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Previously . . .
• For every normal logic program P, its completion comp(P) replaces thelogical implications of clauses by equivalences (to disjunctions of bodies).• SLDNF resolution w.r.t. P is sound for entailment w.r.t. comp(P).• SLDNF resolution is only complete (for entailment w.r.t. comp(P)) forcertain combinations of classes of programs, queries, and selection rules.• For a normal program P, its dependency graph DP explicitly showspositive and negative dependencies between predicate symbols.• A normal program P is stratified iff DP has no cycle with a negative edge.

P: p ← q,∼r
q ← r

p/0 q/0 r/0+ +
–

Completion of P:
p ↔ (q∧¬r)
q ↔ r
r ↔ false

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 2 of 32 Computational
Logic ∴ Group



Overview

Consequence Operator for Normal Programs
Standard Models
Perfect Models and Local Stratification
Well-Supported Models

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 3 of 32 Computational
Logic ∴ Group



Consequence Operator for Normal Programs
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Consequence Operator for Normal Programs
Definition
Let P be a normal logic program and I be a Herbrand interpretation. Then

TP(I) := {H | H ← B⃗ ∈ ground(P), I |= B⃗}

In case P is a definite program, we know that
• TP is monotonic,
• TP is continuous,• TP has the least fixpointM(P),
• M(P) = TP ↑ω.

For normal programs, all of these properties are lost.
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TP-Characterisation for Normal LPs (1)
Lemma 4.3
Let P be a normal logic program and I be a Herbrand interpretation. Then

I |= P iff TP(I) ⊆ I

Proof.
I |= P

iff for every H ← B⃗ ∈ ground(P): I |= B⃗ implies I |= H
iff for every H ← B⃗ ∈ ground(P): I |= B⃗ implies H ∈ Iiff for every ground atom H:

H ← B⃗ ∈ ground(P) and I |= B⃗ implies H ∈ Iiff for every ground atom H: H ∈ TP(I) implies H ∈ Iiff TP(I) ⊆ I

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 6 of 32 Computational
Logic ∴ Group



TP-Characterisation for Normal LPs (2)
Definition
Let F and Π be ranked alphabets of function symbols and predicate symbols,respectively, let = /∈ Π be a binary predicate symbol (equality), and let I be aHerbrand interpretation for F and Π. Then

I= := I∪ {=(t, t) | t ∈ HUF}

is called a standardised Herbrand interpretation for F and Π∪ {=}.
Lemma 4.4
Let P be a normal logic program and I a Herbrand interpretation. Then

I= |= comp(P) iff TP(I) = I

⇝ The TP operator for normal LPs characterises the completion semantics.
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TP-Characterisation for Normal LPs (3)
Proof Idea of Lemma 4.4:

I= |= comp(P)
iff (since I= is a model for standard axioms of equality and inequality)

for every ground atom H : I |= (
H ↔

∨
(H← B⃗)∈ ground(P) B⃗

)
iff for every ground atom H : H ∈ I iff I |=

∨
(H← B⃗)∈ ground(P) B⃗

iff for every ground atom H : H ∈ I iff I |= B⃗ for some H← B⃗ ∈ ground(P)
iff for every ground atom H : H ∈ I iff H ∈ TP(I)
iff TP(I) = I

⇝ Is comp(P) the “intended” declarative semantics of P?
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Completion may be Inadequate
Consider the following normal logic program P:

ill ← ∼ill, infection
infection ←

Its completion comp(P) ⊇ {ill ↔ (¬ill ∧ infection), infection ↔ true} isunsatisfiable (it has no models).
Hence, comp(P) |= healthy.
But I = {infection, ill} is the only Herbrand model of P (taken as a theory):

P ≡ {ill← (¬ill ∧ infection), infection} ≡ {ill ∨¬¬ill ∨¬infection, infection}
Hence, P ̸|= healthy.

