

COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

Sergei Obiedkov Knowledge-Based Systems

TU Dresden, 28 Oct 2025

World recent versions of mins slide deck might be available. For the most current version of this course, see https://iccl.inf.tu-dresden.de/web/Complexity_Theory/

Polynomial-Time Reductions

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 2 of 35

Polynomial-Time Reductions

As for decidability we can use reductions to show membership in PTime.

Definition 6.1: A language $\mathbf{L_1} \subseteq \Sigma^*$ is polynomially many-one reducible to $\mathbf{L_2} \subseteq \Sigma^*$, denoted $\mathbf{L_1} \leq_p \mathbf{L_2}$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$ $w \in \mathbf{L_1}$ if and only if $f(w) \in \mathbf{L_2}$.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 3 of 35

Polynomial-Time Reductions

As for decidability we can use reductions to show membership in PTime.

Definition 6.1: A language $\mathbf{L_1} \subseteq \Sigma^*$ is polynomially many-one reducible to $\mathbf{L_2} \subseteq \Sigma^*$, denoted $\mathbf{L_1} \leq_p \mathbf{L_2}$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

 $w \in \mathbf{L_1}$ if and only if $f(w) \in \mathbf{L_2}$.

Theorem 6.2: If $L_1 \leq_p L_2$ and $L_2 \in PTime$ then $L_1 \in PTime$.

Proof: The sum and composition of polynomials is a polynomial.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 3 of 35

Example: Colourability

Definition 6.3 (Vertex Colouring): A vertex colouring of G with k colours is a function

$$c: V(G) \longrightarrow \{1, \ldots, k\}$$

such that adjacent nodes have different colours, that is:

$$\{u, v\} \in E(G) \text{ implies } c(u) \neq c(v)$$

k-Colouring

Input: Graph $G, k \in \mathbb{N}$

Problem: Does G have a vertex colouring

with k colours?

For k=2 this is the same as **BIPARTITE**.

Theorem 6.4: 2-Colourability $\leq_p 2$ -Sat, and therefore 2-Colourability $\in P$.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 5 of 35

Theorem 6.4: 2-Colourability $\leq_p 2$ -Sat, and therefore 2-Colourability $\in P$.

Proof: We define a reduction as follows: Given graph G

- For each vertex $v \in V(G)$ of the graph introduce new variable X_v
- For each $\{u, v\} \in E(G)$ add clauses $(X_u \vee X_v)$ and $(\neg X_u \vee \neg X_v)$

This is obviously computable in polynomial time.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 5 of 35

Theorem 6.4: 2-Colourability $\leq_p 2$ -Sat, and therefore 2-Colourability $\in P$.

Proof: We define a reduction as follows: Given graph *G*

- For each vertex $v \in V(G)$ of the graph introduce new variable X_v
- For each $\{u, v\} \in E(G)$ add clauses $(X_u \vee X_v)$ and $(\neg X_u \vee \neg X_v)$

This is obviously computable in polynomial time.

We check that it is a reduction:

- If G is 2-colourable, use colouring to assign truth values.
 (One colour is true, the other false)
- If the formula is satisfiable, the truth assignment defines valid 2-colouring.
 For every edge {*u*, *v*} ∈ *E*(*G*), one variable *X_u*, *X_v* is set to true, the other to false.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 5 of 35

Reductions in PTime

All non-trivial members of PTime can be reduced to each other:

Theorem 6.5: If **B** is any language in P, **B** $\neq \emptyset$, and **B** $\neq \Sigma^*$, then **A** \leq_p **B** for any **A** \in P.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 6 of 35

Reductions in PTime

All non-trivial members of PTime can be reduced to each other:

Theorem 6.5: If **B** is any language in P, **B** $\neq \emptyset$, and **B** $\neq \Sigma^*$, then **A** \leq_p **B** for any **A** \in P.

Proof: Choose $w \in \mathbf{B}$ and $w' \notin \mathbf{B}$.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 6 of 35

Reductions in PTime

All non-trivial members of PTime can be reduced to each other:

Theorem 6.5: If **B** is any language in P, **B** $\neq \emptyset$, and **B** $\neq \Sigma^*$, then **A** \leq_p **B** for any **A** \in P.

Proof: Choose $w \in \mathbf{B}$ and $w' \notin \mathbf{B}$.

