃
C

(
ρ(r1, ! d′) . . . ρ(rn, ! d′) ⊑ ρ(r, ! d′)

)
∪⋃

D

(
ρ(r1, ! d′) . . . ρ(rn, ! d′) ⊑ ρ(r, ! d′)

)
/⋃

J

(
ρ(r1, ! d1) . . . ρ(rn, ! dn) ⊑ ρ(r, ! dn+1)

)

where di, di+1 correspond to every pair of degrees di, di+1 such that
(i) di+1 > di, (ii) there exists no element e ∈ [0, 1]O such that di+1 > e > di,
and (iii) the subscript >1 is not considered in any of the GCIs. For the fŁn
variant of SROIQ, since admitting for a finite truth space, we must add to
our ontology that A>di ≡ A>di+1 and r>di ≡ r>di+1 .

– For each complex concept C appearing in O the complex concept ρ(C, ./ d)
in OC represents its corresponding α-cut. These complex concepts are induc-
tively defined according to the set of reduction rules presented in the first
part of Table 5.

– Each ABox axiom in A is represented by its corresponding axiom in AC
presented in the second part of Table 5.



Table 6. Conditions corresponding to the uppercase letters of Table 5.

A. for every pair d1, d2 ∈ (0, 1]O such that d1 + d2 = 1 + d.
B. for every pair d1, d2 ∈ (0, 1]O such that d1 + d2 = d.
C. for every d′ ∈ (0, 1]O such that d′ ! d.
D. for every d′ ∈ [0, 1]O such that d′ < d.
E. for every pair d1, d2 ∈ (0, 1]O such that d1 = d2 + 1 − d.
F. for every d′ ∈ [0, 1]O such that d′ ! d.
G. for every combination of d1, e1, . . . dm, em ∈ (0, 1]O such that di + ei = 1+d,
for i = {1, . . . , m}.
H. for every combination of d1, e1, . . . dm, em ∈ (0, 1]O such that (i) di + ei >
1+d, for i = {1, . . . , m}, (ii) ̸ ∃d′ ∈ (0, 1]O such that d′ < di and d′ + ei > 1+d,
(iii) ̸ ∃d′ ∈ (0, 1]O such that d′ < ei and d′ + di > 1 + d.
I. for every pair d1, d2 ∈ (0, 1]O such that d1 = d2 + 1 − d.
J. for every combination of d1, . . . dn+1 ∈ (0, 1]O such that: d1 + . . . + dn =
dn+1 + n − d.

– Each TBox axiom in T is represented by its corresponding axiom or set of
axioms in TC according to the set of reduction rules presented in the third
part of Table 5.

3 Conjunctive Queries for Fuzzy DLs

Our main objective is to find an algorithm for answering to conjunctive queries
for fuzzy DLs based on a reduction procedure to classic ones. Different forms of
conjunctive queries for fuzzy DLs have been proposed in the literature. Accord-
ing to [19], these are classified to queries of two different types, namely threshold
conjunctive queries and general fuzzy queries. With respect to the example pro-
vided on the introduction a threshold query of the form:

Server(x) > 1 ∧ hasPart(x, y) > 1 ∧ CPU(y) > 1 ∧ Overutilized(y) > 0.6 (4)

searches for all pairs of servers and CPUs such that the CPU is a part of the
server and is also overutilized to a degree of at least 0.6. In contrast, a fuzzy
query of the form:

Server(x) ∧ hasPart(x, y) ∧ CPU(y) ∧ Overutilized(y) (5)

searches for the pairs of elements that satisfy it along with the degree of satis-
faction (provided that this degree is greater than 0).

Definition 3 (Threshold Conjunctive Query - CQθ). Let NV be a count-
ably infinite set of variables disjoint from NC , NR, and NI . A degree atom is
an expression P (X)B d where P ∈ NC ∪NR, X is an ordered tuple of elements
of NI ∪NV having an arity of 1 if P ∈ NC and 2 if P ∈ NR, B ∈ {>, >}, and



d ∈ (0, 1]. A Threshold Conjunctive Query has the form:

λ∧

i=1

Pi(Xi)Bi di

We use VarIndivs(qθ) to denote the set of variables and individuals occurring in
a CQθ named qθ. Let I be an interpretation and π : VarIndivs(q)→ ∆I a total
function that maps each element a ∈ NI to aI . If P Ii (π(Xi))Bi di for all degree
atoms in qθ, we write I |=π qθ and call π a match for I and qθ. We say that I
satisfies qθ and write I |= qθ if there is a match π for I and qθ. If I |= qθ for
all models I of an ontology O, we write O |= qθ and say that O entails qθ.

