
Special Issue on Artificial Intelligence, Paving the Way to the Future

- 57 -

DOI: 10.9781/ijimai.2021.02.003

Smoke Test Planning using Answer Set Programming
Tobias Philipp1, Valentin Roland1, Lukas Schweizer2 *

1 SINA Development and Verification Team, Division Defence & Space, secunet Security Networks
AG, Essen (Germany)
2 Computational Logic Group, Technische Universität Dresden, Dresden (Germany)

Received 10 November 2020 | Accepted 23 November 2020 | Published 10 February 2021

Keywords

Planning, Answer Set
Programming, Testing.

Abstract

Smoke testing is an important method to increase stability and reliability of hardware-dependent systems. Due
to concurrent access to the same physical resource and the impracticality of the use of virtualization, smoke
testing requires some form of planning. In this paper, we propose to decompose test cases in terms of atomic
actions consisting of preconditions and effects. We present a solution based on answer set programming with
multi-shot solving that automatically generates short parallel test plans. Experiments suggest that the approach
is feasible for non-inherently sequential test cases and scales up to thousands of test cases.

* Corresponding author.

E-mail addresses: tobias.philipp@secunet.com (T. Philipp), science@
vroland.de (V. Roland), lukas.schweizer@tu-dresden.de (L. Schweizer).

I. Introduction

Quick development-test-cycles are vital for the development
of functional and reliable software. Thus, it is considered best-

practice to frequently run a subset of regression tests, called smoke
tests, to catch as many issues as possible as early as possible [1]. In
contrast to regression testing, smoke tests lean towards minimizing
the time spent on a test run, sacrificing coverage if necessary. To
reduce overall run time, software tests are often run concurrently on
isolated instances of the system under test (SUT). This works well if
the software system can run on virtualized infrastructure, which can
be easily scaled.

However, some systems depend on real hardware and thus
virtualization is impossible. Furthermore, functional and performance
characteristics of a virtualized system may significantly differ from
operations on bare metal, which would render performance and load
tests meaningless.

Smoke testing of hardware or hardware-dependent systems requires
some form of planning: A running test inevitably changes the state
of the SUT and thus the hardware state. Therefore, isolation of test
cases is difficult, since multiple tests may depend on the same physical
resources. Consequently, tests can neither be easily parallelized nor
chained and some execution strategy is required.

A straightforward solution is to bring the SUT to a clean state after
each test has run individually, e.g. by a cold reboot. For a number of
reasons, this is not satisfactory: Resetting the SUT to a known state is
often difficult or time-consuming. Issues, such as hidden assumptions
on the concurrent use of different SUT features, may not occur with a
strictly sequential execution.

In this paper we propose to decompose test cases into atomic
actions with preconditions and effects such that we can automatically
infer a suitable test plan that is short and parallel. Each action is a
small, specific instruction performed on the SUT, like “boot system
X” or “connect to host Y”. Preconditions describe the state of the SUT
in which an action is executable. Effects describe the changes of the
state of the SUT after successful execution of the action. Furthermore,
actions are associated with instructions determining their failure or
success.

In our proposed method, this information is given declaratively
to enable the automated generation of short parallel test plans. We
demonstrate that solving the planning problem can be done using
Answer Set Programming (ASP) and show that the system can solve
planning problems with thousands of actions on non inherently-
sequential problems. The main benefits of this approach include:

1. Reduced overall execution times: Consider Fig. 1 that compares test
executions with automated planning to a predefined sequential
test plan in which a secure network connection is established,
user interface tests are performed and a certificate is exchanged.
Note that the parallel plan consists of four time points whereas the
sequential needs eight.

2. Maximal test execution: In case of failing tests, as many tests as
possible can be executed by replanning: Assuming that the action
“Host 2 Boot” fails, the predefined sequential test plan fails early,
whereas one can construct a new test plan that allows the continued
execution of tests that do not depend on host 2. Consequently, the
state of the SUT is preserved, no reboots are necessary and we do
not need to (re-)execute passed tests.

3. Specification reuse: Declarative definition of actions and a flexible
planning framework allows reusing actions in regression tests,
integration tests, fixed scenarios or component-wise testing
trough different planning goals and constraints.

Due to the nature of testing we deal with uncertainty in the outcome
of actions as well as in the SUT state itself, which captures the ideas
of conformant planning [2]. Moreover, maximal test execution can

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 58 -

be seen as some form of oversubscription planning [3], which aims
to achieve as many sub-goals as possible instead of a conjunctively
defined (single) top-goal.

The paper is structured as follows: We briefly describe ASP in
Section II, before a formal description of smoke test planning is then
given in Section III. The ASP encoding and its correspondence to tests is
then presented in Section IV. In Section V, we present an experimental
evaluation on the basis of a family of benchmarks. Finally, we describe
related work and conclude.

II. Preliminaries

ASP is a declarative modeling and problem solving framework
that combines techniques of knowledge representation and database
theory. Two of the main advantages of ASP are its expressiveness
[4] and, when using non-ground programs, its advanced declarative
problem modeling capability. Such programs must be transformed to a
ground program prior to solving.

We review the basic notions of answer set programming [5] under
the stable model semantics [6], and refer to introductory literature [4],
[7], for a more comprehensive introduction.