Define the function f by setting

$$f(x) := \begin{cases} w & \text{if } x \in \mathbf{A} \\ w' & \text{if } x \notin \mathbf{A} \end{cases}$$

Since $\mathbf{A} \in \mathsf{P}$, this function f is computable in polynomial time, and it is a reduction from \mathbf{A} to \mathbf{B} .

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 6 of 35

Theorem 6.6: 2-Colourability $\leq_p 2$ -Sat.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 7 of 35

Theorem 6.6: 2-Colourability $\leq_p 2$ -Sat.

Proof: 2-Colourability is the same as **Bipartite**. Hence, 2-Colourability \in P and 2-Colourability \leq_p 2-Sat by Theorem 6.5.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 7 of 35

Theorem 6.6: 2-Colourability $\leq_p 2$ -Sat.

Proof: 2-Colourability is the same as **Bipartite**. Hence, 2-Colourability \in P and 2-Colourability $\leq_p 2$ -Sat by Theorem 6.5.

In more detail: Define the function f by setting

$$f(G) := \left\{ \begin{array}{ll} X \vee Y & \text{ if } G \text{ is bipartite} \\ \\ X \wedge \neg X & \text{ if } G \text{ is not bipartite} \end{array} \right.$$

Since **Bipartite** \in P, this function f is computable in polynomial time, and it is a reduction from 2-COLOURABILITY to 2-SAT.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 7 of 35

Trivially Tractable Problems

A large class of languages is generally tractable:

Theorem 6.7: If L is a finite language, then it is decided by an O(1)-time bounded TM. In other words, all finite languages are decidable in constant time (and hence also in polynomial time).

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 8 of 35

Trivially Tractable Problems

A large class of languages is generally tractable:

Theorem 6.7: If **L** is a finite language, then it is decided by an O(1)-time bounded TM. In other words, all finite languages are decidable in constant time (and hence also in polynomial time).

Proof:

- As **L** is finite, there is a maximum length *m* of words in **L**.
- Read the input up to the first *m* letters.
- The state space contains a table containing the correct result for all such inputs.

• All other inputs are rejected.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 8 of 35

Trivially Tractable Problems

A large class of languages is generally tractable:

Theorem 6.7: If **L** is a finite language, then it is decided by an O(1)-time bounded TM. In other words, all finite languages are decidable in constant time (and hence also in polynomial time).

Proof:

- As **L** is finite, there is a maximum length *m* of words in **L**.
- Read the input up to the first *m* letters.
- The state space contains a table containing the correct result for all such inputs.

• All other inputs are rejected.

Example 6.8: The following problem is solvable in constant time:

Given a position on a standard 8×8 chessboard, decide if the White has a winning strategy.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 8 of 35

A Note on Constructiveness

The next result is an example of a theorem that proves the existence of a P algorithm in cases where we do not know what this algorithm is.

Example 6.9: Let **L** be the language that contains all correct sentences from the following set:

{"P is the same as NP", "P is not the same as NP"}

Then **L** is decidable in constant time.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 9 of 35

A Note on Constructiveness

The next result is an example of a theorem that proves the existence of a P algorithm in cases where we do not know what this algorithm is.

Example 6.9: Let **L** be the language that contains all correct sentences from the following set:

{"P is the same as NP", "P is not the same as NP"}

Then L is decidable in constant time.

However, we don't know which constant-time algorithm decides it.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 9 of 35

A Note on Constructiveness

The next result is an example of a theorem that proves the existence of a P algorithm in cases where we do not know what this algorithm is.

Example 6.9: Let **L** be the language that contains all correct sentences from the following set:

{"P is the same as NP", "P is not the same as NP"}

Then **L** is decidable in constant time.

However, we don't know which constant-time algorithm decides it.

Non-constructiveness:

- We can prove that there is a correct polynomial time algorithm.
- We cannot construct such an algorithm.

Such solutions are called non-constructive.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 9 of 35

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 10 of 35

Beyond PTime

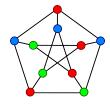
- We have seen that the class PTime provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand ...

