

Hannes Strass (based on slides by Michael Thielscher) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Model Theory

Lecture 9, 4th Dec 2023 // Foundations of Logic Programming, WS 2023/24

Previously ...

- For every normal logic program *P*, its **completion** *comp*(*P*) replaces the logical implications of clauses by equivalences (to disjunctions of bodies).
- SLDNF resolution w.r.t. P is **sound** for entailment w.r.t. *comp*(P).
- SLDNF resolution is only **complete** (for entailment w.r.t. *comp(P)*) for certain combinations of classes of programs, queries, and selection rules.
- For a normal program *P*, its **dependency graph** *D*_{*P*} explicitly shows positive and negative dependencies between predicate symbols.
- A normal program *P* is **stratified** iff *D_P* has no cycle with a negative edge.

P:
$$p \leftarrow q, \sim r$$

 $q \leftarrow r$ Completion of P:
 $p \leftrightarrow (q \land \neg r)$ $p/0 \leftarrow +$
 \checkmark $q \leftrightarrow r$
 $r \leftrightarrow false$

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 2 of 32

Consequence Operator for Normal Programs

Standard Models

Perfect Models and Local Stratification

Well-Supported Models

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 3 of 32

Consequence Operator for Normal Programs

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 4 of 32

Consequence Operator for Normal Programs

Definition

Let *P* be a normal logic program and *I* be a Herbrand interpretation. Then

$$T_P(I) := \{H \mid H \leftarrow \vec{B} \in ground(P), I \models \vec{B}\}$$

In case *P* is a definite program, we know that

- T_P is monotonic,
- T_P is continuous,
- T_P has the least fixpoint $\mathcal{M}(P)$,
- $\mathcal{M}(P) = T_P \uparrow \omega$.

For normal programs, all of these properties are lost.

*T_P***-Characterisation for Normal LPs (1)**

Lemma 4.3

Let *P* be a normal logic program and *I* be a Herbrand interpretation. Then

 $I \models P$ iff $T_P(I) \subseteq I$

Proof.

$$\begin{split} I &\models P \\ \text{iff} & \text{for every } H \leftarrow \vec{B} \in ground(P): \quad I \models \vec{B} \text{ implies } I \models H \\ \text{iff} & \text{for every } H \leftarrow \vec{B} \in ground(P): \quad I \models \vec{B} \text{ implies } H \in I \\ \text{iff} & \text{for every ground atom } H: \\ H \leftarrow \vec{B} \in ground(P) \text{ and } I \models \vec{B} \text{ implies } H \in I \\ \text{iff} & \text{for every ground atom } H: \quad H \in T_P(I) \text{ implies } H \in I \\ \text{iff} & T_P(I) \subseteq I \end{split}$$

T_P-Characterisation for Normal LPs (2)

Definition

Let *F* and Π be ranked alphabets of function symbols and predicate symbols, respectively, let $= \notin \Pi$ be a binary predicate symbol (equality), and let *I* be a Herbrand interpretation for *F* and Π . Then

 $I_{=} := I \cup \{=(t, t) \mid t \in HU_{F}\}$

is called a **standardised** Herbrand interpretation for *F* and $\Pi \cup \{=\}$.

Lemma 4.4

Let *P* be a normal logic program and *I* a Herbrand interpretation. Then

 $I_{=} \models comp(P)$ iff $T_{P}(I) = I$

\sim The *T_P* operator for normal LPs characterises the completion semantics.

*T_P***-Characterisation for Normal LPs (3)**

Proof Idea of Lemma 4.4:

 $I_{=} \models comp(P)$

- iff (since $I_{=}$ is a model for standard axioms of equality and inequality) for every ground atom H: $I \models (H \leftrightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B})$
- iff for every ground atom *H*: $H \in I$ iff $I \models \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}$
- iff for every ground atom *H*: $H \in I$ iff $I \models \vec{B}$ for some $H \leftarrow \vec{B} \in ground(P)$
- iff for every ground atom *H*: $H \in I$ iff $H \in T_P(I)$
- iff $T_P(l) = l$

→ Is *comp*(*P*) the "intended" declarative semantics of *P*?

Completion may be Inadequate

Consider the following normal logic program P:

 $\begin{array}{l} \textit{ill} \leftarrow \sim \textit{ill}, \textit{infection} \\ \textit{infection} \leftarrow \end{array}$

Its completion $comp(P) \supseteq \{ill \leftrightarrow (\neg ill \land infection), infection \leftrightarrow true\}$ is unsatisfiable (it has no models).

Hence, $comp(P) \models healthy$.

But *I* = {*infection*, *ill*} is the only Herbrand model of *P* (taken as a theory):

 $P \equiv \{ill \leftarrow (\neg ill \land infection), infection\} \equiv \{ill \lor \neg \neg ill \lor \neg \neg infection, infection\}$

Hence, $P \not\models healthy$.

Slide 9 of 32

Non-Intended Minimal Herbrand Models

For normal LPs, a unique least Herbrand model is not guaranteed to exist. Can we at least settle for minimal Herbrand models?

$$P_1: p \leftarrow \sim q$$

*P*₁ has three Herbrand models:

$$M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}.$$

 P_1 has no least, but two minimal Herbrand models: M_1 and M_2 However: M_1 , and not M_2 , is the "intended" model of P_1 .

Supported Herbrand Interpretations

Definition

A Herbrand interpretation *I* of *P* is **supported**

: \iff for every $H \in I$ there exists some $H \leftarrow \vec{B} \in ground(P)$ such that $I \models \vec{B}$.

If additionally $I \models P$, we say that I is a **supported model** of P.

(Intuitively: \vec{B} is an explanation for *H*.)

Example

- M_1 is a supported model of P_1 . (Literal $\sim q$ is a support for p.)
- M_2 is no supported model of P_1 . (Atom $q \in M_2$ has no support.)
- Note (cf. Lemma 4.3) that $T_{P_1}(M_2) = \emptyset \subsetneq M_2$, but in contrast $T_{P_1}(M_1) = M_1$.
- The definite (therefore normal) program $\{p \leftarrow q, q \leftarrow p\}$ has two supported models: \emptyset and $\{p, q\}$. In the second supported model, p is an explanation for q and vice versa. Thus "support" can be cyclic.

*T_P***-Characterisation for Normal LPs (4)**

Lemma 6.2

Let *P* be a normal program and *I* be a Herbrand interpretation. Then *I* is a supported model of *P* iff $T_P(I) = I$

Proof Idea.

 $I \models P$ and I is supported

- iff for every $(H \leftarrow \vec{B}) \in ground(P)$: $I \models \vec{B}$ implies $I \models H$ and for every $H \in I$: $I \models \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B}$
- iff for every ground atom *H*: $I \models (H \leftarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B})$ and $I \models (H \rightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B})$
- iff for every ground atom *H*: $I \models (H \leftrightarrow \bigvee_{(H \leftarrow \vec{B}) \in ground(P)} \vec{B})$
- iff *I*₌ model for *comp*(*P*)
- iff (Lemma 4.4) $T_P(I) = I$

Standard Models

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 13 of 32

Non-Intended Supported Models

 P_2 has three Herbrand models:

$$M_1 = \{p\}, M_2 = \{q\}, \text{ and } M_3 = \{p, q\}$$

P₂ has two supported Herbrand models:

 M_1 and M_2

However: M_1 , and not M_2 , is the "intended" model of P_2 .

 M_1 will be called the standard model of P_2 (cf. slide 19).

Stratifications

Definition

Let P be a normal program with dependency graph D_P .

- A predicate symbol p is **defined** in P : \iff *P* contains a clause $p(t_1, \ldots, t_n) \leftarrow \vec{B}$.
- $P_1 \cup \ldots \cup P_n = P$ is a **stratification** of P $: \iff$
 - 1. $P_i \neq \emptyset$ for every $i \in [1, n]$
 - } a partition of P 2. $P_i \cap P_i = \emptyset$ for every $i, j \in [1, n]$ with $i \neq j$
 - 3. for every *p* defined in P_i and edge $q \xrightarrow{+} p$ in D_P : *q* is not defined in $\bigcup_{j=i+1}^n P_j$
 - 4. for every p defined in P_i and edge $q \rightarrow p$ in D_p : q is not defined in $\bigcup_{i=i}^n P_i$

Lemma 6.5

A normal program *P* is stratified iff there exists a stratification of *P*.

Note: A stratified program may have different stratifications.

Example (1)

The normal logic program *P* is the following:

 $\begin{array}{rcl} zero(0) & \leftarrow \\ positive(x) & \leftarrow & num(x), \ \sim zero(x) \\ num(0) & \leftarrow \\ num(s(x)) & \leftarrow & num(x) \end{array}$

 $P_1 \cup P_2 \cup P_3$ is a stratification of P, where

$$P_1 = \{num(0) \leftarrow, num(s(x)) \leftarrow num(x)\}$$

$$P_2 = \{zero(0) \leftarrow \}$$

$$P_3 = \{positive(x) \leftarrow num(x), \sim zero(x)\}$$

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 16 of 32

Example (2)

P admits no stratification.

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 17 of 32

Quiz: Stratifications

Recall: A normal logic program P is *stratified* iff its dependency graph D_P has no cycle involving a negative edge.

Quiz

Consider the normal logic program *P* where *x* is the only variable: ...