We fix a countable set of (domain) elements, also called constants;
and suppose a total order < over the domain elements. An atom is an
expression p(t1, ..., tn), where p is a predicate of arity n ≥ 0 and each ti
is either a variable or an element from . An atom is ground if it is free
of variables. B denotes the set of all ground atoms over . A (normal)
rule ρ is of the form

with m ≥ k ≥ 0, where a, b1, ..., bm are atoms, and “not ” denotes
default negation. The head of ρ is the singleton set H(ρ) = {a} and
the body of ρ is B(ρ) = {b1, ..., bk, not bk+1, ..., not bm}. Furthermore,
B+(ρ) = {b1, ..., bk} and B‒(ρ) = {bk+1, ..., bm}. A rule ρ is safe if each
variable in ρ occurs in B+(r). A rule ρ is ground if no variable occurs
in ρ. A fact is a ground rule with empty body. An (input) database is
a set of facts. A (normal) program is a finite set of normal rules. For
a program Π and an input database D, we often write Π(D) instead of
D ∪ Π. For any program Π, let UΠ be the set of all constants appearing
in Π. Gr(Π) is the set of rules ρσ obtained by applying, to each rule ρ ϵ
Π, all possible substitutions σ from the variables in ρ to elements of UΠ.

An interpretation I ⊆ B satisfies a ground rule ρ iff H(ρ) ∩ I ≠
whenever B+(ρ) ⊆ I, B‒(ρ) ∩ I ≠ . I satisfies a ground program Π, if
each ρ ϵ Π is satisfied by I. A non-ground rule ρ (resp., a program Π) is
satisfied by an interpretation I if I satisfies all groundings of ρ (resp.,

Gr(Π)). I ⊆ B is an answer set (also called stable model) of Π if it is the
subset-minimal set satisfying the Gelfond-Lifschitz reduct ΠI = {H(ρ)
← B+ (ρ) | I ∩ B‒ (ρ) = , ρ ϵ Gr(Π)} [6]. For a program Π, we denote
the set of its answer sets by  (Π).

We make use of further syntactic extensions, namely integrity
constraints and choice rules, which both can be recast to ordinary
normal rules as described in [8]. An integrity constraint is a rule ρ
where H(ρ) = , intuitively representing an undesirable situation; i.e.
it has to be avoided that B(ρ) evaluates positively. Choice rules are of
the form l {a : a1, ..., ai} u, where a is an atom and aj = pj or aj = not
pj, for aj an atom, 1 ≤ j ≤ i, l and u are non-negative integers, and the
expression {a : a1, ..., an} denotes the set of all ground instantiations of
a, governed through {a1, ..., an}. Intuitively, an interpretation satisfies a
choice rule, if l ≤ N ≤ u holds, where N is the cardinality of any subset
of {a : a1, ..., ai}. In our encodings, we further use ‒a, to denote the
classical negation of an atom a, though ‘‒’ is not an operator present in
the introduced language and merely represents syntactic sugar1.

Programs in this paper are given in the input language of Clingo
[9], a state-of-the-art system combining an ASP grounder and solver.
However, rule head and body are separated with ← instead of :- for
improved readability.

III. Smoke Tests as Planning Problems with Unknowns

In the following, we describe the smoke test planning and
optimization problem in terms of a planning problem in which the
state of SUT properties may be unknown and actions can be executed
in parallel. As executing many actions in a short time span is crucial,
we consider parallel plans. Here, we consider a new semantics based
on the ∀-step semantics [10], in which actions may be executed
simultaneously, as long as they can be executed in any sequential
order resulting in a unique state.

A. The System State as Fluents
We describe the state of the SUT in terms of fluents that correspond

to atomic properties of the system. The set of fluents is a designated
subset of the set of terms . For instance, the fluent system_up(host1)
states that the machine host1 is running. In a system state , a fluent
f can hold, not hold or it may be unknown, whether f holds or not.
This is indicated by unary operators +, - and unknown for holds, does
not hold and unknown, respectively. If f is a fluent, then + f, - f and

1 Note that ‒a merely represents a special predicate name, and together with
an integrity constraint ← ‒a, a, the behavior of classical negation can be
emulated.

Fig. 1. Comparison of test execution with sequential and parallel plans, in the scenario of the action “Host Boot 2” failing.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 59 -

unknown f are fluent literals. For instance, the fluent literal -system_
up(host1) denotes that host1 is not running. The set of all fluent literals
is referred to as . Formally, we represent the state St of the SUT
at time t as a finite set of fluent literals. Initially, the presence of all
fluents is unknown, thus S0 = {unknown f | f ϵ }.

The function fluents: maps a set of fluent
literals to the set of fluents occurring in that set. The function lits :

 maps a set of fluents F to the corresponding set of
possible fluent literals {+ f, - f, unknown f | f ϵ F}.

B. Test Cases as Actions
Smoke test cases are usually specified at varying levels of

complexity and abstraction. A test describing a user interface
workflow is semantically different from testing a single button press.
To reason about SUT behavior for test planning, we need a unified,
fine grained view on how the system state is changed. Thus, we
decompose test cases into actions. Such actions represent small, self-
contained operations. In the context of the test planning problem, we
consider only the information relevant for planning.

Definition 1 (Action). An action a is a tuple (P, E, M), where

• P ⊆ is a finite set of preconditions, which do not contain fluent
literals of the form unknown f,

• E ⊆ is a finite set of effects, and

• M ⊆ is a finite set of modifications, which is the set of fluents an
action may change if the action fails.

The set of all actions is denoted by . An action (P, E, M) is
executable in state if P ⊆ , i.e. its preconditions are satisfied.

Definition 2 (Successor State). The successor state i+1 of i after
executing a finite set of actions A, denoted by is defined
as follows:

C. Plan Semantics
For all permutations (a1, ..., an) of a set of actions At, their sequential

application must always result in a unique
state G.

