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Abstract. This paper presents some new results concerning the descriptional complexity of partially
parallel grammars. Specifically, it proves that every recursively enumerable language is generated
(i) by a four-nonterminal scattered context grammar with no more than four non-context-free pro-
ductions, (ii) by a two-nonterminal multisequential grammar with no more than two selectors, or
(iii) by a three-nonterminal multicontinuous grammar with no more than two selectors.
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1. Introduction

The descriptional complexity of formal grammars, which studies how to describe grammars in a reduced
and succinct way, has always represented an important investigation area of formal language theory.
As a central topic, this investigation of the descriptional complexity studies how to reduce the number
of grammatical components, such as the number of nonterminals or productions, to obtain the most
economical description of languages generated by the given type of grammars. Consult [5, 6] for the
results concerning the descriptional complexity of context-free grammars and languages with respect to
the number of nonterminals, and [8] and the citations therein for an overview of results concerning the
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descriptional complexity of partially parallel grammars and grammars regulated by context conditions
with respect to both the number of nonterminals and the number of non-context-free productions (or
selectors). Useful information can also be found in the proceedings of the international workshop series
Descriptional Complexity of Formal Systems, which is held annually (see [3] for its latest edition).

This paper concentrates its investigation on reducing of partially parallel grammars with respect to
the number of nonterminals and non-context-free productions. It studies how to achieve this reduction
without any modification of their generative power, which coincides with the power of Turing machines.
By achieving this reduction, it actually makes the partially parallel rewriting more succinct and eco-
nomical, and this economization is obviously highly appreciated both from a practical and theoretical
standpoint. More specifically, two types of partially parallel context-free grammars are central to this
paper—scattered context grammars (see [4]) and multirewriting grammars (see [7]). Scattered context
grammars are based on sequences of context-free productions, by which these grammars simultaneously
rewrite several nonterminals during a derivation step. Multirewriting grammars are underlaid by gram-
mars that use context-free-like productions that have a terminal or a nonterminal on their left-hand sides.
By using extremely simple regular languages, called selectors, they specify sequences of symbols that are
rewritten during a derivation step and, in addition, place some slight restrictions on the context appearing
between the rewritten symbols. Otherwise, they work by analogy with context-free grammars.

Let us note that we disallow pseudoterminals—that is, terminals that do not appear in the generated
languages—in any of the grammars under investigation because their existence would significantly sim-
plify the achievement of most results. Specifically, we could obtain the results concerning multirewriting
grammars by using selectors in a trivial way as follows from their definition given in Section 2.

It is well-known that every recursively enumerable language is generated by a three-nonterminal scat-
tered context grammar with an unlimited number of non-context-free productions (see [11]), by a five-
nonterminal scattered context grammar with no more than two non-context-free productions (see [14]),
by a six-nonterminal multisequential grammar (see [9]), or by a six-nonterminal multicontinuous gram-
mar (see [10]). An overview of the previous results can also be found in [12].

This paper presents several new results concerning the descriptional complexity of partially paral-
lel grammars. Specifically, it proves that every recursively enumerable language is generated (i) by a
four-nonterminal scattered context grammar with no more than four non-context-free productions, (ii)
by a two-nonterminal multisequential grammar with no more than two selectors, or (iii) by a three-
nonterminal multicontinuous grammar with no more than two selectors. Result (i) improves the previous
result with respect to the number of nonterminals keeping the number of non-context-free productions
limited; on the other hand, it increases the number of non-context-free productions. Finally, results (ii)
and (iii) improve the previous results with respect to the number of both nonterminals and non-context-
free productions.

