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Organisation

Goal:
• Get an overview of abstract argumentation and it’s most resent research

topics.
• Learn to prepare a scientific talk.

Organisation:
• 3 lectures to introduce necessary background.
• In last lecture: topic selection.
• Students should read related literature and prepare a presentation (of 30

min).
• Send the slides no later than 1 Week before presentation to

sarah.gaggl@tu-dresden.de
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topics.
• Learn to prepare a scientific talk.

Organisation:
• 3 lectures to introduce necessary background.
• In last lecture: topic selection.
• Students should read related literature and prepare a presentation (of 30

min).
• Send the slides no later than 1 Week before presentation to

sarah.gaggl@tu-dresden.de

Influence on evaluation:
• If I did receive the slides in time!
• Quality of the slides.
• Quality of the presentation (time limit, easy to follow, clarity, reaction to

questions).
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First Argumentation System Competition

First International Competition on Computational Models of Argumentation
(ICCMA’15), see http://argumentationcompetition.org

Student project for optimizing ASP encodings for abstract argumentation.

If you are interested have a look at
http://www.inf.tu-dresden.de/?node_id=3657&ln=en and contact
me!
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Roadmap for the Lecture
• Introduction
• Abstract Argumentation Frameworks
• Implementation Techniques
• Extensions of Abstract Argumentation Frameworks
• Students’ Topics
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Introduction

Argumentation:
. . . the study of processes “concerned with how assertions are proposed,
discussed, and resolved in the context of issues upon which several diverging
opinions may be held”.
[Bench-Capon and Dunne, Argumentation in AI, AIJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with
• representation of an argument
• representation of the relationship between arguments
• solving conflicts between the arguments (“acceptability”)
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Introduction (ctd.)

Increasingly important area
• “Argumentation” as keyword at all major AI conferences
• dedicated conference: COMMA, TAFA workshop; and several more

workshops
• specialized journal: Argument and Computation (Taylor & Francis)
• two text books:

• Besnard, Hunter: Elements of Argumentation. MIT Press, 2008
• Rahwan, Simari (eds.): Argumentation in Artificial Intelligence.

Springer, 2009.

Applications
• PARMENIDES-system for E-Democracy: facilitates structured arguments

over a proposed course of action [Atkinson et al.; 2006]
• IMPACT project: argumentation toolbox for supporting open, inclusive and

transparent deliberations about public policy
• Decision support systems, etc.
• See also http://comma2014.arg.dundee.ac.uk/demoprogram.
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
∆ = {s, r, w, s→ ¬r, r→ ¬w, w→ ¬s}

F∆ :

α β

γ

pref (F∆) =
{
∅
}

stage(F∆) =
{
{α}, {β}, {γ}

}
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
∆ = {s, r, w, s→ ¬r, r→ ¬w, w→ ¬s}

〈{s, s→¬r},¬r〉 〈{r, r→¬w},¬w〉

〈{w, w→¬s},¬s〉

Cnpref (F∆) = Cn(>)
Cnstage(F∆) = Cn(¬r ∨ ¬w ∨ ¬s)
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The Overall Process (ctd.)

Some Remarks
• Main idea dates back to Dung [1995]; has then been refined by several

authors (Prakken, Gordon, Caminada, etc.)
• Separation between logical (forming arguments) and nonmonotonic

reasoning (“abstract argumentation frameworks”)
• Abstraction allows to compare several KR formalisms on a conceptual

level (“calculus of conflict”)

Main Challenge
• All Steps in the argumentation process are, in general, intractable.
• This calls for:

• careful complexity analysis (identification of tractable fragments)
• re-use of established tools for implementations (reduction method)
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Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]
• Given is a KB (a set of propositions) ∆

• argument is a pair (Φ,α), such that Φ ⊆ ∆ is consistent, Φ |= α and for
no Ψ ⊂ Φ, Ψ |= α

• conflicts between arguments (Φ,α) and (Φ′,α′) arise if Φ and α′ are
contradicting.

Example
〈{s, s→¬r},¬r〉 〈{r, r→¬w},¬w〉

Other Approaches
• Arguments are trees of statements
• claims are obtained via strict and defeasible rules
• different notions of conflict: rebuttal, undercut, etc.
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Dung’s Abstract Argumentation Frameworks

Example

α β

γ

Main Properties
• Abstract from the concrete content of arguments but only consider the

relation between them
• Semantics select subsets of arguments respecting certain criteria
• Simple, yet powerful, formalism
• Most active research area in the field of argumentation.

• “plethora of semantics”
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Dung’s Abstract Argumentation Frameworks

Definition
An argumentation framework (AF) is a pair (A, R) where
• A is a set of arguments
• R ⊆ A× A is a relation representing the conflicts (“attacks”)

Example
F=( {a,b,c,d,e} , {(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)} )

b c d ea
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Basic Properties

Conflict-Free Sets
Given an AF F = (A, R).
A set S ⊆ A is conflict-free in F, if, for each a, b ∈ S, (a, b) /∈ R.

Example

b c d ea

cf (F) =
{
{a, c},
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Basic Properties

Conflict-Free Sets
Given an AF F = (A, R).
A set S ⊆ A is conflict-free in F, if, for each a, b ∈ S, (a, b) /∈ R.

Example

b c d ea

cf (F) =
{
{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅

}
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Basic Properties (ctd.)

Admissible Sets [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is admissible in F, if
• S is conflict-free in F

• each a ∈ S is defended by S in F
• a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there

exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea

adm(F) =
{
{a, c},
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Basic Properties (ctd.)

Dung’s Fundamental Lemma
Let S be admissible in an AF F and a, a′ arguments in F defended by S in F.
Then,

1 S′ = S ∪ {a} is admissible in F

2 a′ is defended by S′ in F
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Semantics

Naive Extensions
Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S 6⊂ T

Example

b c d ea

naive(F) =
{
{a, c},
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Semantics

Naive Extensions
Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S 6⊂ T

Example

b c d ea
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{
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Semantics (ctd.)

Grounded Extension [Dung, 1995]
Given an AF F = (A, R). The unique grounded extension of F is defined as the
outcome S of the following “algorithm”:

1 put each argument a ∈ A which is not attacked in F into S; if no such
argument exists, return S;

2 remove from F all (new) arguments in S and all arguments attacked by
them (together with all adjacent attacks); and continue with Step 1.

Example

b c d ea

ground(F) =
{
{a}}
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,

there exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea

comp(F) =
{
{a, c},
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,

there exists a c ∈ S, such that (c, b) ∈ R.
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F
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Semantics (ctd.)

Properties of the Grounded Extension
For any AF F, the grounded extension of F is the subset-minimal complete
extension of F.

Remark
Since there exists exactly one grounded extension for each AF F, we often write
ground(F) = S instead of ground(F) = {S}.

TU Dresden, 24th October 2014 Seminar Abstract Argumentation slide 49 of 94



Semantics (ctd.)

Properties of the Grounded Extension
For any AF F, the grounded extension of F is the subset-minimal complete
extension of F.

Remark
Since there exists exactly one grounded extension for each AF F, we often write
ground(F) = S instead of ground(F) = {S}.

TU Dresden, 24th October 2014 Seminar Abstract Argumentation slide 50 of 94



Semantics (ctd.)

Preferred Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a preferred extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S 6⊂ T

Example

b c d ea

pref (F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if
• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}
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Semantics (ctd.)
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Semantics (ctd.)

Some Relations
For any AF F the following relations hold:

1 Each stable extension of F is admissible in F

2 Each stable extension of F is also a preferred one

3 Each preferred extension of F is also a complete one
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Semantics (ctd.)