Definition 4 (Fuzzy Conjunctive Query - CQφ). A plain atom is an ex-
pression P (X). A Fuzzy Conjunctive Query with plain atoms has the form:

λ∧

i=1

Pi(Xi)

Let I be an interpretation, qφ a CQφ, π a mapping, and ⊗ a fuzzy logic t-
norm –we assume that the t-norms of the query and the DL are the same–.
If P Ii (π(Xi)) = di for all atoms in qφ and ⊗κi=1di > d we write I |=π qφ > d
and call π a match for I and qφ with a degree of at least d. We say that I satisfies
qφ with a degree of at least d and write I |= qφ > d if there is a corresponding
match. If I |= qφ > d for all models I of a an ontology O, we write O |= qφ > d
and say that O entails qφ with a degree of at least d. The problem of determining
whether O |= qφ > d is defined analogously.

The query entailment problem for a CQθ is to decide whether O |= qθ for a
given assignment of the variables. For CQφs we may consider two variants of the
query entailment problem, namely to decide whetherO |= qφ > d for some degree
d ∈ (0, 1], and to find the degree sup{d | O |= qφ > d}. Since the fG, fŁn variants
of SROIQ admit for the finite truth space [0, 1]O we can assume without loss
of generality that the two problems can be reduced to each other. The query
answering problem requests for the specific assignments that satisfy the query,
thus the reduction can be achieved by testing all assignments, which give an
exponential blow-up. It is well-known from crisp DLs that query entailment and
query answering can be mutually reduced and that decidability and complexity
results carry over [7] modulo the mentioned blow-up.

Example 5. Suppose that we have the queries described in equations 4,5, the
ABox

A = {Server(s1) > 1, hasPart(s1, cpu1) > 1,

CPU(cpu1) > 1,Overutilized(cpu1) > 0.7}

and an empty TBox T . Then the answer to equation 4 would be the pair
(s1, cpu1), while the answer to equation 5 would be (s1, cpu1) with a degree
of at least 0.7.



A union of CQθs is a set of CQθs. An ontology O entails such a union Uqθ ,
i.e. O |= Uqθ , when for every model I |= O there exists some qθ ∈ Uqθ such that
I |= qθ. Another type of union is one consisting of a set of CQφs. An ontology
O entails such a union Uqφ to a degree of at least d ∈ (0, 1], i.e. O |= Uqφ > d,
when for every model I |= O there exists some qφ ∈ Uqφ such that I |= qφ > d.

Remark 6. In the context of the reduction algorithms, we focus on >, > inequal-
ities appearing in threshold/fuzzy conjunctive queries. A threshold conjunctive
query with 6, < inequalities would be reduced to a crisp conjunctive query con-
taining negated role atoms. Moreover, the reduction of a fuzzy conjunctive query
qφ with a less or equal degree κ(qφ,6 d) would be reduced to a disjunction of
negated atoms. Since the problems of negated atoms and disjunctive queries
have not been studied for expressive classic DLs, we focus on >, > inequalities.

4 Conjunctive Query Answering by Reduction

In this section we provide the corresponding steps so as to solve the problem
of conjunctive query answering for fuzzy DLs by taking advantage of existing
crisp DL algorithms for the same problem. The solution we provide operates on
the DLs and is based on the reduction techniques presented in [4,23]. We denote
with κ the reduction process from CQθs and CQφs queries to crisp CQs and
UCQs. The reduction process operates differently for each query type.

For the CQθ described in Definition 3 the reduction process takes the follow-
ing form:

κ

(
λ∧

i=1

Pi(Xi)B di

)
=

λ∧

i=1

ρ(Pi,Bdi)(Xi) (6)

Since Pi is either a concept name Ai ∈ NC or a role name ri ∈ NR we have that
ρ(Ai,Bdi) = AiBdi or ρ(ri,Bdi) = riBdi as presented on Table 5.