2. Preliminaries

We assume that the reader is familiar with formal language theory (see [1, 13]). For an alphabet (finite
nonempty set) V , V ∗ represents the free monoid generated by V . The unit of V ∗ is denoted by ε. Set
V + = V ∗ − {ε}. For w ∈ V ∗, |w| and wR denote the length and the mirror image of w, respectively.
Let w ∈ V ∗. Then, alph(w) = {a ∈ V : a appears in w} and for L ⊆ V ∗, alph(L) =

⋃
w∈L alph(w).
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A scattered context grammar is a quadruple G = (N,T, P, S), where N is a nonterminal alphabet,
T is a terminal alphabet such that N ∩ T = ∅, V = N ∪ T , S ∈ N is the start symbol, and P is a finite
set of productions such that each production p has the form (A1, A2, . . . , An) → (x1, x2, . . . , xn), for
some n ≥ 1, where Ai ∈ N and xi ∈ V ∗, for i = 1, . . . , n. Set π(p) = n. If π(p) ≥ 2, then p is said to
be a non-context-free production. If π(p) = 1, then p is said to be context-free. For u, v ∈ V ∗, u ⇒ v
provided that

1. u = u1A1u2A2u3 . . . unAnun+1,

2. v = u1x1u2x2u3 . . . unxnun+1, and

3. (A1, A2, . . . , An)→ (x1, x2, . . . , xn) ∈ P ,

where ui ∈ (N ∪ T )∗, for i = 1, . . . , n. The language of G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w},
where⇒∗ denotes the reflexive and transitive closure of⇒.

A multisequential grammar is a quintuple G = (N,T, P, S,K), where N is a nonterminal alphabet,
T is a terminal alphabet such that N ∩T = ∅, V = N ∪T , S ∈ N is the start symbol, P is a finite set of
productions of the form a→ x, where a ∈ V and x ∈ V ∗, and K is a finite set of selectors of the form

X1act(Y1)X2 . . . Xnact(Yn)Xn+1 ,

where n is a positive integer,

1. Xi ∈ {Z∗ : Z ⊆ V }, for i = 1, . . . , n+ 1, and

2. Yj ∈ {Z : Z ⊆ V, Z 6= ∅}, for j = 1, . . . , n.

For u, v ∈ V ∗, u⇒ v provided that

1. u = u1a1u2a2u3 . . . unanun+1,

2. v = u1x1u2x2u3 . . . unxnun+1, and

3. K contains a selector X1act(Y1)X2 . . . Xnact(Yn)Xn+1 such that

(a) ui ∈ Xi, for i = 1, . . . , n+ 1,

(b) aj ∈ Yj and aj → xj ∈ P , for j = 1, . . . , n.

The language of G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ denotes the reflexive and
transitive closure of⇒.

A multicontinuous grammar is a quintuple G = (N,T, P, S,K), where N , T , P , and S have the
same meaning as in a multisequential grammar, V = N ∪T , and K is a finite set of selectors of the form

X1act(Y1)X2 . . . Xnact(Yn)Xn+1 ,

where n is a positive integer,

1. Xi ∈ {Z∗ : Z ⊆ V }, for i = 1, . . . , n+ 1, and

2. Yj ∈ {Z+ : Z ⊆ V, Z 6= ∅}, for j = 1, . . . , n.
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For every v ∈ V +, where v = a1a2 . . . a|v| with ai ∈ V , for i = 1, . . . , |v|, define the language
ContRewriting(v) ⊆ V ∗ by this equivalence: for every z ∈ V ∗, z ∈ ContRewriting(v) if and only
if ai → xi ∈ P , for i = 1, . . . , |v|, and z = x1x2 . . . x|v|. For u, v ∈ V ∗, u⇒ v provided that

1. u = u1y1u2y2u3 . . . unynun+1,

2. v = u1z1u2z2u3 . . . unznun+1, and

3. K contains a selector X1act(Y1)X2 . . . Xnact(Yn)Xn+1 such that

(a) ui ∈ Xi, for i = 1, . . . , n+ 1,

(b) yj ∈ Yj and zj ∈ ContRewriting(yj), for j = 1, . . . , n.

As usual, the language of G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where⇒∗ denotes the reflexive
and transitive closure of⇒.

