Overview

1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog
10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Review: The Relational Calculus

What we have learned so far:

- There are many ways to describe databases:
 - named perspective, unnamed perspective, interpretations, ground fracts, (hyper)graphs
- There are many ways to describe query languages:
 - relational algebra, domain independent FO queries, safe-range FO queries, active domain FO queries, Codd’s tuple calculus
 - either under named or under unnamed perspective

All of these are largely equivalent: The Relational Calculus

Next question: How hard is it to answer such queries?
How to Measure Complexity of Queries?

- Complexity classes often for decision problems (yes/no answer)
 \(\Rightarrow\) database queries return many results (no decision problem)

- The size of a query result can be very large
 \(\Rightarrow\) it would not be fair to measure this as “complexity”

- In practice, database instances are much larger than queries
 \(\Rightarrow\) can we take this into account?
We consider the following decision problems:

- **Boolean query entailment**: given a Boolean query q and a database instance I, does $I \models q$ hold?

- **Query of tuple problem**: given an n-ary query q, a database instance I and a tuple $\langle c_1, \ldots, c_n \rangle$, does $\langle c_1, \ldots, c_n \rangle \in M[q](I)$ hold?

- **Query emptiness problem**: given a query q and a database instance I, does $M[q](I) \neq \emptyset$ hold?

\sim Computationally equivalent problems (exercise)
The Size of the Input

Combined Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query (q) and database instance (\mathcal{I})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does (\mathcal{I} \models q) hold?</td>
</tr>
</tbody>
</table>

\(\leadsto \) estimates complexity in terms of overall input size

\(\leadsto \) “2KB query/2TB database” = “2TB query/2KB database”
Combined Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q and database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold?</td>
</tr>
</tbody>
</table>

→ estimates complexity in terms of overall input size

→ “2KB query/2TB database” = “2TB query/2KB database”

→ study worst-case complexity of algorithms for fixed queries:

Data Complexity

<table>
<thead>
<tr>
<th>Input: database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold? (for fixed q)</td>
</tr>
</tbody>
</table>
The Size of the Input

Combined Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q and database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold?</td>
</tr>
</tbody>
</table>

\[\sim\] estimates complexity in terms of overall input size

\[\sim\] “2KB query/2TB database” = “2TB query/2KB database”

\[\sim\] study worst-case complexity of algorithms for fixed queries:

Data Complexity

<table>
<thead>
<tr>
<th>Input: database instance \mathcal{I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold? (for fixed q)</td>
</tr>
</tbody>
</table>

\[\sim\] we can also fix the database and vary the query:

Query Complexity

<table>
<thead>
<tr>
<th>Input: Boolean query q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: Does $\mathcal{I} \models q$ hold? (for fixed \mathcal{I})</td>
</tr>
</tbody>
</table>
Review: Computation and Complexity Theory
Computation is usually modelled with Turing Machines (TMs)
\(\simeq \) “algorithm” = “something implemented on a TM”

A TM is an automaton with (unlimited) working memory:

- It has a finite set of states \(Q \)
- \(Q \) includes a start state \(q_{\text{start}} \) and an accept state \(q_{\text{acc}} \)
- The memory is a tape with numbered cells 0, 1, 2, …
- Each tape cell holds one symbol from the set of tape symbols \(\Sigma \)
- There is a special symbol \(_ \) for “empty” tape cells
- The TM has a transition relation \(\Delta \subseteq (Q \times \Sigma) \times (Q \times \Sigma \times \{l, r, s\}) \)
- \(\Delta \) might be a partial function \((Q \times \Sigma) \rightarrow (Q \times \Sigma \times \{l, r, s\}) \)
 \(\simeq \) deterministic TM (DTM); otherwise nondeterministic TM

There are many different but equivalent ways of defining TMs.
The Turing Machine (2)

TMs operate step-by-step:

- At every moment, the TM is in one state $q \in Q$ with its read/write head at a certain tape position $p \in \mathbb{N}$, and the tape has a certain contents $\sigma_0 \sigma_1 \sigma_2 \cdots$ with all $\sigma_i \in \Sigma$
- The TM starts in state q_{start} and at tape position 0.
- Transition $\langle q, \sigma, q', \sigma', d \rangle \in \Delta$ means: if in state q and the tape symbol at its current position is σ, then change to state q', write symbol σ' to tape, move head by d (left/right/stay)
- If there is more than one possible transition, the TM picks one nondeterministically
- The TM halts when there is no possible transition for the current configuration (possibly never)