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 9 of 32 Computational
Logic ∴ Group



Non-Intended Minimal Herbrand Models

For normal LPs, a unique least Herbrand model is not guaranteed to exist.
Can we at least settle for minimal Herbrand models?

P1 : p ← ∼q

P1 has three Herbrand models:
M1 = {p}, M2 = {q}, and M3 = {p,q}.

P1 has no least, but two minimal Herbrand models: M1 and M2
However: M1, and not M2, is the “intended” model of P1.
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Supported Herbrand Interpretations
Definition
A Herbrand interpretation I of P is supported:⇐⇒ for every H ∈ I there exists some H← B⃗ ∈ ground(P) such that I |= B⃗.
If additionally I |= P, we say that I is a supported model of P.
(Intuitively: B⃗ is an explanation for H.)
Example
• M1 is a supported model of P1. (Literal ∼q is a support for p.)• M2 is no supported model of P1. (Atom q ∈ M2 has no support.)• Note (cf. Lemma 4.3) that TP1 (M2) = ∅ ⊊ M2, but in contrast TP1 (M1) = M1.• The definite (therefore normal) program {p←q, q←p} has twosupported models: ∅ and {p,q}. In the second supported model, p is anexplanation for q and vice versa. Thus “support” can be cyclic.
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TP-Characterisation for Normal LPs (4)
Lemma 6.2
Let P be a normal program and I be a Herbrand interpretation. Then

I is a supported model of P iff TP(I) = I

Proof Idea.
I |= P and I is supported

iff for every (H ← B⃗) ∈ ground(P) : I |= B⃗ implies I |= H
and for every H ∈ I : I |= ∨

(H← B⃗)∈ ground(P) B⃗iff for every ground atom H : I |= (
H ←

∨
(H← B⃗)∈ ground(P) B⃗

)
and I |= (

H →
∨
(H← B⃗)∈ ground(P) B⃗

)
iff for every ground atom H : I |= (

H ↔
∨
(H← B⃗)∈ ground(P) B⃗

)
iff I= model for comp(P)iff (Lemma 4.4) TP(I) = I
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Standard Models
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Non-Intended Supported Models

P2 : p ← ∼q
q ← q

P2 has three Herbrand models:
M1 = {p}, M2 = {q}, and M3 = {p,q}

P2 has two supported Herbrand models:
M1 and M2

However: M1, and not M2, is the “intended” model of P2.
M1 will be called the standard model of P2 (cf. slide 19).
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Stratifications
Definition
Let P be a normal program with dependency graph DP.• A predicate symbol p is defined in P:⇐⇒ P contains a clause p(t1, . . . , tn)← B⃗.
• P1 ∪ . . .∪ Pn = P is a stratification of P:⇐⇒

1. Pi ̸= ∅ for every i ∈ [1,n]2. Pi ∩ Pj = ∅ for every i, j ∈ [1,n] with i ̸= j

} a partition of P
3. for every p defined in Pi and edge q +−→ p in DP: q is not defined in ⋃n

j=i+1 Pj4. for every p defined in Pi and edge q –−→ p in DP: q is not defined in ⋃n
j=i Pj

Lemma 6.5
A normal program P is stratified iff there exists a stratification of P.
Note: A stratified program may have different stratifications.
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Example (1)
The normal logic program P is the following:

zero(0) ←
positive(x) ← num(x), ∼zero(x)

num(0) ←
num(s(x)) ← num(x)

P1 ∪ P2 ∪ P3 is a stratification of P, where
P1 = {num(0) ← , num(s(x)) ← num(x)}
P2 = {zero(0) ←}
P3 = {positive(x) ← num(x), ∼zero(x)}

num/1 zero/1

positive/1

+
+ –

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 16 of 32 Computational
Logic ∴ Group



Example (2)

num(0) ←
num(s(x)) ← num(x)
even(0) ←
even(x) ← ∼odd(x), num(x)

odd(s(x)) ← even(x)

P admits no stratification.

num/1 even/1 odd/1+ –
+ +
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Quiz: Stratifications

Recall: A normal logic program P is stratified iff its dependency graph DP hasno cycle involving a negative edge.
Quiz
Consider the normal logic program P where x is the only variable: . . .
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Standard Models (Stratified Programs)
Definition
Let I be an Herbrand interpretation, Π be a set of predicate symbols.