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 11 of 35

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.

p	q	r	$p \rightarrow q$
f	f	f	W
f	w	f	w
W	f	f	f
W	w	f	W
f	f	w	W
f	w	w	W
W	f	w	f
W	w	w	w



5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3

- Satisfiability a satisfying assignment
- *k*-Colourability a *k*-colouring
- Sudoku a completed puzzle

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 12 of 35

Verifiers

Definition 6.10: A Turing machine $\mathcal M$ that halts on all inputs is called a verifier for a language $\mathbf L$ if

 $\mathbf{L} = \{ w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \}$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 13 of 35

Verifiers

Definition 6.10: A Turing machine $\mathcal M$ that halts on all inputs is called a verifier for a language $\mathbf L$ if

$$\mathbf{L} = \{ w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \}$$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.11: A Turing machine $\mathcal M$ is a polynomial-time verifier for $\mathbf L$ if $\mathcal M$ is polynomial-time bounded and

L = { $w \mid \mathcal{M}$ accepts (w#c) for some string c with $|c| \le p(|w|)$ }

for some fixed polynomial p.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 13 of 35

NP: "The class of dashed hopes and idle dreams." 1

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 14 of 35

https://complexityzoo.net/Complexity_Zoo:N#np

NP: "The class of dashed hopes and idle dreams."1

More formally:

the class of problems for which a possible solution can be verified in polynomial time

Definition 6.12: The class of languages that have polynomial-time verifiers is called NP.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 14 of 35

https://complexityzoo.net/Complexity_Zoo:N#np

NP: "The class of dashed hopes and idle dreams." 1

More formally:

the class of problems for which a possible solution can be verified in polynomial time

Definition 6.12: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages L such that:

- for every $w \in \mathbf{L}$, there are one or more certificates $C_w \subseteq \Sigma^*$, where
- the length of each $c \in C_w$ is polynomial in the length of w, and
- the language $\{(w#c) \mid w \in \mathbf{L}, c \in C_w\}$ is in P

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 14 of 35

https://complexityzoo.net/Complexity_Zoo:N#np

More Examples of Problems in NP

HAMILTONIAN PATH

Input: An undirected graph G

Problem: Is there a path in *G* that contains each vertex ex-

actly once?

k-CLIQUE

Input: An undirected graph *G* and an integer *k*

Problem: Does G contain a fully connected graph (clique)

with k vertices?

More Examples of Problems in NP

SUBSET SUM

Input: A collection of positive integers

 $S = \{a_1, \dots, a_k\}$ and a target integer t

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

TRAVELLING SALESPERSON

Input: A weighted graph *G* and a target number *t*

Problem: Is there a simple path in G with weight $\leq t$ that

contains each vertex exactly once?

Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in *G* that contains each vertex

exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 17 of 35

More Examples

COMPOSITE (NON-PRIME) NUMBER

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is n a prime number?

More Examples

COMPOSITE (NON-PRIME) NUMBER

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 18 of 35

More Examples

COMPOSITE (NON-PRIME) NUMBER

Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is n a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

In fact: Composite Number (and thus Prime Number) was shown to be in P

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 18 of 35

N is for Nondeterministic

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 19 of 35

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of states,
- an **input alphabet** Σ not containing \Box ,
- a tape alphabet Γ such that $\Gamma \supseteq \Sigma \cup \{ \bot \}$.
- a transition function $\delta \colon O \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

Note

An NTM can halt in any state if there are no options to continue

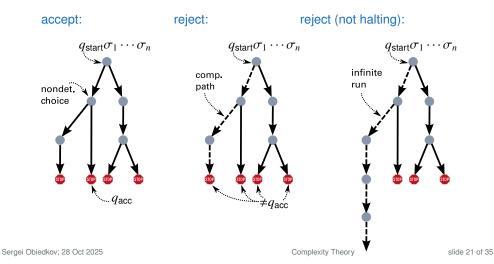
→ no need for a special rejecting state

Sergei Obiedkov; 28 Oct 2025 Complexity Theory slide 20 of 35

Reprise: Runs of NTMs

An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

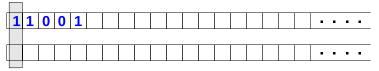
NTMs produce configuration trees that contain all possible runs:



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, \delta, q_0, q_{\text{accept}})$ where

$$\delta = \left\{ \begin{array}{l} (q_0,\ \binom{-}{-},q_0,\binom{-}{0},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_0,\binom{-}{1},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_{\mathrm{check}},\binom{-}{-},\binom{N}{N}) \\ \dots \\ \mathrm{transition\ rules\ for\ } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

and where \mathcal{M}_{check} is a deterministic TM deciding whether the number on second tape is > 1 and divides the number on the first.