Definition 3 (Plan). A plan P for a set of actions is a finite sequence
of slots P = ⟨A0, ..., An⟩.

Intuitively, all actions must be executable when applied, are
mutually non-interfering, and each action a occurs at least once in a
slot At for some t ϵ {0 ... n}.

Definition 4 (Non-interference). Let a1 = (P1, E1, M1) and a2 = (P2, E2,
M2) be two actions. Then, a1 and a2 are non-interfering, if the following
mutually holds:

1. fluents(E1) ∩ fluents(E2) = ,

2. {+ f | f ϵ P1} ∩ {- f, unknown f ϵ E2} = ,

3. {- f | f ϵ P1} ∩ {+ f, unknown f ϵ E2} = , and

4. (fluents(P1) ∪ fluents(E1) ∪ M1) ∩ M2 = .

Intuitively, the conditions describe the following: Condition 1.
excludes concurrent modification of system properties. From the point
of view of classical planning, this constraint seems too restrictive as it
disallows executing actions in parallel although any order of execution
results in the same final state [10]. However, in the context of smoke
testing, actions represent state transitions of physical systems and
fluents describe its properties. Therefore, a change of the presence
of a fluent indicates concurrent access to physical resources that
may be unsafe. Conditions 2. and 3 ensure that no action affects the
precondition of other, concurrently executed actions. This assumes
that a fluent literal which is present in the precondition and effects of

an action always holds during the execution of an action. If this is not
the case, the fluent must also appear in the set of modifications of that
action. Condition 4 guarantees that two actions running in parallel
do not modify fluents which are modified by another action. Thus,
their parallel execution is independent of each other, in particular in
case of failing actions. These conditions guarantee the prevention false
positive or false negative test results.

Note that by defining non-interference and executability in this
fashion, we model uncertainty in the SUT state as the third fluent state
unknown. This is different to approaches like conformant planning
[2], [11], where uncertainty in the initial state is modeled as a set of
possible states. While one could construct such a belief-state for a state

, the initial state is not the only source of uncertainty. Even when
successful, actions can introduce uncertainty through their effects:
For instance, consider an action which re-starts the SUT. While some
properties of the SUT will be known, some components may be in an
uninitialized state, thus the related fluents are made unknown in the
action’s effects.

D. Planning Goal
In contrast to classical planning problems in which a desired goal

state is to be reached, the goal in this paper is to find a shortest parallel
plan that executes all actions. We call such a plan complete. In the
case that there is no such plan as many actions as possible should
be executed, which can be seen as some form of oversubscription
planning [3]. While the system state determines which actions can
be executed at any point in time, there is no specified goal state. The
planning goal is a property of the plan itself, not of the system under
test.

Example 1. Consider an arrangement of two devices, where a subset
of the activities shown in Fig. 1 are tested: 1. The devices connect to
each via encrypted network connections, 2. each device connects to the
outside network, and 3. the devices stay connected if the encryption
parameters of their connection are changed. Consider the following
set of fluents that describe the relevant system properties and the
set of actions as described in Table I:

 = {system_up(host1), system_up(host2)}
 ∪ toutside_up(host1), outside_up(host2)u

 ∪ tenc_conn_up(host1), enc_conn_up(host2)u

 ∪ tconn_to(host1, host2), conn_to(host2, host1)u

We can obtain the plan Pe = ⟨A0, ..., A3⟩ with the following
considerations:

• In state S0 = {unknown f | f ϵ }, we can see that only boot(host1)
and boot(host2) are executable in A0. Since precondition and
modifications are empty, 2, 3 and 4 are satisfied. As both
actions each only affect one of the hosts, respectively, they are
also non-interfering. Thus, we can schedule both actions in
A0 = {boot(host1), boot(host2)}

• With {+system_up(host1), unknown enc_
conn_up(host1)}, the actions connect_en-crypted(host1),
connect_encrypted(host2), connect_out-side(host1) and
connect_outside(host2) get executable. Through checking for non-
interference, we can see that they can all be scheduled for A1.

• In 2, change_conn(host1) as well as change_conn(host2) are
executable. However, they mutually interfere due to conditions 1
and 4. Thus, we need to schedule them sequentially, for instance as
A2 = {change_conn(host1)} and A3 = {change_conn(host2)}.

• The resulting plan Pe = ⟨A0, ..., A3⟩ is a shortest plan.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 60 -

E. Replanning
Consider a plan ⟨A0, ..., At‒1, At, At+1, ..., A ⟩, the corresponding states

0, ..., and suppose action e = (P, E, M) in At fails. In the case that E
= and M = , the SUT state is consistent with the plan. Otherwise,
actions in the slots At+1, ..., A could be non-executable and therefore,
a new plan involving as many actions as possible that have not been
executed is generated.

Replanning follows the same rules outlined in Section C, but with
a different initial state. Intuitively, the new initial state is constructed
by applying the successful actions as scheduled in previous plan, but
making any fluent the failed action may have changed unknown.
Formally, let Faffected = fluents(Ee) ∪ Me. Then, the new initial state is
derived from the system state t‒1 before the action failed as follows:

F. Finding Maximal Runnable Subsets
A complete plan may not exist, in particular in case of replanning as

a failed test is excluded. For instance, an action that cannot be executed
because all sequences of actions making its precondition true contain
some action which has already failed. However, with the overall goal
to quickly execute as many actions as possible, a partial plan can be
constructed instead, which executes as many outstanding actions as
possible. We can exploit the flexibility of a declarative approach to
obtain such a maximal partial plan, by maximizing a score function
instead of solving for satisfiability of a set goal. As a score function
for a plan P of length n, we use the number of distinct outstanding
actions g(P ) in P.