A computation path (or run) of a TM is a sequence of configurations that can be obtained by some choice of transition.
Languages Accepted by TMs

The (nondeterministic) TM accepts an input \(\sigma_1 \cdots \sigma_n \in (\Sigma \setminus \{\\})^* \) if, when started on the tape \(\sigma_1 \cdots \sigma_n _ _ _ _ _ _ _ _ _ _ \),

1. the TM halts on every computation path and
2. there is at least one computation path that halts in the accepting state \(q_{\text{acc}} \in Q \).

accept:

```
\[ q_{\text{start}} \sigma_1 \cdots \sigma_n \]
```

reject:

```
\[ q_{\text{start}} \sigma_1 \cdots \sigma_n \]
```

reject (not halting):

```
\[ q_{\text{start}} \sigma_1 \cdots \sigma_n \]
```

Markus Krötzsch, 14 April 2016
A decision problem is a language L of words over $\Sigma \setminus \{_\}$
\leadsto the set of all inputs for which the answer is “yes”

A TM decides a decision problem L if it accepts exactly the words in L

TMs take time (number of steps) and space (number of cells):

- $\text{TIME}(f(n))$: Problems that can be decided by a DTM in $O(f(n))$ steps, where f is a function of the input length n
- $\text{SPACE}(f(n))$: Problems that can be decided by a DTM using $O(f(n))$ tape cells, where f is a function of the input length n
Solving Computation Problems with TMs

A decision problem is a language \(\mathcal{L} \) of words over \(\Sigma \setminus \{\varepsilon\} \) \(\sim \) the set of all inputs for which the answer is “yes”

A TM decides a decision problem \(\mathcal{L} \) if it accepts exactly the words in \(\mathcal{L} \)

TMs take time (number of steps) and space (number of cells):

- **Time**(\(f(n) \)): Problems that can be decided by a DTM in \(O(f(n)) \) steps, where \(f \) is a function of the input length \(n \)

- **Space**(\(f(n) \)): Problems that can be decided by a DTM using \(O(f(n)) \) tape cells, where \(f \) is a function of the input length \(n \)

- **NTIME**(\(f(n) \)): Problems that can be decided by a TM in at most \(O(f(n)) \) steps on any of its computation paths

- **NSpace**(\(f(n) \)): Problems that can be decided by a TM using at most \(O(f(n)) \) tape cells on any of its computation paths
Some Common Complexity Classes

\[P = \text{PTime} = \bigcup_{k \geq 1} \text{Time}(n^k) \]

\[\text{NP} = \bigcup_{k \geq 1} \text{NTIME}(n^k) \]

\[\text{EXP} = \text{ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \]

\[\text{NEXP} = \text{NExpTime} = \bigcup_{k \geq 1} \text{NTIME}(2^{n^k}) \]

\[2\text{EXP} = 2\text{ExpTime} = \bigcup_{k \geq 1} \text{Time}(2^{2^{n^k}}) \]

\[\text{N2EXP} = \text{N2ExpTime} = \bigcup_{k \geq 1} \text{NTIME}(2^{2^{n^k}}) \]

\[\text{ETIME} = \bigcup_{k \geq 1} \text{Time}(2^{n^k}) \]

\[\text{L} = \text{LogSpace} = \text{Space}(\log n) \]

\[\text{NL} = \text{NLogSpace} = \text{NSpace}(\log n) \]

\[\text{PSPACE} = \bigcup_{k \geq 1} \text{Space}(n^k) \]

\[\text{ExpSpace} = \bigcup_{k \geq 1} \text{Space}(2^{n^k}) \]
NP

NP = Problems for which a possible solution can be verified in P:

- for every \(w \in \mathcal{L} \), there is a certificate \(c_w \in \Sigma^* \), such that
- the length of \(c_w \) is polynomial in the length of \(w \), and
- the language \(\{w##c_w \mid w \in \mathcal{L}\} \) is in P

Equivalent to definition with nondeterministic TMs:

- \(\Rightarrow \) nondeterministically guess certificate; then run verifier DTM
- \(\Leftarrow \) use accepting polynomial run as certificate; verify TM steps
Examples:

