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Previously...

+ Thelanguage of normal logic programs can be extended by constructs:
Integrity constraints for eliminating unwanted solution candidates
Choice rules for choosing subsets of atoms

Cardinality rules for counting certain present/absent atoms

Conditional literals for improving conciseness

+ All of them can be translated back into normal logic program rules.
* The modelling methodology of ASP is generate and test:

Generate solution candidates & Eliminate infeasible ones

Problem Solution

Modelling Interpreting
Solving
Logic Stable
rounder Solver
Program Models
Elaborating
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Consequence Operator

Recall

Let P be a positive program and X a set of atoms.
The consequence operator 7y assigns as follows:

Tp(X) = {head(r) | r € P and body(r) C X}

Iterated applications of Tp are written as T{, forj > 0, where
+ T9(X)=Xand
« THX) = Tp(TE" (X)) for i > 1

For any positive program P, we have
« Cn(P) = Ujso TH(0)

+ X CYimplies Tp(X) C Tp(Y)

* Cn(P) is the C-least fixpoint of Tp
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Approximating Stable Models

First Idea

Approximate a stable model X by two atom sets L and U suchthatL C X C U
* L and U constitute lower and upper bounds on X
* Land (A\U)describe a three-valued model of the program

Observation
L € Uimplies PY C P implies Cn(PY) C Cn(P")

Properties

Let X be a stable model of normal logic program P.
 IfL C X, then X C Cn(P")

« IfX C U, then Cn(PY) C X

« IfLCXCU thenLuCn(PY) C X C UnCn(P-)
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Approximating Stable Models

Second Idea
repeat

replace L by L U Cn(PY)
replace U by U n Cn(P)

until L and U do not change anymore

Observations

+ At each iteration step

- L becomes larger (or equal)
- U becomes smaller (or equal)

* L C X CUisinvariant for every stable model X of P
* IfL ¢ U, then P has no stable model
« If L = U, then L is a stable model of P
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The Simplistic expand Algorithm

expand,(L, U)

repeat

L'~ L

U U

L« L'UuCn(PY)

U« U nCn(P)

if L £ U then return
untilL =L"and U= U’

The algorithm:
+ tightens the approximation on stable models
*+ is stable model preserving
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An Example

a «—
b« a,~c
d <« b, ~e
e «— ~d

Consider P = over atoms A = {a, b, ¢, d, e}.

The expand algorithm - started on the trivial pair (4, A) - yields:

L Cn(PYy L 4 Cn(PY) U

1 0 {a} {a} {a,b,c,d, e} {a,b,d, e} {ab,d e}
2 {a} {a,b} {a,b} {a,b,d,e} {a,b,d e} {ab,d e}
3 {a,b} {a,b} {a,b} {a,b,d e} {a,b,d, e} {a,b,d, e}

Note

We have {a,b} C X and (A\{a,b,d,e})nX = ({c} nX) = @ for every stable

model X of P.

TECHNISCHE ASP: Computation and Characterisation (Lecture 12)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 9 of 30
DRESDEN Foundations of Logic Programming, WS 2023/24

c ,Compuk:ﬁonal
"- Logic = Group



Let us expand with d ...

a «—

b« a,~c
d <« b, ~e
e« ~d

L cn(PY) L 4 Cn(Py U
1 {d} {a} {a,d} {a,b,c,d, e} {a,b,d} {ab,d}
2 {a,d} {a,b,d} {ab,d} {ab,d} {a,b,d} {a,b,d}
3 {a,b,d} {a,b,d} {ab,d} {ab,d} {a,b,d} {a,b,d}

Note
{a, b, d} is a stable model of P.
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Let us expand with ~d ...

a «—

b« a,~c
d <« b, ~e
e« ~d

L Cn(PYy L V4

Cn(P-)

u

1 0 {a,e} {a,e} {a,b,c,e} {a,b,d, e}

2 {o,e} {a,b,e} {a,b,e} {a,b,e}
3 {a,b,e} {a,b,e} {ab,e} {ab,e}

Note
{a, b, e} is a stable model of P.