Semi-Stable Extensions [Caminada, 2006]
Given an AF F = (A, R). A set S ⊆ A is a semi-stable extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S+ 6⊂ T+

• for S ⊆ A, define S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Example

b c d ea

semi(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Semi-Stable Extensions [Caminada, 2006]
Given an AF F = (A, R). A set S ⊆ A is a semi-stable extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S+ 6⊂ T+

• for S ⊆ A, define S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Example

b c d ea

semi(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S+ 6⊂ T+

• recall S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF F = (A, R). A set S ⊆ A is an ideal extension of F, if
• S is admissible in F and contained in each preferred extension of F

• there is no T ⊃ S admissible in F and contained in each of pref (F)

Eager Extension [Caminada, 2007]
Given an AF F = (A, R). A set S ⊆ A is an eager extension of F, if
• S is admissible in F and contained in each semi-stable extension of F

• there is no T ⊃ S admissible in F and contained in each of semi(F)
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Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if
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Eager Extension [Caminada, 2007]
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Semantics (ctd.)

Properties of Ideal Extensions
For any AF F the following observations hold:

1 there exists exactly one ideal extension of F

2 the ideal extension of F is also a complete one

The same results hold for the eager extension and similar variants [Dvořák et
al., 2011].
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c},
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c}, {a, d}}
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cf2 Semantics [Baroni, Giacomin & Guida
2005]

Definition (Separation)
An AF F = (A, R) is called separated if for each (a, b) ∈ R, there exists a path
from b to a. We define [[F]] =

⋃
C∈SCCs(F) F|C and call [[F]] the separation of F.

Example
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cf2 Semantics (ctd.)

Definition (Reachability)
Let F = (A, R) be an AF, B a set of arguments, and a, b ∈ A. We say that b is
reachable in F from a modulo B, in symbols a⇒B

F b, if there exists a path from a
to b in F|B.

Definition (∆F,S)
For an AF F = (A, R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

By ∆F,S, we denote the lfp of ∆F,S(∅).
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F).
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S(∅) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S({d, e}) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S = {d, e}, S ∈ naive([[F −∆F,S]]).
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Relations between Semantics

conflict-free

naive

stage

stable

admissible

complete

preferred

semi-stable

ideal eager

grounded

res.b. grounded

cf2

Figure : An arrow from semantics σ to semantics τ encodes
that each σ-extension is also a τ -extension.
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Characteristics of Argumentation Semantics

Example
a

b d

c

f e

pref (F) =
{
{a, d, e}, {b, c, e}, {a, b}

}
naive(F) =

{
{a, d, e}, {b, c, e}, {a, b, e}

}
Natural Questions
• How to change the AF if we want {a, b, e} instead of {a, b} in pref (F)?
• How to change the AF if we want {a, b, d} instead of {a, b} in pref (F)?
• Can we have equivalent AFs without argument f ?

Realizability
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Some Properties . . .

Theorem
For any AFs F and G, we have
• adm(F) = adm(G) =⇒ σ(F) = σ(G), for σ ∈ {pref , ideal};
• comp(F) = comp(G) =⇒ ϑ(F) = ϑ(G), for ϑ ∈ {pref , ideal, ground};
• no other such relation between the different semantics (adm, pref , ideal,

semi, eager, ground, comp, stable) in terms of standard equivalence holds.
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Strong Equivalence [Oikarinen & Woltran 2011,

G & Woltran 2011]

Definition
Two AFs F and G are strongly equivalent wrt. a semantics
σ ∈ {stable, adm, pref , ideal, semi, comp, ground, stage}, in symbols F ≡σs G, iff
σ(F ∪ H)=σ(G ∪ H), for each AF H.

• Idea: Find “σ-kernels” of AFs, such that the σ-kernels of F and G coincide
iff F ≡σs G.

• Verification of strong equivalence then reduces to checking
syntactical equivalence
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Strong Equivalence for Stable Semantics

Kernel for stable semantics
For AF F = (A, R), we define stable-kernel of F as Fκ = (A, Rκ) with

Rκ = R \ {(a, b) | a 6= b, (a, a) ∈ R}.