- Sudoku solvability (certificate: filled-out grid)
- Composite (non-prime) number (certificate: factorization)
- Prime number (certificate: see Wikipedia “Primality certificate”)
- Propositional logic satisfiability (certificate: satisfying assignment)
- Graph colourability (certificate: coloured graph)
NP and coNP

Note: Definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or logic unsatisfiability
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other classes are symmetric:

- Deterministic classes ($\text{coP} = \text{P}$ etc.)
- Space classes mentioned above (esp. $\text{coNL} = \text{NL}$)
A Simple Proof for $P = NP$

Clearly $L \in P$ implies $L \in NP$

therefore $L \notin NP$ implies $L \notin P$

hence $L \in coNP$ implies $L \in coP$

that is $coNP \subseteq coP$

using $coP = P$

and hence $coNP \subseteq P$

so by $P \subseteq NP$

$NP \subseteq P$

$NP = P$

q.e.d.
A Simple Proof for $P = NP$

Clearly, if $L \in P$, then $L \in NP$. Therefore, if $L \notin NP$, then $L \notin P$. Hence, if $L \in coNP$, then $L \in coP$. That is, $coNP \subseteq coP$.

Using $coP = P$, we have $coNP \subseteq P$. And hence, $NP \subseteq P$. So by $P \subseteq NP$, we have $NP = P$.

q.e.d.?
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
• \(r_i \) means ‘vertex \(i \) is red’
• \(g_i \) means ‘vertex \(i \) is green’
• \(b_i \) means ‘vertex \(i \) is blue’

Colouring conditions on vertices:
\[
(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)
\]
(and so on for all vertices)

Colouring conditions for edges:
\[
\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)
\]
(and so on for all edges)

Satisfying truth assignment \(\iff \) valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability
Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Satisfying truth assignment \iff valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

$$(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)$$

(and so on for all vertices)

Colouring conditions for edges:

$$\neg (r_1 \land r_2) \land \neg (g_1 \land g_2) \land \neg (b_1 \land b_2)$$

(and so on for all edges)
Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:
- r_i means "vertex i is red"
- g_i means "vertex i is green"
- b_i means "vertex i is blue"

Colouring conditions on vertices:

\[(r_1 \land \lnot g_1 \land \lnot b_1) \lor (\lnot r_1 \land g_1 \land \lnot b_1) \lor (\lnot r_1 \land \lnot g_1 \land b_1) \quad \text{(and so on for all vertices)}\]

Colouring conditions for edges:

\[\lnot (r_1 \land r_2) \land \lnot (g_1 \land g_2) \land \lnot (b_1 \land b_2) \quad \text{(and so on for all edges)}\]

Satisfying truth assignment \iff valid colouring
Reductions

Observation: some problems can be reduced to others

Example: 3-colouring can be reduced to propositional satisfiability

Encoding colours in propositions:

- \(r_i \) means "vertex \(i \) is red"
- \(g_i \) means "vertex \(i \) is green"
- \(b_i \) means "vertex \(i \) is blue"

Colouring conditions on vertices:

\[
(r_1 \land \neg g_1 \land \neg b_1) \lor (\neg r_1 \land g_1 \land \neg b_1) \lor (\neg r_1 \land \neg g_1 \land b_1)
\]

(and so on for all vertices)

Colouring conditions for edges:

\[
\neg(r_1 \land r_2) \land \neg(g_1 \land g_2) \land \neg(b_1 \land b_2)
\]

(and so on for all edges)

Satisfying truth assignment \(\iff \) valid colouring

Markus Krötzsch, 14 April 2016

Database Theory

slide 26 of 52
Defining Reductions

Definition

Consider languages $L_1, L_2 \subseteq \Sigma^*$. A computable function $f : \Sigma^* \rightarrow \Sigma^*$ is a many-one reduction from L_1 to L_2 if:

\[w \in L_1 \quad \text{if and only if} \quad f(w) \in L_2 \]

\(\Rightarrow\) we can solve problem L_1 by reducing it to problem L_2

\(\Rightarrow\) only useful if the reduction is much easier than solving L_1 directly

\(\Rightarrow\) polynomial many-one reductions
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
Theorem (Cook 1971; Levin 1973)

All problems in \(\text{NP}\) can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- \(\text{NP}\) has a maximal class that contains a practically relevant problem
- If SAT can be solved in \(\text{P}\), all problems in \(\text{NP}\) can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .
Theorem (Cook 1971; Levin 1973)
All problems in \(\text{NP} \) can be polynomially many-one reduced to the propositional satisfiability problem (SAT).