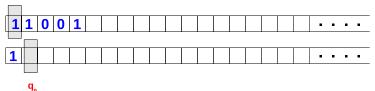


q

Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, \delta, q_0, q_{\text{accept}})$ where

$$\delta = \left\{ \begin{array}{l} (q_0,\ \binom{-}{-},q_0,\binom{-}{0},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_0,\binom{-}{1},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_{\mathrm{check}},\binom{-}{-},\binom{N}{N}) \\ \dots \\ \mathrm{transition\ rules\ for\ } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

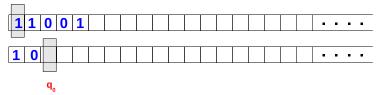
and where \mathcal{M}_{check} is a deterministic TM deciding whether the number on second tape is > 1 and divides the number on the first.



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, \delta, q_0, q_{\text{accept}})$ where

$$\delta = \left\{ \begin{array}{l} (q_0,\ \binom{-}{-},q_0,\binom{-}{0},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_0,\binom{-}{1},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_{\mathrm{check}},\binom{-}{-},\binom{N}{N}) \\ \dots \\ \mathrm{transition\ rules\ for\ } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

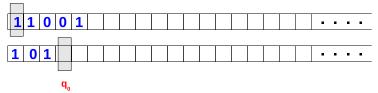
and where \mathcal{M}_{check} is a deterministic TM deciding whether the number on second tape is > 1 and divides the number on the first.



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, \delta, q_0, q_{\text{accept}})$ where

$$\delta = \left\{ \begin{array}{l} (q_0,\ \binom{-}{-},q_0,\binom{-}{0},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_0,\binom{-}{1},\binom{N}{R}) \\ (q_0,\ \binom{-}{-},q_{\mathrm{check}},\binom{-}{-},\binom{N}{N}) \\ \dots \\ \mathrm{transition\ rules\ for\ } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether the number on second tape is > 1 and divides the number on the first.



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \bot\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \left\{ \begin{array}{l} (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 0 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix}) \right) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_0, \left(\begin{matrix} - \\ 1 \end{matrix}), \left(\begin{matrix} N \\ R \end{matrix}) \right) \\ (q_0, \left(\begin{matrix} - \\ - \end{matrix}), q_{\mathrm{check}}, \left(\begin{matrix} - \\ - \end{matrix}), \left(\begin{matrix} N \\ N \end{matrix}\right) \right) \\ \dots \\ \text{transition rules for } \mathcal{M}_{\mathrm{check}} \end{array} \right\}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine \mathcal{M} recognizes if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists

Time- and Space-Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?

Time- and Space-Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to? A: To all of them!

Definition 6.13: Let \mathcal{M} be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) \mathcal{M} is f-time bounded if it halts on every input $w \in \Sigma^*$ and on every computation path after $\leq f(|w|)$ steps.
- (2) \mathcal{M} is f-space bounded if it halts on every input $w \in \Sigma^*$ and on every computation path using $\leq f(|w|)$ cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Nondeterministic Complexity Classes

Definition 6.14: Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function.

- (1) $\mathsf{NTime}(f(n))$ is the class of all languages L for which there is an O(f(n))-time bounded nondeterministic Turing machine deciding L .
- (2) $\operatorname{NSpace}(f(n))$ is the class of all languages **L** for which there is an O(f(n))-space bounded nondeterministic Turing machine deciding **L**.

All Complexity Classes Have a Nondeterministic Variant

$$\mathsf{NPTime} = \bigcup_{d \ge 1} \mathsf{NTime}(n^d)$$

nondet. polynomial time

$$\mathsf{NExp} = \mathsf{NExpTime} = \bigcup_{d \ge 1} \mathsf{NTime}(2^{n^d})$$

nondet. exponential time

$$N2Exp = N2ExpTime = \bigcup_{d>1} NTime(2^{2^{n^d}})$$

nond. double-exponential time

$$NL = NLogSpace = NSpace(log n)$$

nondet. logarithmic space

$$NPSpace = \bigcup_{d \ge 1} NSpace(n^d)$$

nondet. polynomial space

$$NExpSpace = \bigcup_{d \ge 1} NSpace(2^{n^d})$$

nondet. exponential space

Theorem 6.15: NP = NPTime.