Theorem
For any AFs F and G: Fκ = Gκ iff F ≡stable

s G iff F ≡stage
s G.
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Decision Problems on AFs

Credulous Acceptance
Credσ : Given AF F = (A, R) and a ∈ A; is a contained in at least one
σ-extension of F?

Skeptical Acceptance
Skeptσ : Given AF F = (A, R) and a ∈ A; is a contained in every σ-extension of
F?

If no extension exists then all arguments are skeptically accepted and no
argument is credulously accepted1.

Hence we are also interested in the following problem:

Skeptically and Credulously accepted
Skept′σ : Given AF F = (A, R) and a ∈ A; is a contained in every and at least one
σ-extension of F?

1
This is only relevant for stable semantics.
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Further Decision Problems

Verifying an extension
Verσ : Given AF F = (A, R) and S ⊆ A; is S a σ-extension of F?

Does there exist an extension?
Existsσ : Given AF F = (A, R); Does there exist a σ-extension for F?

Does there exist a nonempty extensions?
Exists¬∅σ : Does there exist a non-empty σ-extension for F?
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Complexity Results (Summary)

Complexity for decision problems in AFs.

σ Credσ Skeptσ
ground P-c P-c
naive in L in L
stable NP-c co-NP-c
adm NP-c trivial
comp NP-c P-c
pref NP-c Πp

2-c

σ Credσ Skeptσ
semi Σp

2-c Πp
2-c

stage Σp
2-c Πp

2-c
ideal in Θp

2 in Θp
2

eager Πp
2-c Πp

2-c
ground∗ NP-c co-NP-c
cf2 NP-c co-NP-c

see [Baroni et al.2011, Coste-Marquis et al.2005, Dimopoulos and Torres1996, Dung1995, Dunne2008,

Dunne and Bench-Capon2002, Dunne and Bench-Capon2004, Dunne and Caminada2008, Dvořák et

al.2011, Dvořák and Woltran2010a, Dvořák and Woltran2010b]
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Intractable problems in Abstract
Argumentation

Most problems in Abstract Argumentation are computationally intractable, i.e. at
least NP-hard. To show intractability for a specific reasoning problem we follow
the schema given below:

Goal: Show that a reasoning problem is NP-hard.

Method: Reducing the NP-hard SAT problem to the reasoning problem.

• Consider an arbitrary CNF formula ϕ
• Give a reduction that maps ϕ to an Argumentation Framework Fϕ

containing an argument ϕ.
• Show that ϕ is satisfiable iff the argument ϕ is accepted.
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Canonical Reduction

Definition
For ϕ =

∧m
i=1 li1 ∨ li2 ∨ li3 over atoms Z, build Fϕ = (Aϕ, Rϕ) with

Aϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ}
Rϕ = {(z, z̄), (̄z, z) | z ∈ Z} ∪ {(Ci,ϕ) | i ∈ {1, . . . , m}} ∪

{(z, Ci) | i ∈ {1, . . . , m}, z ∈ {li1, li2, li3}} ∪
{(̄z, Ci) | i ∈ {1, . . . , m},¬z ∈ {li1, li2, li3}}

Example
Let Φ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4).

Φ

C1 C2 C3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4
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Canonical Reduction: CNF⇒ AF (ctd.)

Theorem
The following statements are equivalent:

1 ϕ is satisfiable

2 Fϕ has an admissible set containing ϕ

3 Fϕ has a complete extension containing ϕ

4 Fϕ has a preferred extension containing ϕ

5 Fϕ has a stable extension containing ϕ
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Complexity Results

Theorem
1 Credstable is NP-complete

2 Credadm is NP-complete

3 Credcomp is NP-complete

4 Credpref is NP-complete

Proof.
(1) The hardness is immediate by the last theorem.
For the NP-membership we use the following guess & check algorithm:
• Guess a set E ⊆ A

• verify that E is stable
• for each a, b ∈ E check (a, b) 6∈ R
• for each a ∈ A \ E check if there exists b ∈ E with (b, a) ∈ R

As this algorithm is in polynomial time we obtain NP-membership.
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