- \(\text{NP} \) has a maximal class that contains a practically relevant problem
- If SAT can be solved in \(\text{P} \), all problems in \(\text{NP} \) can
- Karp discovered 21 further such problems shortly after (1972)
- Thousands such problems have been discovered since . . .

Definition
A language is
- \(\text{NP-hard} \) if every language in \(\text{NP} \) is polynomially many-one reducible to it
- \(\text{NP-complete} \) if it is \(\text{NP-hard} \) and in \(\text{NP} \)
Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then $\text{P} = \text{NP}$
- Nobody knows \sim biggest open problem in computer science
- Similar situations for many complexity classes
Comparing Complexity Classes

Is any NP-complete problem in P?

- If yes, then $\text{P} = \text{NP}$
- Nobody knows \sim biggest open problem in computer science
- Similar situations for many complexity classes

Some things that are known:

\[
\text{L} \subseteq \text{NL} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime}
\]

- None of these is known to be strict
- But we know that $\text{P} \subsetneq \text{ExpTime}$ and $\text{NL} \subsetneq \text{PSpace}$
- Moreover $\text{PSpace} = \text{NPSpace}$ (by Savitch’s Theorem)
Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \leadsto what to use for P and below?
Comparing Tractable Problems

Polynomial-time many-one reductions work well for (presumably) super-polynomial problems \(\sim \) what to use for \(P \) and below?

Definition

A \texttt{LogSpace} transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size \(O(\log n) \)
- a write-only, write-once output tape

Such a TM needs a slightly different form of transitions:

- transition function input: state, input tape symbol, working tape symbol
- transition function output: state, working tape write symbol, input tape move, working tape move, output tape symbol or \(\perp \) to not write anything to the output
The Power of **LogSpace**

LogSpace transducers can still do a few things:

- store a constant number of counters and increment/decrement the counters
- store a constant number of pointers to the input tape, and locate/read items that start at this address from the input tape
- access/process/compare items from the input tape bit by bit

Examples:
Adding and subtracting binary numbers, detecting palindromes, comparing lists, searching items in a list, sorting lists, ...
Joining Two Tables in LogSpace

Input: two relations R and S, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R: iterate p_S over all tuples of S
- For each combination of p_R and p_S, compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

Output: $R \bowtie S$
Joining Two Tables in \textit{LogSpace}

\textbf{Input:} two relations R and S, represented as a list of tuples

- Use two pointers p_R and p_S pointing to tuples in R resp. S
- Outer loop: iterate p_R over all tuples of R
- Inner loop for each position of p_R: iterate p_S over all tuples of S
- For each combination of p_R and p_S, compare the tuples:
 - Use another two loops that iterate over the columns of R and S
 - Compare attribute names bit by bit
 - For matching attribute names, compare the respective tuple values bit by bit
- If all joined columns agree, copy the relevant parts of tuples p_R and p_S to the output (bit by bit)

\textbf{Output:} $R \Join S$

\textit{Fixed number of pointers and counters}

(making this fully formal is still a bit of work; e.g., an additional counter is needed to move the input read head to the target of a pointer (seek))
LogSpace reductions

LogSpace functions: The output of a LogSpace transducer is the contents of its output tape when it halts \sim partial function $\Sigma^* \rightarrow \Sigma^*$

Note: the composition of two LogSpace functions is LogSpace (exercise)

Definition

A many-one reduction f from L_1 to L_2 is a LogSpace reduction if it is implemented by some LogSpace transducer.