IV. An ASP Program Using Multi-Shot Solving

For solving the smoke test planning problem, we phrase the
planning and replanning problem in terms of an Answer Set Program
and use Clingo [9] for solving, a state-of-the-art system combining
an ASP grounder and solver supporting incremental solving [12]
and assumptions. Incremental grounding allows to extend the logic
program after initial grounding, by adding parameterized subprograms.
Assumptions are realized with external atoms that allow to change
their truth value after grounding. Together, these mechanisms allow
to reuse a single ground program over the entire testing process,

supplying initial conditions and goal condition via external atoms. We
use the atoms as presented in Table II to encode the planning program
which is divided into four subprograms: the instance program, the base
program, the transition program, and the goal program.

TABLE II. ASP Predicates and Their Meaning: I Denotes May Atoms
That May Be Added Incrementally, E Denotes May External Atoms

Atom I E Description

apply(A,t) applies action A at time t

demands(A,F,true) action A requires + F

demands(A,F,false) action A requires - F

adds(A,F) action A has positive effect + F

deletes(A,F) action A has negative effect - F

invalidates(A,F) action A makes F unknown F

modifies(A,F) action A may modify fluent F

pc_changes(A, F) action A changes fluent F

interfere(A1, A2) actions A1 and A2 mutually interfere

available(A) action A can be used for in a plan

has_failed(A) the execution of A has failed

need_to_plan(A) action A must occur in the plan

add(F, t) fluent F is made true at time t

del(F, t) fluent F is made false at time t

inv(F, t) fluent F is made unknown at time t

holds(F, 0) fluent F holds initially

holds(F, t) t > 0, fluent F holds at time t

was_applied(A, t) action A has been applied at least once at t

goal_horizon(t) the current horizon is t

1. Instances
As the basis of the planning program, we represent actions and the

initial state as ASP facts. This part of the program is specific to the
supplied set of actions and, in case of replanning, the current SUT
state.

An action a is represented as an action(a) atom. Its precondition,
effects and modifications are expressed using the atoms demands(..),
adds(..), deletes(..), invalidates(..), modifies(..), respectively. If the initial
state 0 is different from {unknown f | f ϵ }, it is specified through
holds(f, 0) and -holds(f, 0) atoms. Since variables are capitalized in the
input language of Clingo, variables A and F refer to singular actions
and fluents in this context. They are distinct from A and F , which refer
to sets thereof.

TABLE I. Representation of the Example in Terms of Actions. The Variables H1, H2 ϵ {host1, Host2} Are Placeholders for Any Concrete Host,
Where H1 and H2 Are Distinct

Action Precondition P Effects E Modifications M

boot(H1) – Boot up H1. + system_up(H1)
unknown enc_conn_up(H1)
unknown outside_up(H1)
unknown conn_to(H1, H2)

connect_outside(H1) – H1 initiates an (unen-
crypted) connection to an outside network.

+ system_up(H1) + outside_up(H1)

connect_encrypted(H1) – H1 initiates an en-
crypted connection to the other host H2.

+ system_up(H1) + conn_to(H1, H2)
+ enc_conn_up(H1)

change_conn(H1) – H1 initiates a change of
encryption parameters, e.g. renews a certificate.

+ system_up(H1)
+ enc_conn_up(H1)
+ conn_to(H1, H2)
+ conn_to(H2, H1)

+ conn_to(H1, H2)
+ conn_to(H2, H1)

enc_conn_up(H1)
enc_conn_up(H2)
conn_to(H1, H2)
conn_to(H2, H1)

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 61 -

Note that we assume that a nop action is contained in the
specification.

2. Base Program
The base program specifies available actions, required actions and

pairs of interfering actions. Mutual interference of actions is calculated
by first collecting the fluents modified by its postcondition.

pc_changes(A, F) ← adds(A, F).
pc_changes(A, F) ← deletes(A, F).
pc_changes(A, F) ← invalidates(A, F).

Then, interference is calculated as described in Section C.

interfere(A1, A2) ← demands(A1, F, _), pc_changes(A2, F).
interfere(A1, A2) ← pc_changes(A1, F), pc_changes(A2, F).
interfere(A1, A2) ← modifies(A1, F), modifies(A2, F).
interfere(A1, A2) ← demands(A1, F, _), modifies(A2, F).
interfere(A1, A2) ← pc_changes(A1, F), modifies(A2, F).
interfere(A1, A2) ← interfere(A2, A1).

An action is available if it did not fail in a previous plan:

available(A) ← action(A), not has_failed(A).

In case of replanning, actions which have already been executed
successfully are not required in the new plan. Thus, they are excluded
from the set of required actions. This is implemented through the
external need_to_plan(A) atoms, whose truth values can be changed
for replanning.

3. Transition Program
For a given slot At‒11 ϵ P of a plan P, the transition program ensures

that only a non-empty set of executable, mutually non-interfering
actions is selected as At. It constitutes the ASP rules necessary to
raise the planning horizon (and thus the maximal plan length) from
t‒1 to t and describes the new state t. The transition program is
incrementally added.

1. At least one action is selected for execution in this slot, marked by
apply(A, t). This may be the nop action, which is always executable.

1 { apply(A, t) : available(A) }.