The reduction process for a CQφ has two inputs, the first input is the query
itself and the second input is the degree that we want to examine. In addition,
for CQφs the reduction process depends on the t-norm operator that has been
adopted to provide semantics for conjunction. For the CQφ described in Defini-
tion 4 the reduction process takes the form presented in equation 7 when the CQφ
refers to an fG -SROIQ ontology. When the CQφ refers to an fŁn -SROIQ on-
tology the corresponding reduction is the union of conjunctive queries presented
in equation 8 (⊗ in equation 8 stands for the Łukasiewicz t-norm operator).

κ

(
λ∧

i=1

Pi(Xi),> d

)
=

λ∧

i=1

ρ(Pi,> d)(Xi) (7)

κ

(
λ∧

i=1

Pi(Xi),> d

)
=

⋃

⊗λi=1di=d and di∈[0,1]O

{
λ∧

i=1

ρ(Pi,> di)(Xi)

}
(8)



Example 7. The reduced form of the CQθ presented in equation 4 follows in
equation 9. The reduced form of the CQφ in equation 5 for the degree of at least
0.75 for the fG -SROIQ logic follows in equation 10. Finally if we consider the
fŁ4-SROIQ logic we have that [0, 1]O = {0, 0.25, 0.5, 0.75, 1} and the reduced
form of equation 5 for the degree of at least 0.75 is the UCQ presented in
equation 11:

Server>1(x) ∧ hasPart>1(x, y) ∧ CPU>1(y) ∧ Overutilized>0.6(y) (9)
Server>0.75(x) ∧ hasPart>0.75(x, y) ∧ CPU>0.75(y) ∧ Overutilized>0.75(y) (10)

{Server>0.75(x) ∧ hasPart>1(x, y) ∧ CPU>1(y) ∧ Overutilized>1(y)} ∪
{Server>1(x) ∧ hasPart>0.75(x, y) ∧ CPU>1(y) ∧ Overutilized>1(y)} ∪
{Server>1(x) ∧ hasPart>1(x, y) ∧ CPU>0.75(y) ∧ Overutilized>1(y)} ∪
{Server>1(x) ∧ hasPart>1(x, y) ∧ CPU>1(y) ∧ Overutilized>0.75(y)}

(11)

The following Theorem states that our query reduction algorithm is sound and
complete. Since we consider the fG, fŁn variants of SROIQ the theorem ap-
plies for these DLs and only. A generalization of the theorem follows in Corol-
laries 9,10.

Theorem 8. Let OC be the crisp version of the fuzzy Ontology O such that
κ(O) = OC, qθ be a CQθ and κ(qθ) its form obtained by the reduction, qφ is
a CQφ and κ(qφ,> d) its reduced form for the degree d ∈ [0, 1]O. Then the
following equivalences apply:

1. O |= qθ ⇔ OC |= κ(qθ)
2. O |= qφ > d⇔ OC |= κ(qφ,> d).

Proof (Sketch). In order to prove that OC |= κ(qθ)⇒ O |= qθ, we build for every
model I of O a non fuzzy interpretation IC = {∆IC , ·IC} as follows:

∆IC = ∆I AICBd =
{
β | AI(β)B d

}

aIC = aI rICBd =
{
(β, γ) | rI(β, γ)B d

}
. (12)

It is shown in [3,4] that IC is a model of the crisp ontology OC . Since IC |= OC
and OC |= κ(qθ) it applies that IC |= κ(qθ). Based on the construction of IC and
the form of κ(qθ) (equation 6), it can be verified that I |= qθ must also apply. It
can be shown in a similar way that O |= qφ > d⇒ OC |= κ(qφ,> d).

The proof of the opposite direction is performed by building a fuzzy inter-
pretation I for each model IC of OC as follows:

∆I = ∆IC AI (β) = sup
{
d | β ∈ AIC>d

}
∪
{
d+ | β ∈ AIC>d

}

aI = aIC rI (β, γ) = sup
{
d | (β, γ) ∈ rIC>d

}
∪
{
d+ | (β, γ) ∈ rIC>d

}
(13)

where the degree d+ for the language of fG -SROIQ is defined to be some degree
in [0, 1] such that d < d+ and there exists no d′ ∈ [0, 1]O with d < d′ < d+. For
the language of fŁn-SROIQ the degree d+ is defined in a similar way with the
main difference that it has to belong to [0, 1]O. ut



Corollary 9. If (i) there is a reduction technique from a fuzzy DL f -L to a
crisp DL L, (ii) for each model I of an ontology O in the DL of f -L there
exists a corresponding model IC for the reduced ontology OC that can be built
based on equation 12, (iii) for each model IC of the reduced ontology OC there
exists a corresponding model I for the initial ontology O that can be built based
on equation 13, (iv) there exists a query answering algorithm for the DL of
f -L then: the reduction technique can be applied in order to answer to threshold
queries for the DL of f -L.