{a,b,e}
{a,b, e}

{a,b, e}
{a,b, e}
{a,b, e}
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A Simplistic Solving Algorithm

solvep(L, U)
(L, U) « expand(L, U) // propagation
if L ¢ U then failure // failure
if L = U then output L // success
else choose a € U\L // choice
solvep(L U {a}, U)
solvep(L, U\ {a})



A Simplistic Solving Algorithm

Close to the approach taken by the ASP solver smodels, inspired by the
Davis-Putman-Logemann-Loveland (DPLL) procedure for SAT solving:

+ Backtracking search building a binary search tree
* Anode in the search tree corresponds to a three-valued interpretation

* The search space is pruned by

- deriving deterministic consequences and detecting conflicts (expand)
- making one choice at a time by appeal to a heuristic (choose)

¢ Heuristic choices are made on atoms
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Quiz: Solving

solvep(L, U) expandp(L, U)
(L, U) « expandp(L, U) repeat
if L ¢ U then failure 'L U «—U
if L = U then output L L L'ucnPY)
else choose a € U\ L U« U ncCn(P)
solvep(L U {a}, U) if L ¢ U then return
solvep(L, U\ {a}) until L =" and U = U’
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Complexity
Problem: Stable-model-existence
Given: A propositional normal logic program P.

Question: Does P have a stable model?

Theorem
Stable-model-existence is NP-complete.

Proof.

* in NP: Given a candidate X, we can compute the reduct PX and then
Cn(PX), then check X = Cn(P¥), all in deterministic polynomial time.

* NP-hard: We reduce from SAT. Let ® = ¢ A ... A @m be a CNF over A. Set
Pp:={{a} «|acAlu{—p;|1<i<m}

where &, V...V ¥ :=4¥,..., ¢ with=a:=aanda:= ~a. O
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Axiomatic Characterisation
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Motivation

« There exist sophisticated algorithms and efficient implementations for
SATisfiability testing in propositional logic

+ Can we harness these systems for answer set programming?

Question

Is there a propositional formula/theory F(P) such that the models of F(P)

correspond one-to-one to the stable models of P?

Recall

+ For every normal program P, there is a propositional theory comp(P) such
that its models correspond one-to-one to the supported models of P.

+ Every stable model is a supported model, but not vice versa.

~» Can we add a second theory T(P) such that the models of comp(P) U T(P)
correspond one-to-one to the stable models of P?
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Program Completion: A Closer Look

The theory comp(P) is logically equivalent to comp(P) U comp(P), where

€omp(P) = {a < Vsesody,aBFB) ‘ a € atom(P)}
omp(P) = {0 Vacso,0BFB) ‘ a & atom(P)}

bodys(a) = {body(r) | r € P and head(r) = a}
BF(body(r)) = /\aebody(r)+a A /\aebody(r)ﬂa

+ comp(P) characterises the classical models of P.
* comp(P) characterises that all true atoms must be supported.
+ ~» How to axiomatise that all true atoms must be well-supported?
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Stable vs. Supported Models: An Example

Example

a «— C« a,~d e« b, ~f
p—
b — ~a d « ~C, ~e e«e

* P has 21 models, including {a, c}, {a,d}, but also {a,b,c,d, e, f}.

* P has 3 supported models, namely {a, c}, {a,d}, and {a, c, e}.

* P has 2 stable models, namely {a, c} and {a, d}.

+ The model {a, ¢, e} is not well-supported (stable) because e supports itself.

Observation

Atoms in a strictly positive cycle (not being “supported from outside the
cycle”) cannot be “derived” from a program in a finite number of steps.
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Positive Atom Dependency Graph

Definition

The positive atom dependency graph G(P) of a logic program P is given by
(atom(P), {(a,b) | r€ P,a € body(r)+,head(r) = b})

A logic program P is called tight < G(P) is acyclic.

Example

. P:{ou— C«a,~d e<—b,~f} @

b — ~a d «— ~C, ~e e«—e

+ G(P)=({a,b,c,d, e}, {(a,0),(be)(ee)} @@ @

* P has supported models: {a,c}, {a,d}, and {a, c, e}
* P has stable models: {a,c} and {a, d}

Theorem (Fages)

For tight normal logic programs, stable and supported models coincide.
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Motivation

Question

Is there a propositional formula F(P) such that the models of F(P)
correspond to the stable models of P ?

Observation

Starting from the completion of a program, the problem boils down to
eliminating the circular support of atoms holding in the supported models.
ldea

Add formulas prohibiting circular support of sets of atoms.

Circular support between atoms a and b is possible if a has a path to b and
b has a path to a in the program’s positive atom dependency graph.
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Loops

Let P be a normal logic program with positive atom dependency graph
G(P) = (atom(P), E).