2. Each applied action is executable w.r.t. the previous state t‒1.

← apply(A, t), demands(A, F, true), not holds(F, t−1).
← apply(A, t), demands(A, F, false), not −holds(F, t−1).
← apply(A, t), not available(A).

3. Applied actions are pairwise non-interfering.

← interfere(A1, A2), apply(A1, t), apply(A2, t), A1 < A2.

4. Describe the new state t based on the applied actions.

add(F, t) ← apply(A, t), adds(A, F).
del(F, t) ← apply(A, t), deletes(A, F).
inv(F, t) ← apply(A, t), invalidates(A, F).

not holds(F, t) ← inv(F, t).
not −holds(F, t) ← inv(F, t).

holds(F, t) ← add(F, t).
holds(F, t) ← holds(F, t−1), not del(F, t), not inv(F, t).
− holds(F, t) ← del(F, t).
− holds(F, t) ← −holds(F, t−1), not add(F, t), not inv(F, t).

5. Track which actions have been applied so far with was_applied(A,
t)-atoms.

was_applied(A, t) ← apply(A, t).
was_applied(A, t) ← was_applied(A, t−1).

4. Goal Program
The goal program characterizes the desired plan for a specific

horizon h. A straightforward goal is to have all actions (except nop)
planned in some slot At with t ≤ h. Through external goal_horizon(h)
atoms, goals are constructed in a way that they can later be deactivated,
i.e. have no effect on the set of models of the ground program.

← not was_applied(A, h), need_to_plan(A), goal_horizon(h).

While this is sufficient in a narrow sense, practically, additional
rules such as optimization goals, optional actions, timeout bounds or
other planning constraints may be added.

5. Externals
To use the same ground program for planning and replanning,

some input must be supplied as external atoms:

1. Initial Conditions: The state of a fluent is expressed by the
combination of holds/2 and -holds/2: holds(F, T) states that fluent
F holds at slot T, -holds(F, T) states that fluent F does not holds at
slot T, and if neither holds(F, T) not -holds(F, T) holds, the fluent F
is unknown at slot T. The initial conditions describe which fluents
hold before the first slot A0 and are marked as external.

#external holds(F, 0) : fluent(F).

#external ‒holds(F, 0) : fluent(F).

2. Required Actions: When replanning, actions which have already
been executed do not need to be re-run. There might be other
practical reasons for not requiring some actions, such as further
reducing the overall execution time for testing only selected
features.

#external need_to_plan(A) : action(A).

3. Failed Actions: Actions for which execution has failed have to be
excluded from the set of available actions when replanning.

#external has_failed(A) : action(A).

4. Goals: During solving, the search horizon is increased
incrementally. As the ground program is reused for solving with
different search horizons, a new goal is added. The old goal is
deactivated by assigning goal_horizon(t) to false.

#subprogram goal(t).

#external goal_horizon(t).

← some_constraint(...), goal_horizon(t).

A. Solving Heuristics
As we do not know the required planning horizon, we guess

a planning horizon before solving. Selecting a horizon which is
too low results in the program being unsatisfiable. In contrast, an
unnecessarily large horizon yields a large ground program, taking
more time to preprocess and solve. Thus, the horizon should approach
the plan length as quickly as possible, without overestimating it.

To balance these two aspects, we solve the planning problem in
two phases: First, the search horizon is increased in exponential steps.
In each step, additional step-subprograms are grounded. The old
goal is deactivated and a new goal-subprogram for the new horizon
hn is added. This is repeated until the resulting ground program is
satisfiable. Then, the minimal plan length is in the range (hlast, hn].

In the second phase, we proceed to find the lowest satisfiable
horizon using binary search. Note that while the goal program is
adjusted for every horizon, no additional step-subprograms are added,
as they have already been ground in the first phase. This procedure is
reminiscent to a parallel plan search algorithm proposed by Rintanen
[10], however, we only solve one horizon at a time.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 62 -

Fig. 2. Example of an incremental solving run.

An example of such an incremental solving run is presented in Fig.
2: After grounding the instance and base subprograms, the initial search
horizon of 10 is increased until the instance is satisfiable at horizon 20.
Then, the shortest plan is found through subsequent binary search.

A further improvement is to adapt the heuristics as follows:

#heuristic apply(A, t) : action(A). [−1, sign]

The addition of this line does not significantly reduce the runtime
of Clingo, but reduces the number of executed actions in a plan.

V. Experimental Results

In the following, we report on experimental results based on a
generated family of four benchmarks2 that have been measured in
a virtualized GNU/Linux environment (Debian stretch) with four
2.2GHz CPU cores (Intel Xeon Silver 4114) and 16GB of main memory.

2 ASP instances of some generated benchmarks are provided on https://
github.com/vroland/smoke-testing-benchmarks.

Version 5.4.1 of the Clingo solver was used in parallel mode 4, split
with Python 3.7.3.

The benchmark families, as described in Fig. 3, have a certain
structure which we believe is realistic and include corner cases:

Tree-Structured: Every action ai depends on a fluent that is made
true by a  . The resulting plans are highly parallel, with plan lengths
of ⌈log2 N⌉ for N actions.

Sequential: Every action ai depends on a fluent that is made true by
ai‒1. The resulting plans are of length N for N actions.