Theorem 6.15: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

Theorem 6.15: NP = NPTime.

Proof: We first show NP ⊃ NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM M such that

 $w \in \mathbf{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some d.

Theorem 6.15: NP = NPTime.

Proof: We first show NP ⊃ NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM \mathcal{M} such that

 $w \in \mathbf{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some d.

• This path can be used as a certificate for w.

Theorem 6.15: NP = NPTime.

Proof: We first show NP ⊇ NPTime:

- Suppose **L** ∈ NPTime.
- Then there is an NTM M such that

 $w \in \mathbf{L} \iff$ there is an accepting run of \mathcal{M} of length $O(n^d)$

for some d.

- This path can be used as a certificate for w.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore $NP \supseteq NPTime$.

Theorem 6.15: NP = NPTime.

Proof: We now show NP ⊆ NPTime:

Theorem 6.15: NP = NPTime.

Proof: We now show NP ⊂ NPTime:

• Assume **L** has a polynomial-time verifier \mathcal{M} with certificates of length at most p(n) for a polynomial p.

Theorem 6.15: NP = NPTime.

Proof: We now show NP ⊂ NPTime:

• Assume **L** has a polynomial-time verifier \mathcal{M} with certificates of length at most p(n) for a polynomial p.

- Then we can construct an NTM \mathcal{M}^* deciding **L** as follows:
 - (1) \mathcal{M}^* guesses a string of length p(n)
 - (2) \mathcal{M}^* checks in deterministic polynomial time if this is a certificate.

Therefore $NP \subset NPTime$.

NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability
- the converse of an NP problem is in coNP
- similar for NExpTime and N2ExpTime

Some other complexity classes are symmetric:

- Deterministic classes (e.g., coP = P)
- Space classes mentioned above (e.g., coNL = NL)

Theorem 6.16: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

Theorem 6.16: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

 Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"

Theorem 6.16: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)

Theorem 6.16: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unresolved after more than 50 years of effort
- One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it ("Millenium Problem")
 (might not be much money at the time it is actually solved)

Many people believe that $P \neq NP$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-complete problems and hard to imagine how to make them simpler—possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none go beyond intuition

Many outcomes conceivable:

Many outcomes conceivable:

• P = NP could be shown with a non-constructive proof

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if P ≠ NP, it is unclear if NP problems require exponential time in a strict sense: many super-polynomial functions exist

Many outcomes conceivable:

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if P ≠ NP, it is unclear if NP problems require exponential time in a strict sense: many super-polynomial functions exist
- The problem might never be solved

Results of a 2019 poll among 124 experts, together with results of previous surveys [Gasarch 2019]:

	$P \neq NP$	P = NP	Ind	DC	DK	DK and DC	other
2002	61 (61%)	9 (9%)	4 (4%)	1 (1%)	22 (22%)	0	3 (3%)
2012	126 (83%)	12 (9%)	5 (3%)	5 (3%)	1 (0.66%)	1 (0.66%)	1 (0.66%)
2019	109 (88%)	15 (12%)	0	0	0	0	0

Ind: independent (of ZFC), DC: don't care, DK: don't know

- Lance Fortnow: "People that think P=NP are like people who think Elvis is still alive."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for P = NP

Clearly	L ∈ P	implies	$L \in NP$	
therefore	L ∉ NP	implies	L∉P	
hence	$L \in coNP$	implies	L ∈ coP	
that is	coN	$coNP \subseteq coP$		
using $coP = P$ $coNP \subseteq P$				
and hence	$NP \subseteq P$			
so by $P \subseteq NP$	NP = P			

q.e.d.

A Simple Proof for P = NP

Clearly	L ∈ P	implies	$L \in NP$	
therefore	L ∉ NP	implies	L∉P	
hence	$L \in coNP$	implies	L ∈ coP	
that is	coN	$coNP \subseteq coP$		
using $coP = P$	coN	$coNP \subseteq P$		
and hence	N	$NP \subseteq P$		
so by $P \subseteq NP$	N	NP = P		

q.e.d.?

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities