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Introduction to Abduction

I Consider K |= F
where K is a set of formulas called knowledge base and F is a formula

I In the next example I will use the following propositional atoms:
grassIsWet, wheelsAreWet, sprinklerIsRunning, raining

I Let K = {g → w , s → w , r → g}

. Does K |= w hold?

I Idea Find an atom A such that K ∪ {A} |= w and K ∪ {A} is satisfiable

. A = w

. A = g

. A = s or A = r

I This process is called abduction
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Introduction to Induction

I Let Kplus = { (∀Y :number) plus(0, Y ) ≈ Y ,
(∀X , Y :number) plus(s(X), Y ) ≈ s(plus(X , Y )) }

. Does Kplus |= (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X) hold?

I ConsiderD = N ∪ {♦} and
I 0 s plus

0 f ⊕ where

. f (d) =

{
f (0) if d = ♦
d + f (0) if d ∈ N

. d ⊕ e =


0 if d = e = ♦
♦ if d = 0 and e = ♦
d if d ∈ N+ and e = ♦
e if d = ♦ and e ∈ N
d + e if d, e ∈ N

. + : N→ N is the usual addition on N and N+ = N \ {0}

I Then I |= Kplus but (♦⊕ 0) 6= (0⊕♦)  Exercise
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The Example Continued

I Kplus = { (∀Y :number) plus(0, Y ) ≈ Y ,
(∀X , Y :number) plus(s(X), Y ) ≈ s(plus(X , Y )) }

. Does Kplus |= (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X) hold?

I In order to prove the commutativity of plus add Peano’s induction principle

(P(0) ∧ (∀M :number) (P(M)→ P(s(M))))→ (∀M :number) P(M)

to Kplus (where P is a relational variable)

I For the induction base (X = 0) we replace P(Y ) by plus(Y , 0) ≈ Y

I Let KI be an appropriate set of induction axioms then

Kplus ∪ KI |= (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X)

I How does KI look like?  Exercise
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Deduction, Abduction and Induction

I Peirce 1931 Kfacts ∪ Krules |= Gresult

. Deduction
is an analytic process based on the application of general rules to particular
facts, with the inference as a result

. Abduction
is synthetic reasoning which infers a fact from the rules and the result

. Induction
is synthetic reasoning which infers a rule from the facts and the result
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Deduction

I All reasoning processes considered in the module Foundations so far are
deductions

I The logics (first-order, equational) are unsorted

I They can be easily extended to sorted logics

I We will use a sorted logic in the subsection on Induction
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Sorts

I (∀X , Y ) (number(X) ∧ number(Y )→ plus(X , Y ) ≈ plus(Y , X))

. (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X)

I A first order language with sorts consists of

. a first order language L(R,F ,V) and

. a function sort : V → 2RS

whereRS ⊆ R is a finite set of unary predicate symbols called base sorts

I Elements of 2RS are called sorts; ∅ ∈ 2RS is called top sort

I We write X :s if sort(X) = s

I We assume that for every sort s there are countably many variables X :s ∈ V
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Sorts – Semantics

I Let I be an interpretation with domainD

I : s = {p1, . . . , pn} 7→ sI = D ∩ pI
1 ∩ . . . ∩ pI

n

. I : ∅ 7→ D

I A variable assignment Z is sorted iff for all X :s ∈ V we find XZ ∈ sI

I We assume that all sorts are non-empty

I F I,Z is defined as usual except for

[(∃X :s) F ]I,Z = > iff there exists d ∈ sI such that F I,{X 7→d}Z = >

[(∀X :s) F ]I,Z = > iff for all d ∈ sI we find F I,{X 7→d}Z = >
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Relativization

I Sorted formulas can be mapped onto unsorted ones by means of a
relativization function rel

rel(p(t1, . . . , tn)) = p(t1, . . . , tn)
rel(¬F ) = ¬rel(F )
rel(F1 ∧ F2) = rel(F1) ∧ rel(F2)
rel(F1 ∨ F2) = rel(F1) ∨ rel(F2)
rel(F1 → F2) = rel(F1)→ rel(F2)
rel(F1 ↔ F2) = rel(F1)↔ rel(F2)
rel((∀X :s) F ) = (∀Y ) (p1(Y ) ∧ . . . ∧ pn(Y )→ rel(F{X 7→ Y}))

if sort(X) = s = {p1, . . . , pn} and Y is a new variable
rel((∃X :s) F ) = (∃Y ) (p1(Y ) ∧ . . . ∧ pn(Y ) ∧ rel(F{X 7→ Y}))

if sort(X) = s = {p1, . . . , pn} and Y is a new variable
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Sorting Function and Relation Symbols

I Each atom of the form p(t1, . . . , tn) can be equivalently replaced by

(∀X1 . . . Xn) (p(X1, . . . , Xn)← X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn)

I Each atom Adf (t1, . . . , tn)e can be equivalently replaced by

(∀X1 . . . Xn) Adf (t1, . . . , tn)/f (X1, . . . , Xn)e ← X1 ≈ t1 ∧ . . . ∧ Xn ≈ tn

I Each formula F can be transformed into an equivalent formula F ′, in which

. all arguments of function and relation symbols different from≈
are variables and

. all equations are of the form t1 ≈ t2 or f (X1, . . . , Xn) ≈ t , where
X1, . . . , Xn are variables and t, t1, and t2 are variables or constants

I Sorting the variables occurring in F ′ effectively sorts the function and relation
symbols
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Sort Declaration

I F ′ is usually quite lengthy and cumbersome to read

I If sort(X) = s then the sort declaration for the variable X is

X :s

I Let si , 1 ≤ i ≤ n, and s be sorts, f a function and p a relation symbol, both
with arity n. Then

f :s1 × . . .× sn → s

and
p :s1 × . . .× sn

are sort declarations for f and p, respectively
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Abduction

I Example Starting a car

I Applications

. fault diagnosis

. medical diagnosis

. high level vision

. natural language understanding

. reasoning about states, actions, and causality

. knowledge assimilation
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A First Characterization of Abduction

I Given K and G; find explanation K′ such that

. K ∪ K′ |= G and

. K ∪ K′ is satisfiable

The elements of K′ are said to be abduced

I Abducing atoms is no real restriction

I Weakness of this first characterization
We want to abduce causes of effects but no other effects
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Restrictions

I Abducible formulas

. set of pre-specified and domain-dependent formulas

. abduction is restricted to this set

. default in logic programming: set of undefined predicates

I Typical criteria for choosing a set of abducible formulas

. an explanation should be basic,
i.e., it cannot be explained by another explanation

. an explanation should be minimal,
i.e., it cannot be subsumed by another explanation

. additional information

. domain-dependent preference criteria

. integrity constraints
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Abductive Framework

I Abductive framework 〈K,KA,KIC〉 where

. K is a set of formulas

. KA is a set of ground atoms called abducibles

. KIC is a set of integrity constraints

I Observation G is explained by K′ iff

. K′ ⊆ KA

. K ∪ K′ |= G and

. K ∪ K′ satisfies KIC

I K ∪ K′ satisfies KIC iff

. K ∪ K′ ∪ KIC are satisfiable (satisfiability view) or

. K ∪ K′ |= KIC (theoremhood view)
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Knowledge Assimilation

I Task assimilate new knowledge into a given knowledge base

I Example

. K = { sibling(X , Y )← parents(Z , X) ∧ parents(Z , Y ),
parents(X , Y )← father(X , Y ),
parents(X , Y )← mother(X , Y ),
father(john,mary),
mother(jane,mary) }

. KIC = { X ≈ Y ← father(X , Z) ∧ father(Y , Z),
X ≈ Y ← mother(X , Z) ∧ mother(Y , Z) }

. KA = {A | A is a ground instance of father(john, Y ) or mother(jane, Y )}

. ≈ is a ‘built–in’ predicate such that

II X ≈ X holds and

II s 6≈ t holds for all distinct ground terms s and t

. Task assimilate sibling(mary, bob)
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The Example Continued

I Two minimal explanations

. {father(john, bob)}

. {mother(jane, bob)}

I What happens if we additionally observe that mother(joan, bob)?

. belief revision
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Theory Revision

I Default reasoning and jumping to a conclusion

I Example

. K = { penguin(X)→ bird(X),
birdsFly(X)→ (bird(X)→ fly(X)),
penguin(X)→ ¬fly(X),
penguin(tweedy),
bird(john) }

. KIC = ∅

. KA = {A | A is a ground instance of birdsFly(X)}

I Task 1 Explain fly(john)

I Task 2 Explain fly(tweedy)

I What happens if we additionally observe penguin(john)?
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Abduction and Model Generation

I Example

. K = { wobblyWheel ↔ brokenSpokes ∨ flatTyre,
flatTyre ↔ puncturedTube ∨ leakyValve }

. KIC = ∅

. KA = {brokenSpokes, puncturedTube, leakyValve}

I K = K← ∪ K→ where

. K← = { wobblyWheel ← brokenSpokes,
wobblyWheel ← flatTyre,
flatTyre ← puncturedTube,
flatTyre ← leakyValve }

. K→ = { wobblyWheel → brokenSpokes ∨ flatTyre,
flatTyre → puncturedTube ∨ leakyValve }
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The Wobbly–Wheel Example

I Observation wobblyWheel

I What are the minimal and basic explanations?

I How can these explanation be computed?

. SLD–resolution

. Model generation
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Abduction and SLD–Resolution

I Consider the SLD-derivation tree for←wobblyWheel wrt K←

← wobblyWheel

← flatTyre

← leakyValve← puncturedTube

← brokenSpokes
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Abduction and Model Generation

I Remember K→ = { wobblyWheel → brokenSpokes ∨ flatTyre,
flatTyre → puncturedTube ∨ leakyValve }

I Add wobblyWheel to K→

I What are the minimal models of the extended knowledge base?

{wobblyWheel, flatTyre, puncturedTube}
{wobblyWheel, flatTyre, leakyValve}
{wobblyWheel, brokenSpokes}

I Restrict these models to the abducible predicates
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Mathematical Induction

I Essential proof technique used to verify properties about recursively defined
objects like natural numbers, lists, trees, logic formulas, etc.

I Central role in the fields of mathematics, algebra, logic, computer science,
formal language theory, etc.
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Some Typical Questions

I Should induction be really used to prove a statement?

I Should the statement be generalized before an attempt is made to prove it by
induction?

I Which variable should be the induction variable?

I What induction principle should used?

I What property should be used within the induction principle?

I Should nested induction be taken into account?
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Data Structures

I Function symbols are split into constructors and defined function symbols

I Let F be the set of function symbols

. Constructors C ⊆ F

. Defined function symbols D ⊆ F

. C ∩ D = ∅

. C ∪ D = F

. T (C) is called the set of constructor ground terms

I Data structures (or sorts) are sets of constructor ground terms

Steffen Hölldobler
Deduction, Abduction and Induction 25



Data Structures – Examples

I 0 :number
s :number → number

. T ({0, s}) = {0, s(0), s(s(0)), . . .} is called the sort number

I > :bool
⊥ :bool

. T ({>, ⊥}) = {>, ⊥} is called the sort bool

I [ ] : list(number)
: :number × list(number)→ list(number)

. T ([ ], :}) = {[ ], [0], [0, 0], [s(0)], . . .} is called the sort list(number)
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Well-Sortedness and Selectors

I Well-Sortedness

. Constants and variables are well-sorted

. If f :sort1 × . . .× sortn → sort
and for all 1 ≤ i ≤ n we find that ti is well-sorted and of sort sort i
then f (t1, . . . , tn) is well-sorted and of sort sort

I Assumption All terms are well-sorted!

I Selectors

. For each n-ary constructor c we have n unary selectors si
such that for all 1 ≤ i ≤ n we find si(c(t1, . . . , tn)) ≈ ti
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Data Structures – Requirements

I Different constructors denote different objects

I Constructors are injective

I Each object can be denoted as an application of some constructor to its
selectors (if any exist)

I Each selector is ‘inverse’ to the constructor it belongs to

I Each selector returns a so-called witness term if applied to a constructor it
does not belong to
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Requirements for Numbers

I The requirements can be translated into first order formulas

I The requirements for number are

Knumber = { (∀N :number) 0 6≈ s(N),
(∀N,M :number) (s(N) ≈ s(M)→ N ≈ M),
(∀N :number) (N ≈ 0 ∨ N ≈ s(p(N))),
(∀N :number) p(s(N)) ≈ N,
p(0) ≈ 0, }

where

. p is the selector for the only argument of the constructor s and

. 0 is the witness term assigned to p(0)

I Note p is a defined function symbol!
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Defined Function Symbols

I Functions are defined on top of data structures

I We define functions with the help of a set of conditional equations,
i.e., universally closed equations of the form

∀ l ≈ r ← Body

such that l is a non-variable term (i.e. of the form g(s1, . . . , sn)),

var(l) ⊇ var(r) ∪ var(Body)

and Body denotes a conjunction of literals

I We sometimes omit the universal quantifiers in writing conditional equations

I g is a defined function symbol wrt a set K of conditional equations
if K contains a conditional equation of the form

g(t1, . . . , tn) ≈ r ← Body

The set of conditional equations of this form inK is called definition of g wrt K

Steffen Hölldobler
Deduction, Abduction and Induction 30



Defined Function Symbols – Examples

I Predecessor on number Kp

(∀N :number) p(s(N)) ≈ N
p(0) ≈ 0

I Addition on number Kplus

(∀X , Y :number) (plus(X , Y ) ≈ Y ← X ≈ 0)
(∀X , Y :number) (plus(X , Y ) ≈ s(plus(p(X), Y )) ← X 6≈ 0)

I Less-than on number Klt

(∀X , Y :number) (lt(X , Y ) ≈ ⊥ ← Y ≈ 0)
(∀X , Y :number) (lt(X , Y ) ≈ > ← X ≈ 0 ∧ Y 6≈ 0)
(∀X , Y :number) (lt(X , Y ) ≈ lt(p(X), p(Y )) ← X 6≈ 0 ∧ Y 6≈ 0)
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Rewriting Extended to Conditional Equations

I Let K be a finite set of conditional equations

I A term t can be rewritten wrt K iff

1 t is well-sorted and ground

2 t contains a subterm of the form g(t1, . . . , tn)
where for all 1 ≤ i ≤ n we find that ti is a constructor ground term

3 g(s1, . . . , sn) ≈ r ← Body ∈ K and

4 we find an mgu θ for g(s1, . . . , sn) and g(t1, . . . , tn) such that K |= Bodyθ

I In this case t is rewritten to the term obtained from t
by replacing g(t1, . . . , tn) by rθ

I Note θ is a matcher because t is ground
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Cases

I Let g(s1, . . . , sn) ≈ r ← Body be a rule and X1, . . . , Xn new variables

g(X1, . . . , Xn) ≈ r ← X1 ≈ s1 ∧ . . . ∧ Xn ≈ sn ∧ Body

is called homogeneous form of this rule

I Example
(∀X ,N :number) (p(X) ≈ N ← X ≈ s(N))

is the homogeneous form of

(∀N :number) p(s(N)) ≈ N

I Obervation A rule is semantically equivalent to its homogeneous form

I The case of a rule is the condition of its homogeneous form
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Programs

I A program is a set of clauses consisting of data structure declarations and
function definitions

I Example Knumber ∪ Kplus is a program
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Properties of Programs

I A program K is

. well-formed iff it can be ordered such that each function symbol
occurring in the definition of a function g in K either is introduced before by
a data structure declaration or another function definition or, otherwise, is g
in which case the function is recursive

. well-sorted iff each term occurring in K is well-sorted

. deterministic iff
for each function definition occurring in K the cases are mutually exclusive

. case-complete iff for each function definition of an n-ary function g
occurring in K and each well-sorted n-tuple of constructor ground terms
given as input to g there is at least one of the cases which is satisfied

. terminating iff
there is no infinite rewriting sequence for any well-sorted ground term

. admissible iff
it is well-formed, well-sorted, deterministic, case-complete and terminating

I The rewrite relation wrt an admissible program is confluent  Exercise
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Evaluation

I Admissible programs K define a unique evaluator evalK
which maps terms to their normal form

I evalK : T (F)→ T (C)

I evalK(t) is called value of t

I evalK is an interpretation with domain T (C)

I evalK is called standard interpretation of K

I Example Consider Knumber ∪ Kplus

plus(s(0), s(0))
→ s(plus(p(s(0)), s(0)))
→ s(plus(0, s(0)))
→ s(s(0))
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Evaluation – Example

I Consider K = Knumber ∪ Kplus

. evalK |= K
evalK |= (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X),
evalK |= (∀X :number) X 6≈ s(X)

 Exercise

. K 6|= (∀X , Y :number) plus(X , Y ) ≈ plus(Y , X)
K 6|= (∀X :number) X 6≈ s(X)

 Exercise
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Theory of Admissible Programs

I Let K be an admissible program

I We consider {G | evalK |= G}

I In other words, we restrict us to one specific interpretation
This interpretation is sometimes called standard or intended interpretation

I Idea Add formulas to K such that non-standard interpretations are no longer
models of K

. These formulas are called induction axioms

. Let KI be a decidable set of induction axioms such that evalK |= KI
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Induction – Example

I Let K = Knumber ∪ Kplus

I Let KI be the set of all formulas of the form

(P(0) ∧ (∀X :number) (P(X)→ P(s(X))))→ (∀X :number) P(X)

I This scheme can be instantiatied by, e.g., replacing P(X) by X 6≈ s(X)

(0 6≈ s(0) ∧ (∀X :number) (X 6≈ s(X)→ s(X) 6≈ s(s(X))))
→ (∀X :number) X 6≈ s(X) (1)

I evalK |= (1)  Exercise

I K ∪ {(1)} |= (∀X :number) X 6≈ s(X)  Exercise

. The proof is finite
(in contrast to a proof of evalK |= (∀X :number) X 6≈ s(X)))
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Inductive Theorem Proving

I Theorem proving by induction is incomplete (Gödel’s incompleteness theorem)

I Induction axioms may be computed from inductively defined data structures

I Heuristics may guide selection of

. the induction variable

. the induction schema and

. the induction axiom

I Several theorem provers based on induction are available, e.g.,

. NQTHM

. OYSTER-CLAM

. INKA
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