Mixed: This benchmark aims to portray a more realistic test set,
with tree-structured and sequential subsets of random length. Some
of the branches of a tree-structured subset conflict based on their
modifications. Every action ai has a probability of producing a
tree branch or a conflicting branch respectively, by depending on
a  instead of ai‒1. With a probability of , an action ai depends
on its direct predecessor ai‒1, producing a sequential sub-structure.
In sequential subsets, actions invalidate their precondition. As the
benchmark is randomized, repeated runs of this benchmark may not
necessarily yield the same results.

Parallel Chains: Another realistic usage profile consists of running
sequential test procedures in parallel. The benchmark is constructed
by generating n Sequential instances of length m, which depend on a
common init action and are jointly required by a final top action.

Fig. 4 shows that the size of the ground program w.r.t. number of
rules and atoms increases with plan length. For the Tree-Structured
and Mixed benchmarks, the search horizon stays low. Consequently,
only a low number of instances of the transition subprogram have
to be added to make the planning problem satisfiable. In contrast,
the program size of the Sequential benchmark increases quickly. We
observe a significant increase in the number of rules and atoms in
the case that we increase the search horizon in exponential steps
according to the solving heuristic (see Section A).

Fig. 5 presents the time spent in showing satisfiability and
unsatisfiability and the total planning time for our benchmark
families. Our upper bound on the horizon is 1000, consequently
Sequential benchmarks are only conducted up to this size. Starting at

Fig. 3. Dependency structure of the considered benchmark families.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 63 -

approximately 2000 actions, Mixed instances take significantly longer
to solve than Tree-Structured instances. In contrast to the highly parallel
Tree-Structured benchmark with short plan lengths, we observe an
increase in the number of interactive solver calls with Sequential and
Mixed, as the number of actions increases. This is a result of our search
heuristic (see Section A), which incrementally approaches the larger
search horizon needed for longer plans.

In case of the Parallel Chains benchmark, runtimes increase with
both higher chain length m and more parallel chains n. However, as
indicated by the previously discussed benchmark families, our solution
is best suited for highly parallel instances: For the same total number
of actions, instances with high n and small m require significantly less
time to solve than longer, less parallel plans with high m.

Considering differences in run time for a constant n and increasing

m, we notice a non-uniform distribution. This is a result of the
incremental search heuristic: For instance, the difference in runtime
of m = 90 to m = 100 is smaller than the difference of m = 90 to
m = 80. This irregularity occurs because for increasing the horizon
from 80 to 90, an additional grounding and solving step is necessary,
whereas 90 and 100 fall in the same horizon step.

Presumably through memory limitations of our benchmark
hardware resulting in swapping, jitter is introduced for larger
problem sizes.

By comparing total runtime with time spent for solving, we can
observe a difference in almost an order of magnitude. This suggests
that a large portion of the total run time is spent in preprocessing and
grounding.

Fig. 4. Ground program size w.r.t. the number of actions.

Fig. 5. Total run time and time to satisfiability for all benchmark families.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 64 -

Due to the reuse of a single ground program in the entire test
execution, we avoid repeated preprocessing and keep the internal
solver state. This speeds up subsequent replanning as shown in Fig. 6.
The Sequential benchmark exhibits a steep growth of ground program
size with the number of actions, as the latter is equal to the minimal
search horizon. In the first phase of the horizon search, solver calls
spend large parts of the execution time in preprocessing and grounding
rather than solving. The peak at call 22 marks the finishing goal of
the initial plan search. From call 23, the search for a new plan starts
after an initial action has failed. Though solving now takes longer due
to the overall larger ground program size, the total planning time is
reduced, as less preprocessing and grounding time is needed.

Fig. 6. Time spent per solver call for planning and replanning of a sequential
instance with 500 actions.

VI. Conclusion

Smoke testing is an important method to increase the reliability of
hardware-depending systems. Due to concurrent access to the same
physical resource and the infeasibility of the use of virtualization,
smoke testing requires some form of planning. In this paper, we
propose to decompose test cases in terms of atomic actions consisting
of preconditions and effects and developed a declarative framework
that allows to automatically generate complete and incomplete plans
based on ASP. By modeling tests as state transitions of a system-
under-test, our method is capable of generating shortest, parallel test
plans, while offering the flexibility to incorporate additional goals,
constraints and knowledge [13].

Broader use cases can be modeled as variants of smoke testing, with
some adjustments to the planning goals and constraints. For instance,
regression testing can be seen as scaled-up smoke testing, which we
have shown is viable for thousands of tests or more, especially if
planning time is not critical.

Furthermore, functionality can easily be tested piecewise in isolation
to inspect reasons for test failures. By only requiring the execution of
a specific action as our goal and minimize the total number of planned
actions, we obtain a minimal trace of actions to produce a particular
SUT behavior.

Moreover, through the use of parallel plans, we can find issues
which may not occur in sequential or isolated test runs. Such
issues, typically referred to as race conditions or race hazards, arise
from conflicting concurrent use of resources and lead to non-
deterministic test outcomes. When such dependencies of two tests
on the same resource are insufficiently specified but some property
of the execution environment is implicitly assumed, we call this a
hidden assumption. Finding race conditions and hidden assumptions
can be time-consuming, but can be automated to some degree by our

solution: Running a large number of structurally diverse plans [14]
can provide insight on sequences of actions which cause the system to
fail, by recording failing plans and looking for similarities.

Experiments show that generating short and highly parallel plans
can be efficiently done using ASP. We believe that domains like
networking tests or tests of distributed systems allow for such plans.

Inherently sequential test procedures prove adverse to our solution
and may be better addressed by existing planning tools. These occur
in domains where all actions operate on a common resource, forcing
mutual exclusion, like testing workflows in a graphical user interface.