Standard Models (Stratified Programs)

Definition

Let *I* be an Herbrand interpretation, Π be a set of predicate symbols. $I \mid \Pi := I \cap \{p(t_1, \ldots, t_n) \mid p \in \Pi, t_1, \ldots, t_n \text{ ground terms}\}$ Let $P_1 \cup \ldots \cup P_n$ be a stratification of the normal program P. Define: M_1 := least Herbrand model of P_1 such that $M_1 \mid \{p \mid p \text{ not defined in } P \text{ not defined in } P_1 \cup \ldots \cup P_n\} = \emptyset$ M_2 := least Herbrand model of P_2 such that $M_2 \mid \{p \mid p \text{ defined nowhere or in } P_1 \text{ not defined in } P_2 \cup \ldots \cup P_n\} = M_1$ M_n := least Herbrand model of P_n such that $M_n \mid \{p \mid p \text{ defined nowhere or in } P_1 \cup \ldots \cup P_{n-1} \text{ not defined in } P_n\} = M_n$ We call $M_P = M_n$ the **standard model** of *P*.

Example (1)

Let $P_1 \cup P_2 \cup P_3$ with

 $P_{1} = \{num(0) \leftarrow, num(s(x)) \leftarrow num(x)\}$ $P_{2} = \{zero(0) \leftarrow \}$ $P_{3} = \{positive(x) \leftarrow num(x), \sim zero(x)\}$

be a stratification of P. Then:

$$M_1 = \{num(t) \mid t \in HU_{\{s,0\}}\}$$

$$M_2 = \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\}$$

$$M_{3} = \{num(t) \mid t \in HU_{\{s,0\}}\} \cup \{zero(0)\}$$

 $\cup \{ positive(t) \mid t \in HU_{\{s,0\}} \setminus \{0\} \}$

 $= \{num(0), num(s(0)), ...\}$

 $= \{ zero(0), num(0), num(s(0)), ... \}$

 $= \{ zero(0), num(0), num(s(0)), ... \}$

 \cup {*positive*(*s*(0)), *positive*(*s*(*s*(0))), . . . }

Hence $M_P = M_3$ is the standard model of *P*.

Properties of Standard Models

Theorem 6.7

Consider a stratified program *P*. Then:

- *M_P* does not depend on the chosen stratification of *P*,
- *M_P* is a minimal model of *P*,
- *M_P* is a supported model of *P*.

Corollary

For a stratified program *P*, *comp*(*P*) admits a Herbrand model.

Perfect Models and Local Stratification

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 22 of 32

Stratification may be too demanding

Consider the first-order program P_1 over $\Pi_1 = \{even/1\}$ and $F_1 = \{s/1, 0/0\}$:

• *P*₁ is not stratified, since *even*/1 depends negatively on itself.

 $even(0) \leftarrow$ $even(s(x)) \leftarrow \sim even(x)$

Observation

 P_1 has a clear intended model: {*even*(0), *even*(*s*(*s*(0))), *even*(*s*(*s*(*s*(0)))), ...}.

Consider, in contrast, the propositional program P_0 over $\Pi_0 = HB_{\{even\},\{s,0\}} = \{even(0)/0, even(s(0))/0, ...\}$ and $F_0 = \emptyset$:

- *P*⁰ is stratified.
- The standard model of P_0 is the intended model of P_1 .

 $even(0) \leftarrow$ $even(s(0)) \leftarrow \sim even(0)$ $even(s(s(0))) \leftarrow \sim even(s(0))$ \vdots

Perfect Models

Definition

Let *P* be a normal program over Π and *F*, and let \prec be a well-founded order on $HB_{\Pi,F}$. Further, let *M* and *N* be Herbrand interpretations of *P*.

• *N* is **preferable** to *M* (written $N \triangleleft M$)

: \iff for every $B \in N \setminus M$ there exists an $A \in M \setminus N$ such that $A \prec B$.

• A Herbrand model *M* of *P* is **perfect** (w.r.t. ≺)

: \iff there is no Herbrand model of *P* that is preferable to *M*.

Well-founded orders admit no infinite descending chains $\ldots \prec c_2 \prec c_1 \prec c_0$.

Example

$$egin{array}{cccc} p & \leftarrow & \sim q \ q & \leftarrow & q \end{array}$$

For the well-founded order $q \prec p$, we obtain $\{p\} \triangleleft \{q\}$.

Slide 24 of 32

The Standard Model is Perfect

Lemma 6.9

Let *P* be a normal program and \prec be a well-founded order on $HB_{\Pi,F}$.

- If $N \subsetneq M$ then $N \triangleleft M$.
- Every perfect model of *P* is minimal.
- The relation < is a partial order on Herbrand interpretations.