3. Main Results

This section presents the main results concerning the descriptional complexity of scattered context gram-
mars, multisequential grammars, and multicontinuous grammars.

3.1. Scattered Context Grammars

Recall that every recursively enumerable language is generated by a grammar, G1, in the first Geffert
normal form, where

G1 = ({S,A,B,C,D}, T, P ∪ {AB → ε, CD → ε}, S) ,

and P contains only context-free productions (see [2]). Moreover, the context-free productions are of the
form

S → zSa,
S → uSv,
S → uv,

where z, u ∈ {A,C}∗, v ∈ {B,D}∗, and a ∈ T . In addition, any terminal derivation in G1 is of
the form S ⇒∗ w1w2w by productions from P , where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, w ∈ T ∗, and
w1w2w ⇒∗ w by AB → ε and CD → ε.

Theorem 3.1. Every recursively enumerable language is generated by a scattered context grammar con-
taining four nonterminals and four non-context-free productions.

Proof:
Let L be a recursively enumerable language. Then, there is a grammar G1 = ({S′, A,B,C,D}, T, P ′ ∪
{AB → ε, CD → ε}, S′) in the first Geffert normal form such that L(G1) = L. Define the homo-
morphism h : {A,B,C,D}∗ → {0, 1}∗ so that h(A) = h(B) = 00, h(C) = 10, and h(D) = 01.
Set N = {S, 0, 1, $}. Define the scattered context grammar G = (N,T, P, S) with P constructed as
follows:
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1. (S)→ (h(z)S1a1), where S′ → zS′a ∈ P ′;

2. (S)→ (h(u)Sh(v)), where S′ → uS′v ∈ P ′;

3. (S)→ (11S);

4. (S)→ (h(u)$$h(v)), where S′ → uv ∈ P ′;

5. ($)→ (ε);

6. (0, 0, $, $, 0, 0)→ ($, ε, ε, ε, ε, $);

7. (1, 0, $, $, 0, 1)→ ($, ε, ε, ε, ε, $);

8. (1, 1, $, $, 1, 1)→ (11$, ε, ε, ε, ε, $);

9. (1, 1, $, $, 1, 1)→ (ε, ε, ε, ε, ε, ε).

To give an insight into the proof, consider a derivation of G1 that generates a nonempty string. Then,
G simulates the derivation of G1 so that it starts with one application of production 3 and if S′ → zS′a,
S′ → uS′v, or S′ → uv is used in G1, the corresponding production is used in G, see productions 1, 2,
or 4, respectively. In addition, A, B, C, and D are encoded by strings of 0s and 1s of length two. If G1

uses AB → ε or CD → ε, then G uses production 6 or 7, respectively. After removing all the symbols
A, B, C, and D, G1 finishes. At this moment, G starts to remove the symbols 1 that enclose terminal
symbols. This is done by production 8, and the derivation finishes by production 9. If the derivation
generates an empty string, the applications of productions 3 and 8 are omitted, and production 5 is used
instead of production 9. The following formal proof demonstrates that this is the only way G derives
terminal strings.

Consider a derivation of the form

S′ ⇒∗ αβa1a2 . . . an ⇒∗ a1a2 . . . an ,

where α ∈ {A,C}∗, β ∈ {B,D}∗, ai ∈ T , for i = 1, . . . , n, and neither AB → ε nor CD → ε has
been used in S′ ⇒∗ αβa1a2 . . . an. Moreover, only productions AB → ε or CD → ε have been used
in αβa1a2 . . . an ⇒∗ a1a2 . . . an. If a1a2 . . . an 6= ε, then G can derive

S ⇒∗ 11h(α)$$h(β)1a111a21 . . . 1an1

and, by productions constructed in 6 and 7, eliminate h(αβ). Thus,

S ⇒∗ 11$$1a111a21 . . . 1an1.

