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Previously . . .
• Game trees can be succinctly represented by state-based game models.
• Minimax Tree Search can be used to solve sequential (two-player

zero-sum) games with perfect information.
• Alpha-Beta Pruning allows to reduce the search space without

sacrificing solutions.
• Heuristic Evaluation of states can be used to reduce search depth.
• Further heuristics may reduce the search space (typically with sacrifices).
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Tree Search: Shannon’s Type A and Type B
In Claude Shannon’s 1950 paper Programming a Computer for Playing Chess,
he suggests two types of tree search strategies:

wide, but shallow

Type A

Alpha-Beta Tree Search

narrow, but deep

Type B

Monte Carlo Tree Search
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Monte Carlo Tree Search
Terminology

AMonte Carlo algorithm is a randomised algorithm whose output may be
incorrect with a certain (typically small) probability.

Main Idea of Monte Carlo Tree Search: Simulate random move sequences
from current to terminal states and do statistics on moves leading to wins.
Some relevant notions:

• Playout: Complete move sequence from a state to a terminal state.
• Random move sequences only inform about random play, so a

playout policy is needed to bias simulation towards optimal play.
• In pure Monte Carlo search, we do N simulations starting in the current

state and record average payoffs for all moves.
• Selection policy: Determines from which nodes to start simulations;

faces the fundamental issue to balance exploitation and exploration.
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Monte Carlo Tree Search: Example (1)
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Monte Carlo Tree Search: Example (2)
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Monte Carlo Tree Search: Algorithm
function monte-carlo-tree-search(s : state) {

tree := get-tree-below(s)
while is-time-remaining() do {

leaf := select(tree)
child := expand(leaf )
result := simulate(child)
back-propagate(tree, child, result) }

return move-to-node-with-most-playouts(tree) }

• get-tree-below returns the search tree below the node for the state
• is-time-remaining checks whether we are still within the time limit
• select uses the selection policy to find a node to expand next
• expand adds a new child to the given node (makes a move)
• simulate does a full playout, returning only the result (utility value)
• back-propagate propagates the result value up the search tree
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Selection Policy: UCT
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Selection Policy: UCT
An effective policy: UCT – “upper confidence bounds applied to trees”.
UCT ranks moves according to their “upper confidence bound” value.
Definition
The upper confidence bound value for a node n is obtained thus:

UCB1(n) := U(n)
N(n) + c ·

√
lnN(n′)
N(n)

where
• n′ is the unique parent of n in the search tree,
• U(n) is the total utility of node n (summed up over all playouts),
• N(m) is the total number of playouts through nodem,
• c is a constant that is typically chosen empirically (theoretically c =

√
2).

Constant c balances exploitation (first fraction) and exploration (square root).
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UCT: Example

UCB1(n1) =
60
79 +

√
2 · ln 98
79

≈ 0.76 + 0.34 = 1.1

UCB1(n2) =
1
10 +

√
2 · ln 98
10

≈ 0.1 + 0.96 = 1.06

UCB1(n3) =
0
9 +

√
2 · ln 98

9
≈ 1

37/98

60/79n1

16/53

27/35

1/10n2 0/9n3

3/26 6/6 3/4

10/18 0/3 0/3

We thus continue with n1 and apply UCB1 to its children.
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Digression: Multi-Armed Bandits (1)

• A K-armed bandit problem is given by random variables Xi,n for 1 ≤ i ≤ K

and n ≥ 1, where each i is the index of a gambling machine (the “arm” of a
bandit).

• Successive plays of machine i yield rewards Xi,1, Xi,2, . . . which are
independent and identically distributed according to an unknown law
with unknown expectation μi.

• Rewards across machines are also independent (and not identically
distributed): Xi,s and Xj,t are independent for 1 ≤ i < j ≤ K and s, t ≥ 1.

• A policy is a function mapping past plays and rewards to the next arm to
play.

• The regret of a policy is the difference between the maximally possible
payoff and the actually obtained payoff.
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Digression: Multi-Armed Bandits (2)

• UCB1 is a specific policy of “playing” multi-armed bandits that achieves
logarithmic regret (in the number n of plays; known to be optimal):

deterministic policy ucb1:

initialisation: play each machine once
loop:

play machine j that maximises x̄j +
√
2 lnn
nj

where

• x̄j is the average reward obtained from machine j,
• nj is the number of times machine j has been played so far,
• n is the overall number of plays done so far.
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UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48

4 1.0 + 0.0 2
UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68

5 0.3 + 0.3 2
UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77

6 0.0 + 0.5 2
UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84

7 1.0 + 1.0 3
UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81

8 2.0 + 0.0 4
UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52

9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



UCB1 for Multi-Armed Bandits: Example
Consider the following multi-armed bandit with arms 1, 2, and 3. After
playing each arm once (n = 1, 2, 3), UCB1 determines the next arm to play.

n u1 n1 u2 n2 u3 n3
1, 2, 3 0.3 1 0.0 1 1.0 1
UCB1 1.78 1.48 2.48
4 1.0 + 0.0 2

UCB1 1.97 1.67 1.68
5 0.3 + 0.3 2

UCB1 1.57 1.79 1.77
6 0.0 + 0.5 2

UCB1 1.64 1.59 1.84
7 1.0 + 1.0 3

UCB1 1.69 1.64 1.81
8 2.0 + 0.0 4

UCB1 1.74 1.69 1.52
9 0.6 + 0.3 3

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 15 of 19 Computational
Logic ∴ Group



MCTS with UCT: Remarks
• Thus MCTS treats the selection of a new leaf as a sequence of

multi-armed bandit problems, using UCB1 for each of them (separately).