Corollary 10 (Generalization of Corollary 9). If f -L and L satisfy criteria
(i), (ii), (iii) presented in Corollary 9 and (iv) f -Lsub is a sub-language of f -L
(v) f -Lsub can be reduced to a sub-language Lsub of L for which there exists a
query answering algorithm, then the reduction technique can be applied in order
to answer to threshold queries for the language of f -Lsub.

Since there are algorithms for conjunctive query answering for the DLs SHIQ
[12] and Horn fragments of SROIQ [18] (both are sub-languages of SROIQ),
we can apply the reduction technique for conjunctive query answering for the
language of f -SHIQ and Horn fragments of f -SROIQ (where f correspond to
one of fG ,fŁ fuzzy logics).

Complexity Results

Complexity in the size of O. According to [3], the reduction process for the DL
fG -SROIQ creates an ontology OC that has size O(|O|2) compared to the initial
ontology O. If we combine the latter with the facts that: i) “conjunctive query
entailment in the crisp SHIQ can be decided in time exponential in the size of the
ontology [12]”(†) ii) the language SHIQ is a sublanguage of SROIQ, we get an
exponential complexity with respect to the size of the initial ontology. Regarding
the fŁn -SROIQ DL, the size of the resulting ontology OC is O(|O| |[0, 1]O|k)
in case no number restrictions occur in O, where k is the maximal depth of the
concepts appearing in O (proof in [4]). Intuitively the depth of some A ∈ NC is
1 while the depth of ∃r.(∀r.A) is 3. The latter results are discouraging, with the
absence of number restrictions the size of OC may become exponential w.r.t. the
size of O. If we combine these results with fact (†) we get a double exponential
upper bound for threshold query answering w.r.t. a fŁn-SHIQ ontology, even
with the absence of number restrictions.

Complexity in the size of the query. We examine the complexity w.r.t. the size
of the examined threshold/fuzzy conjunctive query. Suppose that κ(qθ) is the
reduced form of a threshold conjunctive query denoted with qθ. We have that
the size of κ(qθ) is linear to the size of qθ. The size of the reduced form κ(qφ,> d)
of a fuzzy conjunctive query also remains linear w.r.t. the size of the initial fuzzy
query qφ if we consider the fG -SHIQ semantics. For fuzzy conjunctive queries
under the Łukasiewicz semantics, the size of κ(qφ,> d) belongs to the complexity
class O(|[0, 1]O|k−1) where k is the number of conjuncts in qφ. Therefore it is



exponential compared to the size of qφ. If we combine the latter results with
the fact that “conjunctive query entailment in SHIQ can be decided in time
double exponential in the size of the query [12]” we get a double exponential
complexity for threshold query answering and fuzzy conjunctive query answering
w.r.t. fG -SHIQ ontologies. Otherwise, we get a triple exponential upper bound
for fuzzy query answering w.r.t. a fŁn -SHIQ ontology.

Generalizing the Query Component

So far we have examined the reduction technique for answering threshold and
fuzzy CQs. These two types of queries are immediate extensions of the classic
CQ problem. Nevertheless, the existence of degrees may lead to more general
forms of fuzzy CQs in which the score of a query is computed via a monotone
scoring function:

Example 11. Lets extend the query in Equation 5 by asking for servers that have
overutilized CPU and RAM memory, while the utilization of the CPU is more
important than that of the RAM memory. The resulting query will take the
form:

Server(x)∧hasPart(x, y) ∧ CPU(y) ∧ hasPart(x, z)∧

RAM(z) ∧ 0.6 · Overutilized(y) + 0.4 · Overutilized(z)
2

(14)

where the fraction corresponds to an aggregation scoring function that takes into
account the degree of overutilization of a CPU and the degree of overutilization
of a RAM memory with weights 0.6 and 0.4 respectively.