By productions constructed in 8 and 9, G eliminates all nonterminals 1 and $. If a1a2 . . . an = ε, then G
can derive S ⇒∗ h(α)$$h(β); then, by productions constructed in 6 and 7, G eliminates h(αβ). Thus,
S ⇒∗ $$ in G. By the production constructed in 5, G eliminates both nonterminals $. Therefore,

S′ ⇒∗ a1a2 . . . an implies S ⇒∗ a1a2 . . . an.

On the other hand, let
S ⇒∗ α$$β ⇒∗ a1a2 . . . an
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be a derivation, where α ∈ {00, 01, 11}∗, β ∈ ({00, 01} ∪ {1}T{1})∗, ai ∈ T , for i = 1, . . . , n, and
none of the non-context-free productions has been used in S ⇒∗ α$$β.

Notice that if a nonterminal occurs between the first $ and the second $, then the nonterminal cannot
be removed, so the derivation cannot generate a word of terminals.

If a1a2 . . . an = ε, then β ∈ {00, 01}∗, β does not contain 11 as a substring. Therefore, productions
constructed in 8 and 9 cannot be used in the derivation. Thus, neither can production 3 be used, so α
does not contain 11 as a substring. As the other productions simulate the productions from G1, S′ ⇒∗ ε
in G1.

If a1a2 . . . an 6= ε, then β = β11a11β2, where β1 ∈ {00, 01}∗ and β2 ∈ ({00, 01} ∪ {1}T{1})∗.
After deleting β1 by productions constructed in 6 and 7, the production constructed in 8 or 9 has to be
used. Therefore, α = α211α1, where α1 = βR

1 and α2 ∈ {0, 1}∗. Thus,

S ⇒∗ α$$β ⇒∗ α211$$1a11β2.

We prove that α2 = ε and β2 ∈ ({1}T{1})∗ (by induction on |β2| ≥ 0). At this point, the only
productions that can be used are productions constructed in 8 and 9. By using the production constructed
in 9, G makes

S ⇒∗ α$$β ⇒∗ α211$$1a11β2 ⇒ α2a1β2.

Therefore, α2a1β2 ∈ T ∗ if and only if α2 = β2 = ε. By using the production constructed in 8, G makes

S ⇒∗ α$$β ⇒∗ α211$$1a11β2 ⇒ α211$a1$β2.

Therefore, if β2 = 00β′2, the prefix 00 can be removed only by the production constructed in 6. However,
after using this production, the substring 11 attached to $$ appears between the two $s, so it cannot be
removed after that. The same is true for β2 = 01β′′2 . Thus, β2 = 1a21β3. Then, by induction,

S ⇒∗ α$$β = 11γR$$γ1a111a21 . . . 1an1

where γ ∈ {00, 01}∗. Since h(A) = h(B) = 00, h(C) = 10, and h(D) = 01, we get S′ ⇒∗
δ1δ2a1a2 . . . an ⇒∗ a1a2 . . . an, where δ1 ∈ {A,C}∗, δ2 ∈ {B,D}∗, h(δ1) = γR, and h(δ2) = γ. ut

Notice that Theorem 3.1 is strongly related to Theorem 1 in [14] that demonstrates that every recur-
sively enumerable language can be generated by a scattered context grammar containing five nontermi-
nals and two non-context-free productions.

3.2. Multisequential Grammars

Recall that every recursively enumerable language is generated by a grammar, G2, in the second Geffert
normal form, where

G2 = ({S,A,B}, T, P ∪ {ABBBA→ ε}, S) ,

and P contains only context-free productions (see [2]). Moreover, the context-free productions are of the
form

S → zSa,
S → uSv,
S → uv,
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where z, u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗, and a ∈ T . In addition, any terminal derivation in G2

is of the form S ⇒∗ w1w2w by productions from P , where w1 ∈ {AB,ABB}∗, w2 ∈ {BA,BBA}∗,
w ∈ T ∗, and w1w2w ⇒∗ w by ABBBA→ ε.