Theorem 6.10

Let *P* be a stratified normal program over Π and *F* and for $A, B \in HB_{\Pi,F}$ define $A \prec B :\iff$ the predicate symbol of *B* depends negatively on the predicate symbol of *A*.

Then M_P is a unique perfect model of P (w.r.t. \prec).

The standard model M_P is thus the \triangleleft -least Herbrand model of P.

But how to come up with an order \prec for non-stratified programs?

Local Stratification

Definition

Let *P* be a normal program over Π and *F*.

- A **local stratification** for *P* is a function *strat* from $HB_{\Pi,F}$ to the countable ordinals.
- For a given local stratification *strat* and $A \in HB_{\Pi,F}$, we define $strat(\sim A) := strat(A) + 1$.
- A clause $c \in P$ is **locally stratified w.r.t.** strat : \iff for every $A \leftarrow \vec{K}, L, \vec{M} \in ground(c)$, we have $strat(A) \ge strat(L)$.
- *P* is **locally stratified w.r.t.** *strat* : \iff all $c \in P$ are locally stratified w.r.t. *strat*.
- *P* is locally stratified
 - : \iff it is locally stratified w.r.t. to some local stratification.

 \rightsquigarrow A first-order program is locally stratified iff its ground version is stratified.

Locally Stratified Programs & Perfect Models

Lemma 6.12

Every stratified program is locally stratified.

Example

The program

 $even(0) \leftarrow$ $even(s(x)) \leftarrow \sim even(x)$

is locally stratified (via $\{even(s^n(0)) \mapsto n\}$), but not stratified.

Theorem 6.13

Let *P* be a normal logic program (over Π and *F*) that is locally stratified (w.r.t. *strat*), and for $A, B \in HB_{\Pi,F}$ define $A \prec B :\iff strat(A) < strat(B)$. Then *P* has a unique perfect model (w.r.t. \prec).

Slide 27 of 32

Well-Supported Models

Negation: Model Theory (Lecture 9) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 28 of 32

From Supported to Well-Supported Models

	has two supported models, \emptyset and $\{p,q\}$.
$p \leftarrow q$ $q \leftarrow p$	Only the minimal supported model is intended.
	has two minimal supported models, $\{p\}$ and $\{q\}$.
$p \leftarrow \sim q$ $q \leftarrow q$	Only { <i>p</i> } is intended: the support of <i>q</i> (" <i>q</i> because <i>q</i> ") is unfounded.
$p \leftarrow \sim q \ q \leftarrow \sim p$	 has two minimal supported models, {<i>p</i>} and {<i>q</i>}. The program is not (locally) stratified. The situation is symmetric, so why should we prefer one model over the other?

Slide 29 of 32

Well-Supported Models

Definition

Let *P* be a normal logic program over vocabulary Π , *F*. A Herbrand interpretation $I \subseteq HB_{\Pi,F}$ is **well-supported** : \iff there is a well-founded order \prec on $HB_{\Pi,F}$ such that: for each $A \in I$ there is a clause $A \leftarrow \vec{B} \in ground(P)$ with: • $I \models \vec{B}$ • for every positive atom $C \in \vec{B}$, we have $C \prec A$.

If additionally $I \models P$, then *I* is a **well-supported model** of *P*.

Intuitively: Well-supported models disallow circular justifications.

Theorem 6.20

Any locally stratified normal logic program *P* has a unique well-supported model that coincides with its perfect model.

Slide 30 of 32

Well-Supported Models: Examples

$p \leftarrow \sim q \ q \leftarrow q$	has { <i>p</i> } as only well-supported model.
$p \leftarrow \sim q \ q \leftarrow \sim p$	has two well-supported models, $\{p\}$ and $\{q\}$.
$egin{aligned} p &\leftarrow q \ p &\leftarrow \sim q \ q &\leftarrow p \ q &\leftarrow \sim p \ q &\leftarrow \sim p \end{aligned}$	has no well-supported model.

Preview: Well-supported models are also known as stable models.

Slide 31 of 32

Conclusion

Summary

- The immediate consequence operator *T_P* for a normal logic program *P* characterizes the **supported models** of *P* (= the models of *comp*(*P*)).
- The **stratification** of a program *P* partitions the program in layers (strata) such that predicates in one layer only negatively/positively depend on predicates in strictly lower/lower or equal layers.
- Programs *P* that are **stratified** have an intended **standard model** *M*_{*P*}.
- A program is **locally stratified** iff its ground instantiation is stratified.
- Locally stratified programs allow for a unique **perfect model**.
- A normal program *P* may have zero or more **well-supported models**.

Suggested action points:

• Prove Lemma 6.5; show that every well-supported model is supported.