The AI planning problem is used in different contexts in the
area of testing: [15] uses PDDL to find well-known security issues
in web applications, [16] considers test case generation, [17] uses
contingent planning in the area of penetration testing, [18] proposes
to test chatbots using planning, [19] considers test case generation
for systems, and [20] considers hierarchical GUI test case generation
using planning methods. In the domain of software testing, to the best
of our knowledge, test execution planning has not been modeled in
the sense of an AI planning problem. However, work has been done on
obtaining test specification, like Behavior-Driven Development (BDD)
[21], [22] or Model-Driven Testing. At a first glance, actions may seem
reminiscent of given-when-then-style scenarios in Behavior-Driven
Development (BDD) [21], [22]. However, while BDD is concerned with
how tests are specified in natural language, this work focuses on fast
test execution. Moreover, while BDD scenarios may cover multiple
layers of abstraction, actions should remain relatively low-level.
Conceptually, a BDD test is more akin to an abstract view of a subset of
a plan than to an action. However, synergies could emerge when using
the BDD process in conjunction with planning-based test execution.

Solving planning problems based on the propositional satisfi-
ability solvers instead of specialized planners has been explored since
the 1990s [10], [23], exploiting the flexibility of general-purpose SAT
solvers. Similarly, Answer Set Programming has successfully been
used to implement classical [24] as well as real-world planning such
as tasks robotics [25], [26]. Accord-ing to [27], ASP-based planners
perform especially well for short plans with complex dependencies.

We compare our approach to modeling uncertainty as in conformant
planning [2], [11] in Section C, and also point out the related idea of
oversubscription planning [3] when it comes to achieving as many
actions as possible. Though, in contrast to oversubscription approaches
as e.g. in [3], we do not impose cost-estimates on actions such that a
global constraint on the total cost is satisfied (e.g. for resources such
as time, or power consumption), but merely achieve the maximum
number of actions. However, such an extension could be achieved by
extending actions with temporal information, such as an estimated
duration, where time then can be encoded as a limited resource. For
instance, temporal constraints such as a maximal run time or required
parallelism could be added. Going further, the notion of a shortest
plan could now be redefined as a temporal (cf. [28] for an overview).
However, how this affects planning performance and which temporal
extensions prove to be of use in practice, remains an open question.

In the future, we plan to investigate the test specification debugging
problem, i.e. the questions, why a test specification does not admit
a complete test plan and the possibilities to generate substantially
different test plans.

Acknowledgment

We are grateful for the valuable feedback and additional references
from the anonymous reviewers, which helped greatly to improve this
work.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 65 -

References

[1] G. D. Everett, R. McLeod Jr, Software testing: testing across the entire
software development life cycle. Piscataway, NJ, Hoboken, N.J: John Wiley
& Sons, 2007.

[2] H. Palacios, H. Geffner, “Compiling uncertainty away in conformant
planning problems with bounded width,” Journal of Artificial Intelligence
Research, vol. 35, pp. 623–675, 2009, doi: 10.1613/jair.2708.

[3] D. E. Smith, “Choosing Objectives in Over-Subscription Planning,” in
Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British
Columbia, Canada, 2004, pp. 393–401, AAAI.

[4] G. Brewka, T. Eiter, M. Truszczynski, “Answer set program-ming at a
glance,” Communications of the ACM, vol. 54, no. 12, pp. 92–103, 2011, doi:
10.1145/2043174.2043195.

[5] I. Niemelä, “Logic programs with stable model semantics as a constraint
programming paradigm,” Annals of Mathematics and Artificial Intelligence,
vol. 25, no. 3-4, pp. 241–273, 1999, doi: 10.1023/A:1018930122475.

[6] M. Gelfond, V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New Generation Computing, vol. 9, no. 3/4, pp.
365–386, 1991, doi: 10.1007/BF03037169.

[7] T. Janhunen, I. Niemelä, “The answer set programming paradigm,” AI
Magazine, vol. 37, no. 3, pp. 13–24, 2016.

[8] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, “Answer Set Solving in
Practice,” Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 6, pp. 1–238, 2012, doi: 10.2200/S00457ED1V01Y201211AIM019.

[9] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, “Clingo = ASP + control:
Preliminary report,” CoRR, vol. abs/1405.3694, 2014.

[10] J. Rintanen, K. Heljanko, I. Niemelä, “Planning as satisfia-bility: parallel
plans and algorithms for plan search,” Artificial Intelligence, vol. 170, no.
12-13, pp. 1031–1080, 2006, doi: 10.1016/j.artint.2006.08.002.

[11] A. Cimatti, M. Roveri, P. Bertoli, “Conformant planning via symbolic
model checking and heuristic search,” Artificial Intelligence, vol. 159, no.
1-2, pp. 127–206, 2004, doi: 10.1016/j.artint.2004.05.003.

[12] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, S. Thiele,
“Engineering an incremental ASP solver,” in Logic Programming, 24th
International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings, vol. 5366 of Lecture Notes in Computer Science, 2008, pp.
190–205, Springer.

[13] T. C. Son, C. Baral, T. H. Nam, S. A. McIlraith, “Domain-dependent
knowledge in answer set planning,” ACM Transactions on Computational
Logic, vol. 7, no. 4, pp. 613–657, 2006, doi: 10.1145/1183278.1183279.

[14] T. Eiter, E. Erdem, H. Erdogan, M. Fink, “Finding similar/-diverse solutions
in answer set programming,” Theory and Practice of Logic Programming,
vol. 13, no. 3, pp. 303–359, 2013, doi: 10.1017/S1471068411000548.