* Anon-empty set L C atom(P) is a loop of P
;< itinduces a non-trivial strongly connected subgraph of G(P).
+ We denote the set of all loops of P by loops(P).

That is, each pair of atoms in a loop L is connected by a path of non-zero
length in (L, EN (L x L)).

A program P is tight iff loops(P) = 0.
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Loops: Examples (1)

. P:{m— C«+a,~d e<—b,~f} @

b «— ~a d <« ~C, ~e e«—e

. loops(P) = {{e}} 9

0« ~b c«+—0,b d<a e «— ~a,~b h
| P:{b<—~a c—d de<bc } 0@6 ©

+ loops(P) = {{c,d}} Q
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Loops: Examples (2)

a0« ~b Cc<+<a d«—b,c e—b, ~a
; P={b<—~a C—bd d—e e<—cd } 0

+ loops(P) = {{c,d},{d, e}, {c.d e}} Q G@e
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Loop Formulas

Definition
Let P be a normal logic program.
+ For L C atom(P), define the external supports of L for P as

ESp(L) := {r € P | head(r) € L and body(r)" nL = @}

+ Define the external bodies of L in P as EBp(L) := body(ESp(L)).
* The (disjunctive) loop formula of L for P is

LFp(L) == (Vger@) — (\/BeEBp(L)BF(B)) = (/\BGEBP(L)_'BF(B)) — (N\geL9)
+ Define LF(P):= {LFp(L) | L € loops(P)}.

The loop formula of L enforces all atoms in L to be false whenever L is not
externally supported.
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Loop Formulas: Examples (1)

. P={a<— c—a,~d e<—b,~f} @

b« ~a d «— ~c, ~e e«—e

. loops(P) = {{e}} @

« LF(P)={e — b A ~f}

d«—~b c—ab d<a e« ~a~b ﬁ
' P={b<—~a ced debc } 0@0 ©

+ loops(P) = {{c,d}} 0
* LF(P)={cvd—(anb)Vva}
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Loops: Examples (2)

b« ~a c« bd d«e e«—c¢d

« loops(P) = {{c,d},{d, e}, {c,d, e}} 0 e@e

cvd—ave
e LF(P) = dve— (bAC)V(bA-Q)
cvdve —aV(bA-a)

. P:{a<—~b C—a d«b,c e<—b,~a} 0
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Lin-Zhao Theorem and Properties

Let P be a normal logic program and X C atom(P). Then:
X is a stable model of P iff X = comp(P) U LF(P).

Let X be a supported model of normal LP P. Then, X is a stable model of P iff
* X E{LF(U) | U C atom(P)};

X = {LFp(U) | U C X};

X = {LFp(L) | L € loops(P)}, that is, X = LF(P);

X = {LFo(L) | L € loops(P) and L C X}.

If supported X is not stable for P, there is a loop L € X\ Cn(PX) with X F= LFp(L).
* There might be exponentially many loop formulas.
+ Blowup seems to be unavoidable in general [Lifschitz and Razborov, 2006].
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https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1145/1131313.1131316

Conclusion

Summary

« The stable models of P can be approximated using the operator Tp:

(L, U) ~ (LUUis0 Thu(@), UN Uiso Th(9))
+ Solving may use non-deterministic choice, propagation, and backtracking.
+ Stable-model-existence is NP-complete.
+ Supported non-stable models are caused by loops in the program.
+ Aloop is a non-empty set of atoms that mutually depend on each other.
+ The loop formulas LF(P) of P enforce that every support is well-founded.
* The stable models of P can be characterised by comp(P) U LF(P).

Suggested action points:

« Try the algorithm on Slide 12 for some example programs.
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Course Summary

+ LPs are a declarative language for knowledge representation and reasoning.
* PROLOG-based logic programming focuses on theorem proving.

* PROLOG is also a programming language (via non-logical side effects).

+ For definite LPs, SLD resolution is a sound and complete proof theory.

* For normal LPs, SLDNF resolution is sound and (sometimes) complete.

+ Stable models are recognised as the “standard” semantics for normal LPs.

+ ASP-based logic programming focuses on model generation.

* ASP is a modelling language for (combinatorial) problem solving.

+ Its modelling methodology is based on the generate-and-test paradigm.

+ ASP solvers can make use of technology from propositional satisfiability.
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