\sim can be used to define hardness for classes P and NL
From \textbf{L} to \textbf{NL}

\textbf{NL}: Problems whose solution can be verified in \textbf{L}

Example: \textbf{Reachability}

- Input: a directed graph G and two nodes s and t of G
- Output: accept if there is a directed path from s to t in G

Algorithm sketch:

- Store the id of the current node and a counter for the path length
- Start with s as current node
- In each step, increment the counter and move from the current node to one of its direct successors (nondeterministic)
- When reaching t, accept
- When the step counter is larger than the total number of nodes, reject
Propositional satisfiability can be solved in linear space:
\[\rightsquigarrow\text{iterate over possible truth assignments and check each in turn}\]

More generally: all problems in NP can be solved in PSPACE
\[\rightsquigarrow\text{try all conceivable polynomial certificates and verify each in turn}\]

What is a “typical” (that is, hard) problem in PSPACE?
\[\rightsquigarrow\text{Simple two-player games, and other uses of alternating quantifiers}\]
Example: Playing “Geography”

A children’s game:

• Two players are taking turns naming cities.
• Each city must start with the last letter of the previous.
• Repetitions are not allowed.
• The first player who cannot name a new city loses.
Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city loses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node loses.
Example: Playing “Geography”

A children’s game:
- Two players are taking turns naming cities.
- Each city must start with the last letter of the previous.
- Repetitions are not allowed.
- The first player who cannot name a new city looses.

A mathematicians’ game:
- Two players are marking nodes on a directed graph.
- Each node must be a successor of the previous one.
- Repetitions are not allowed.
- The first player who cannot mark a new node looses.

Question: given a certain graph and start node, can Player 1 enforce a win (i.e., does he have a winning strategy)?

\(\sim \text{ PSpace-complete problem} \)
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

$$Q_1 X_1 . Q_2 X_2 . \cdots . Q_n X_n . \varphi[X_1, \ldots, X_n]$$

where $Q_i \in \{\exists, \forall\}$ are quantifiers, X_i are propositional logic variables, and φ is a propositional logic formula with variables X_1, \ldots, X_n and constants \top (true) and \bot (false).

Semantics:

- Propositional formulae without variables (only constants \top and \bot) are evaluated as usual.
- $\exists X_1 . \varphi[X_1]$ is true if either $\varphi[X_1/\top]$ or $\varphi[X_1/\bot]$ are true.
- $\forall X_1 . \varphi[X_1]$ is true if both $\varphi[X_1/\top]$ and $\varphi[X_1/\bot]$ are true.
Example: Quantified Boolean Formulae (QBF)

We consider formulae of the following form:

\[Q_1 X_1 \cdot Q_2 X_2 \cdot \ldots \cdot Q_n X_n \cdot \varphi[X_1, \ldots, X_n] \]

where \(Q_i \in \{\exists, \forall\} \) are quantifiers, \(X_i \) are propositional logic variables, and \(\varphi \) is a propositional logic formula with variables \(X_1, \ldots, X_n \) and constants \(\top \) (true) and \(\bot \) (false)

Semantics:

- Propositional formulae without variables (only constants \(\top \) and \(\bot \)) are evaluated as usual
- \(\exists X_1 \cdot \varphi[X_1] \) is true if either \(\varphi[X_1/\top] \) or \(\varphi[X_1/\bot] \) are
- \(\forall X_1 \cdot \varphi[X_1] \) is true if both \(\varphi[X_1/\top] \) and \(\varphi[X_1/\bot] \) are

Question: Is a given QBF formula true?

\(\sim \text{PSPACE}-\text{complete problem} \)
A Note on Space and Time

How many different configurations does a TM have in space \(f(n) \)?

\[|Q| \cdot f(n) \cdot |\Sigma|^{f(n)} \]

\(\sim \) No halting run can be longer than this

\(\sim \) A time-bounded TM can explore all configurations in time proportional to this
A Note on Space and Time

How many different configurations does a TM have in space \((f(n)) \)?

\[|Q| \cdot f(n) \cdot |\Sigma|^{f(n)} \]

\(\sim \) No halting run can be longer than this
\(\sim \) A time-bounded TM can explore all configurations in time proportional to this

Applications:

- \(L \subseteq P \)
- \(\text{PSPACE} \subseteq \text{EXP\!TIME} \)
Summary and Outlook

The complexity of query languages can be measured in different ways

Relevant complexity classes are based on restricting space and time:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSpace \subseteq ExpTime \]

Problems are compared using many-one reductions

Open questions:

- Now how hard is it to answer FO queries? (next lecture)
- We saw that joins are in \(LogSpace \) – is this tight?
- How can we study the expressiveness of query languages?