I |Π := I ∩ {p(t1, . . . , tn) | p ∈ Π, t1, . . . , tn ground terms}
Let P1 ∪ . . .∪ Pn be a stratification of the normal program P. Define:
M1 := least Herbrand model of P1 such that

M1 | {p |p not defined in Pnot defined in P1 ∪ . . .∪ Pn} = ∅
M2 := least Herbrand model of P2 such that

M2 | {p |p defined nowhere or in P1not defined in P2 ∪ . . .∪ Pn} = M1...
Mn := least Herbrand model of Pn such that

Mn | {p |p defined nowhere or in P1 ∪ . . .∪ Pn–1not defined in Pn} = Mn–1
We call MP = Mn the standard model of P.

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 19 of 32 Computational
Logic ∴ Group



Example (1)
Let P1 ∪ P2 ∪ P3 with

P1 = {num(0) ← , num(s(x)) ← num(x)}
P2 = {zero(0) ←}
P3 = {positive(x) ← num(x), ∼zero(x)}

be a stratification of P. Then:
M1 = {num(t) | t ∈ HU{s,0}} = {num(0),num(s(0)), . . .}
M2 = {num(t) | t ∈ HU{s,0}} ∪ {zero(0)} = {zero(0),num(0),num(s(0)), . . .}
M3 = {num(t) | t ∈ HU{s,0}} ∪ {zero(0)} = {zero(0),num(0),num(s(0)), . . .}

∪ {positive(t) | t ∈ HU{s,0} \ {0}} ∪ {positive(s(0)),positive(s(s(0))), . . .}

Hence MP = M3 is the standard model of P.
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Properties of Standard Models

Theorem 6.7
Consider a stratified program P. Then:
• MP does not depend on the chosen stratification of P,• MP is a minimal model of P,
• MP is a supported model of P.
Corollary
For a stratified program P, comp(P) admits a Herbrand model.
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Perfect Models and Local Stratification
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Stratification may be too demanding
Consider the first-order program P1 over
Π1 = {even/1} and F1 = {s/1, 0/0}:• P1 is not stratified, since even/1 dependsnegatively on itself.

even(0) ←
even(s(x)) ← ∼even(x)

Observation
P1 has a clear intended model: {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .}.
Consider, in contrast, the propositionalprogram P0 over Π0 = HB{even},{s,0} =
{even(0)/0, even(s(0))/0, . . .} and F0 = ∅:• P0 is stratified.• The standard model of P0 is the intendedmodel of P1.

even(0) ←
even(s(0)) ← ∼even(0)

even(s(s(0))) ← ∼even(s(0))
...
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Perfect Models
Definition
Let P be a normal program over Π and F , and let ≺ be a well-founded orderon HBΠ,F . Further, let M and N be Herbrand interpretations of P.
• N is preferable to M (written N ◁M):⇐⇒ for every B ∈ N \M there exists an A ∈ M \N such that A ≺ B.
• A Herbrand model M of P is perfect (w.r.t. ≺):⇐⇒ there is no Herbrand model of P that is preferable to M.
Well-founded orders admit no infinite descending chains . . . ≺ c2 ≺ c1 ≺ c0.
Example