Such kind of queries have already been defined in the literature [19,26,27] and the
question is if the reduction technique can be applied to answer them. By taking
account the fact that the reduction technique works on finite valued fuzzy DLs,
these problems can be solved by considering for all possible combinations of
degrees in [0, 1]O. We consider the previous example for the fŁn -SROIQ with
[0, 1]O = {0, 0.25, 0.5, 0.75, 1}, where the concepts Server,CPU,RAM and the role
hasPart are essentially crisp. The (crisp) conjunctive query

Server>1(x)∧hasPart>1(x, y) ∧ CPU>1(y) ∧ hasPart>1(x, z)∧
RAM>1(z) ∧ Overutilized>0.25(y) ∧ Overutilized>0.75(z)

if applied on the reduced ontology will return the triples of Server,CPU, and
RAM that satisfy the query in Equation 14 with a degree greater or equal than
0.45 (i.e. 0.6 · 0.25 + 0.4 · 0.75).

Another interesting problem, specific to fuzzy DLs, is the top-k query answer-
ing problem presented in [25,26,27]. This variation of the fuzzy query answering
problem focuses on the k answers with the highest degrees of satisfaction. In a
naive approach to solve this problem, the reduction technique for CQφs can be
iteratively applied starting from the highest to the lowest degrees in [0, 1]O until
the limit of k answers is reached. It has to be investigated if a more sophisticated
approach can be adopted to solve this problem.



5 Related Work

Non-fuzzy representations of fuzzy DLs have been extensively studied for sev-
eral families of DLs that can be classified based on their fuzzy and DL parts.
Reduction techniques have been proposed in [23,22,2] for the DLs of f -ALCH,
f -SHOIN , and f -SROIQ, that are based on the Zadeh fuzzy logic semantics.
An experimental evaluation of the reduction technique for the DL of fKD-SHIN
is presented in [11]. A reduction procedure for the SROIQ DL under Gödel se-
mantics is considered in [3], while in [4] the reduction technique for the finitely
many valued Łukasiewicz fuzzy Description Logic fŁn -SROIQ is studied. Based
on a different approach, a family of fuzzy DLs using α-cuts as atomic concepts
and roles is considered in [15], while a generalization of existing approaches where
a finite totally ordered set of linguistic terms or labels is assumed is presented
in [5].

Conjunctive query answering for fuzzy DLs has been mostly studied for the
fuzzy DL-Lite family of DLs. In [24,25] the problem of evaluating ranked top-k
queries in the Description logic fuzzy DL-Lite is considered, while a variety of
query languages by which a fuzzy DL-Lite knowledge base can be queried is pre-
sented in [19]. Tableaux based approaches for conjunctive query answering have
also been studied. A tableaux algorithm for conjunctive query answering for the
language of fuzzy CARIN, a knowledge representation language combining the
DL fZ-ALCNR with Horn rules, is provided in [17] . An algorithm for answer-
ing expressive fuzzy conjunctive queries is presented in [10,9]. The algorithm
allows the occurrence of both lower bound and the upper bound of thresholds
in a query atom, over the DLs fZ -ALCN , and fZ-SHIN . Finally, practical ap-
proach for storing and querying fuzzy knowledge in the semantic web have been
investigated in [21].

6 Conclusions and Future Work

This paper describes how non fuzzy representation of fuzzy DLs can be adopted
in order to solve the threshold and fuzzy conjunctive query answering problems.
Specifically, the previously mentioned problems on fuzzy DLs are reduced to their
equisatisfiable conjunctive query (or union of conjunctive queries) answering
problems on crisp DLs. The correctness of the suggested techniques is proved
and their complexity is studied for different fuzzy variants of the SROIQ DL.
As far as we know no similar theoretical results have been presented. The proofs
rely on the fact that each model of a fuzzy ontology O can be mapped to a
model of its reduced crisp form OC and vice versa (soundness and completeness
of the reduction technique), while they are based on the structure of the two
constructed models. To verify the correctness of our approach we have extended
the correctness proofs sketched in [4]. Therefore this paper can be considered
complementary to the existing literature on non fuzzy representation of fuzzy
DLs.

Our current line of works involves implementing the reduction techniques for
the fZ , fG , and fŁn variants of SROIQ. The upcoming implementation is based



on the HermiT OWL Reasoner [20] extended with the OWL BGP SPARQL
wrapper [14] that is used for conjunctive query answering. Future work involves
evaluating the proposed reduction techniques on real data, studying their perfor-
mance, and examining if available optimizations techniques for fuzzy and crisp
DLs can be applied to improve the performance of these algorithms. Another
interesting line of work involves applying these reduction based threshold and
fuzzy query answering algorithms for the more general family of finite lattice
based fuzzy DLs presented in [6].
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