As there is no more than one substring of the form ABBBA in any sentential form of G2, the
multisequential grammar can activate exactly these symbols.

Lemma 3.1. Every recursively enumerable language is generated by a multisequential grammar con-
taining three nonterminals and two selectors.

Proof:
Let L be a recursively enumerable language and let G2 = ({S,A,B}, T, P ∪ {ABBBA→ ε}, S) be a
grammar in the second Geffert normal form such that L(G2) = L. Define the multisequential grammar
G = ({S,A,B}, T, P ∪ {A→ ε, B → ε}, S,K) with K containing these two selectors:

1. {A,B}∗act(S)({A,B} ∪ T )∗,

2. {A,B}∗act(A)act(B)act(B)act(B)act(A)({A,B} ∪ T )∗.

Observe that L(G) = L(G2). ut

Moreover, as T is an alphabet, i.e. a nonempty set, there is a terminal symbol in T . Let a ∈ T be
such a symbol. Then, either of symbols A and B can be encoded by symbols A and a.

Theorem 3.2. Every recursively enumerable language is generated by a multisequential grammar con-
taining two nonterminals and two selectors.

Proof:
Consider the multisequential grammar G constructed in the proof of Lemma 3.1. Let a ∈ T be a
terminal symbol and define the homomorphism h : ({S,A,B} ∪ T )∗ → ({S,A} ∪ T )∗ as h(b) = b,
for b ∈ T , h(S) = S, h(A) = aAa, and h(B) = aAAa. Define the multisequential grammar G′ =
({S,A}, T, {S → h(α) : S → α ∈ P}∪{A→ ε, a→ ε}, S,K) withK containing these two selectors:

1. {A, a}∗act(S)({A} ∪ T )∗,

2. {A, a}∗act(a)act(A)act(a)act(a)act(A)act(A)act(a)
act(a)act(A)act(A)act(a)act(a)act(A)act(A)act(a)
act(a)act(A)act(a)({A} ∪ T )∗.

Observe that S → α is a production inG if and only if S → h(α) is a production inG′. If uABBBAv ⇒
uv in G, where u ∈ {A,B}∗ and v ∈ {A,B}∗T ∗, then h(u)aAaaAAaaAAaaAAaaAah(v)⇒ h(uv)
in G′ (by selector 2), and vice versa. Hence, the theorem holds. ut

3.3. Multicontinuous Grammars

Analogously as in the previous section, we prove the following result.

Theorem 3.3. Every recursively enumerable language is generated by a multicontinuous grammar con-
taining three nonterminals and two selectors.
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Proof:
Let L be a recursively enumerable language and let G2 = ({S,A,B}, T, P ∪ {ABBBA→ ε}, S) be a
grammar in the second Geffert normal form such that L(G2) = L. Let b ∈ T be a terminal symbol and
define the homomorphism h : ({S,A,B}∪T )∗ → ({S,X, Y }∪T )∗ as h(a) = a, for a ∈ T , h(S) = S,
h(A) = XY , and h(B) = XbY . Define the multicontinuous grammar G = ({S,X, Y }, T, {S →
h(α) : S → α ∈ P} ∪ {X → ε, Y → ε, b→ ε}, S,K) with K containing these two selectors:

1. {X,Y, b}∗act(S+)({X,Y } ∪ T )∗,

2. {X,Y, b}∗act(X+)act(Y +)act(X+)act(b+)act(Y +)
act(X+)act(b+)act(Y +)act(X+)act(b+)act(Y +)
act(X+)act(Y +)({X,Y } ∪ T )∗.

At the beginning of any derivation, only selector 1 is applicable. After eliminating S, the other se-
lector is applicable. Moreover, as there is no more than one substring of the form h(ABBBA) =
XYXbY XbY XbY XY in each derivation (see [2]), selector 2 is applicable only on no more than one
substring. As there is no occurrence of substrings XX or Y Y in any derivation, this theorem holds. ut
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