p ← ∼q
q ← q

For the well-founded order q ≺ p, we obtain {p} ◁ {q}.
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The Standard Model is Perfect
Lemma 6.9
Let P be a normal program and ≺ be a well-founded order on HBΠ,F .• If N ⊊ M then N ◁M.
• Every perfect model of P is minimal.
• The relation ◁ is a partial order on Herbrand interpretations.
Theorem 6.10
Let P be a stratified normal program over Π and F and for A,B ∈ HBΠ,F define
A ≺ B :⇐⇒ the predicate symbol of B depends negatively on the predicatesymbol of A.
Then MP is a unique perfect model of P (w.r.t. ≺).
The standard model MP is thus the ◁-least Herbrand model of P.
But how to come up with an order ≺ for non-stratified programs?
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Local Stratification
Definition
Let P be a normal program over Π and F.
• A local stratification for P is a function strat from HBΠ,F to the countableordinals.
• For a given local stratification strat and A ∈ HBΠ,F , we define

strat(∼A) := strat(A) + 1.
• A clause c ∈ P is locally stratified w.r.t. strat:⇐⇒ for every A← K⃗ , L, M⃗ ∈ ground(c), we have strat(A) ≥ strat(L).
• P is locally stratified w.r.t. strat:⇐⇒ all c ∈ P are locally stratified w.r.t. strat.
• P is locally stratified:⇐⇒ it is locally stratified w.r.t. to some local stratification.
⇝ A first-order program is locally stratified iff its ground version is stratified.
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Locally Stratified Programs & Perfect Models
Lemma 6.12
Every stratified program is locally stratified.
Example
The program

even(0) ←
even(s(x)) ← ∼even(x)

is locally stratified (via {even(sn(0)) 7→ n}), but not stratified.
Theorem 6.13
Let P be a normal logic program (over Π and F) that is locally stratified(w.r.t. strat), and for A,B ∈ HBΠ,F define A ≺ B :⇐⇒ strat(A) < strat(B).
Then P has a unique perfect model (w.r.t. ≺).
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Well-Supported Models
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From Supported to Well-Supported Models

p ← q
q ← p

has two supported models, ∅ and {p,q}.
Only the minimal supported model is intended.

p ← ∼q
q ← q

has two minimal supported models, {p} and {q}.
Only {p} is intended: the support of q(“q because q”) is unfounded.

p ← ∼q
q ← ∼p

has two minimal supported models, {p} and {q}.
• The program is not (locally) stratified.
• The situation is symmetric, so why should weprefer one model over the other?
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Well-Supported Models
Definition
Let P be a normal logic program over vocabulary Π, F.
A Herbrand interpretation I ⊆ HBΠ,F is well-supported:⇐⇒there is a well-founded order ≺ on HBΠ,F such that:

for each A ∈ I there is a clause A← B⃗ ∈ ground(P) with:
• I |= B⃗
• for every positive atom C ∈ B⃗, we have C ≺ A.

If additionally I |= P, then I is a well-supported model of P.
Intuitively: Well-supported models disallow circular justifications.
Theorem 6.20
Any locally stratified normal logic program P has a unique well-supportedmodel that coincides with its perfect model.
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Well-Supported Models: Examples
p ← ∼q
q ← q

has {p} as only well-supported model.

p ← ∼q
q ← ∼p

has two well-supported models, {p} and {q}.

p ← q
p ← ∼q
q ← p
q ← ∼p

has no well-supported model.

Preview: Well-supported models are also known as stable models.
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Conclusion
Summary
• The immediate consequence operator TP for a normal logic program Pcharacterizes the supported models of P (= the models of comp(P)).
• The stratification of a program P partitions the program in layers (strata)such that predicates in one layer only negatively/positively depend onpredicates in strictly lower/lower or equal layers.
• Programs P that are stratified have an intended standard model MP.• A program is locally stratified iff its ground instantiation is stratified.
• Locally stratified programs allow for a unique perfect model.
• A normal program Pmay have zero or more well-supported models.
Suggested action points:
• Prove Lemma 6.5; show that every well-supported model is supported.

Negation: Model Theory (Lecture 9)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 32 of 32 Computational
Logic ∴ Group


	Consequence Operator for Normal Programs
	Standard Models
	Perfect Models and Local Stratification
	Well-Supported Models