• Typically, all successors of a selected leaf are created after expansion;
then every unvisited child gets one playout until all have been visited.

• To avoid memory overflow, at some point expansion is omitted (but
selection, simulation, and backpropagation are continued).

• The definition of the UCB1 values guarantees that the node with the
highest number of playouts is also the one with the highest average
utility (and highest confidence in that average utility).

• MCTS does not require hand-crafted heuristic evaluation functions.
• Computing the result of a playout takes linear time in the height of the

game tree.
• We still need a playout policy to achieve “realistic” playout values.
• AlphaZero [Silver et al., 2018] learns a playout policy from self-play using

neural networks (interleaving learning and MCTS).
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Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361

• Heuristic evaluation of states is not very effective because material value
is not very important and most positions are in flux until the endgame

⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]
• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)
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• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing

• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]
• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 17 of 19 Computational
Logic ∴ Group

https://doi.org/10.1007/978-3-540-75538-8_7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1296
https://pubsonline.informs.org/doi/10.1287/opre.1040.0145
https://doi.org/10.1126/science.aar6404


Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361
• Heuristic evaluation of states is not very effective because material value

is not very important and most positions are in flux until the endgame
⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]

• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into
Monte Carlo sampling [Chang et al., 2005]

• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 17 of 19 Computational
Logic ∴ Group

https://doi.org/10.1007/978-3-540-75538-8_7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1296
https://pubsonline.informs.org/doi/10.1287/opre.1040.0145
https://doi.org/10.1126/science.aar6404


Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361
• Heuristic evaluation of states is not very effective because material value

is not very important and most positions are in flux until the endgame
⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]

• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 17 of 19 Computational
Logic ∴ Group

https://doi.org/10.1007/978-3-540-75538-8_7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1296
https://pubsonline.informs.org/doi/10.1287/opre.1040.0145
https://doi.org/10.1126/science.aar6404


Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361
• Heuristic evaluation of states is not very effective because material value

is not very important and most positions are in flux until the endgame
⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]
• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]

• Computer victory (AlphaGo) over human champions
(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 17 of 19 Computational
Logic ∴ Group

https://doi.org/10.1007/978-3-540-75538-8_7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1296
https://pubsonline.informs.org/doi/10.1287/opre.1040.0145
https://doi.org/10.1126/science.aar6404


Advances in Computer Go
• Go is estimated to have 10172 states and a branching factor of at least 361
• Heuristic evaluation of states is not very effective because material value

is not very important and most positions are in flux until the endgame
⇝ Alpha-Beta Tree Search is not well-suited for Go playing
• Go-playing AIs were weak (beaten by humans) until the late 2000s
• Monte Carlo Tree Search [Coulom, 2006] improved computer Go playing
• UCT algorithm incorporated UCB1 into MCTS [Kocsis & Szepesvári, 2006]
• Adaptive Multistage Sampling (AMS) algorithm incorporated UCB1 into

Monte Carlo sampling [Chang et al., 2005]
• Deep reinforcement learning to obtain a playout policy [Silver et al., 2018]
• Computer victory (AlphaGo) over human champions

(2015 Fan Hui, 2016 Lee Sedol, 2017 Ke Jie)

Playing Games: Monte Carlo Tree Search (Lecture 5)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 17 of 19 Computational
Logic ∴ Group

https://doi.org/10.1007/978-3-540-75538-8_7
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.1296
https://pubsonline.informs.org/doi/10.1287/opre.1040.0145
https://doi.org/10.1126/science.aar6404


The End?
Example: Attackability

Gleave et al. [2023] recently presented an attack on a super-human Go AI:
• Using reinforcement learning against a fixed victim (KataGo), they are

able to discover systematic weaknesses in KataGo’s gameplay.

• They use AlphaZero-style training, but where AZ plays against itself, they
train an attacker to play against KataGo.

• The trained attacker achieves significant win rates against the victim, with
and without search.

• The discovered exploit is interpretable and can be learnt by (expert)
human players, who can then in turn reliably win against KataGo.

⇝ If there are single moves that can turn the game, MCTS might fail to
consider those moves due to its stochastic mode of operation.
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Conclusion

Summary

• Monte Carlo Tree Search uses random playouts to evaluate moves and
keeps statistics on which moves led to which payoffs how many times.

• A selection policy balances exploitation and exploration.
• UCT is an effective selection policy that applies UCB1 to trees.
• A playout policy steers playout simulations towards realistic play.
• MCTS and deep reinforcement learning led to expert-level Go programs.

Action Points

• Implement a MCTS-based program for playing Tic-Tac-Toe.
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