[15] F. Wotawa, J. Bozic, “Plan it! automated security testing based on
planning,” in Proceedings of Testing Software and Systems - International
Conference, ICTSS 2014, Madrid, Spain, September 23-25, 2014., vol. 8763 of
Lecture Notes in Computer Science, 2014, pp. 48–62, Springer.

[16] A. E. Howe, A. von Mayrhauser, R. T. Mraz, “Test case generation as an
AI planning problem,” Automated Software Engineering, vol. 4, no. 1, pp.
77–106, 1997, doi: 10.1023/A:1008607721339.

[17] D. Shmaryahu, G. Shani, J. Hoffmann, M. Steinmetz, “Simulated
penetration testing as contingent planning,” in Proceedings of the Twenty-
Eighth International Conference on Automated Planning and Scheduling,
ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, 2018, pp. 241–249,
AAAI Press.

[18] J. Bozic, O. A. Tazl, F. Wotawa, “Chatbot testing using AI planning,” in
Proceedings of International Conference On Artificial Intelligence Testing
IEEE, AITest 2019, Newark, CA, USA, April 4-9, 2019, 2019, pp. 37–44, IEEE.

[19] R. T. Mraz, A. E. Howe, A. von Mayrhauser, L. Li, “System testing with an
AI planner,” in Proceedings of Sixth International Symposium on Software
Reliability Engineering, ISSRE 1995, Toulouse, France, October 24-27, 1995,
1995, pp. 96–105, IEEE Computer Society.

[20] A. M. Memon, M. E. Pollack, M. L. Soffa, “Hierarchical GUI test case
generation using automated planning,” IEEE Trans-actions of Software
Engineering, vol. 27, no. 2, pp. 144–155, 2001, doi: 10.1109/32.908959.

[21] M. Diepenbeck, U. Kühne, M. Soeken, R. Drechsler, “Be-haviour driven
development for tests and verification,” in Proceedings of Tests and Proofs
- 8th International Conference, TAP@STAF 2014, York, UK, July 24-25, 2014,

vol. 8570 of Lecture Notes in Computer Science, 2014, pp. 61–77, Springer.
[22] SmartBear Software, “Cucumber,” 2019. [Online]. Available: https://

cucumber.io/, Accessed: 2020-01-11.
[23] H. A. Kautz, B. Selman, “Planning as satisfiability,” in 10th European

Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7,
1992. Proceedings, 1992, pp. 359–363, John Wiley and Sons.

[24] M. Gebser, R. Kaufmann, T. Schaub, “Gearing up for effective ASP
planning,” in Correct Reasoning - Essays on Logic-Based AI in Honour of
Vladimir Lifschitz, vol. 7265 of Lecture Notes in Computer Science, 2012,
pp. 296–310, Springer.

[25] S. Zhang, M. Sridharan, F. S. Bao, “ASP+POMDP: integrating non-
monotonic logic programming and probabilistic plan-ning on robots,”
in Proceedings of IEEE International Confer-ence on Development and
Learning and Epigenetic Robotics, ICDL-EPIROB 2012, San Diego, CA, USA,
November 7-9, 2012, 2012, pp. 1–7, IEEE.

[26] J. J. Portillo, C. L. Garcí a-Mata, P. R. Márquez-Gutiérrez, R. B a r a y -
Arana, “Robot platform motion planning using answer set programming,”
in Proceedings of the Seventh Latin American Workshop on Non-Monotonic
Reasoning, LANMR 2011, Toluca, Estado de México, México, November 7-8,
2011, vol. 804 of CEUR Workshop Proceedings, 2011, pp. 35–44, CEUR-WS.
org.

[27] Y. Jiang, S. Zhang, P. Khandelwal, P. Stone, “Task planning in robotics:
an empirical comparison of PDDL- and asp-based systems,” Frontiers of
Information Technology & Electronic Engineering, vol. 20, no. 3, pp. 363–
373, 2019, doi: 10.1631/FITEE.1800514.

[28] L. Vila, “A survey on temporal reasoning in artificial intelligence,” AI
Communications, vol. 7, no. 1, pp. 4–28, 1994, doi: 10.3233/AIC-1994-7102.

Tobias Philipp

Tobias Philipp is a full-time senior consul-tant and
verification expert in the Development and Verification
Team, Defence & Space Division, secunet Security
Networks AG, Germany. His research interests include
formal verification, logic-based Artificial Intelligence,
planning, constraints, and knowledge representation and
reason ing. Until 2017, he was a scientifc staff member

of the International Center of Computational Logic (ICCL) at Technische
Universität Dresden. In 2013, he graduated of the International Master’s
Program in Computational Logic, Technische Universität Dresden, Germany.

Valentin Roland

alentin Roland is a final year Diploma student at the Faculty
of Computer Science, Technische Universität Dresden,
Germany. Since 2018, he works as a student assistant in
the Development and Verification Team, Defence & Space
Division, secunet Security Networks AG. He is interested in
formal methods and verification, knowledge representation
and reasoning and declarative problem solving. This

includes academic research as well as industrial applications thereof.

Lukas Schweizer

Lukas Schweizer is a research assistant in the Computational
Logic Group at Technische Universität Dresden, Germany.
He is also working as a research engineer at Deepreason.
ai, a spin-off from the University of Oxford, developing the
next generation of Datalog engines and knowledge graph
systems. His interests are knowledge representation and
reasoning in general, in particular rule based approaches

and answer-set programming.

