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Abstract. This work provides proof-search algorithms and automated
counter-model extraction for a class of STIT logics. With this, we answer
an open problem concerning syntactic decision procedures and cut-free
calculi for STIT logics. A new class of cut-free complete labelled sequent
calculi G3Ldmm

n , for multi-agent STIT with at most n-many choices, is
introduced. We refine the calculi G3Ldmm

n through the use of propagation
rules and demonstrate the admissibility of their structural rules, result-
ing in the auxiliary calculi Ldmm

n L. In the single-agent case, we show
that the refined calculi Ldmm

n L derive theorems within a restricted class
of (forestlike) sequents, allowing us to provide proof-search algorithms
that decide single-agent STIT logics. We prove that the proof-search al-
gorithms are correct and terminate.

Keywords: Decidability Labelled calculus Logics of agency Proof
search Proof theory Propagation rules Sequent STIT logic

1 Introduction

Modal logics of STIT, an acronym for ‘seeing to it that’, have a long tradition
in the formal investigation of agency, starting with a series of papers by Belnap
and Perloff in the 1980s and culminating in [3]. For the past decades, STIT logic
has continued to receive considerable attention, proving itself invaluable in a
multitude of fields concerned with formal reasoning about agentive choice mak-
ing. For example, the framework has been applied to epistemic logic [5], deontic
logic [11,13], and the formal analysis of legal reasoning [5,12]. Surprisingly, in-
vestigations of the mathematical properties of STIT logics are limited [2,15] and
its proof-theory has only been addressed recently [4,19]. What is more, despite
AI-oriented STIT papers motivating the need of tools for automated reasoning
about agentive choice-making [1,2,4], the envisaged automation results are still
lacking. The present work will be the first to provide terminating, automated
proof-search for a class of STIT logics, including counter-model extraction di-
rectly based on failed proof-search.

⋆ This is a pre-print of an article published in Lecture Notes in Arti-
ficial Intelligence. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-33792-6_13 . Work funded by the projects
WWTF MA16-028, FWF I2982 and FWF W1255-N23.

http://arxiv.org/abs/1908.11360v3
https://doi.org/10.1007/978-3-030-33792-6_13
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The sequent calculus [7] is an effective framework for proof-search, suitable for
automated deduction procedures. Given the metalogical property of analyticity,
a sequent calculus allows for the construction of proofs by merely decomposing
the formula in question. In the present work, we employ the labelled sequent
calculus—a useful formalism for a large class of modal logics [14,18]—and in-
troduce labelled sequent calculi G3Ldmm

n (with n,m ∈ N) for multi-agent STIT
logics containing limited choice axioms, discussed in [20].

In order to appropriate the calculi G3Ldmm
n for automated proof-search, we

take up a refinement method presented in [17]—developed for the more re-
stricted setting of display logic—and adapt it to the more general setting of
labelled calculi. In the refinement process the external character of labelled
systems—namely, the explicit presence of the semantic structure—is made in-
ternal through the use of alternative, yet equivalent, propagation rules [17]. The
tailored propagation rules restrict and simplify the sequential structures needed
in derivations, producing, for example, shorter proofs. Moreover, one can show
that through the use of propagation rules, the structural rules, capturing the be-
havior of the logic’s modal operators, are admissible. In our case, the resulting
refined calculi Ldmm

n L derive theorems using only forestlike sequents, allowing
us to adapt methods from [17] and provide correct and terminating proof-search
algorithms for this class of STIT logics.

In short, the contribution of this paper will be threefold: First, we provide
new sound and cut-free complete labelled sequent calculi G3Ldmm

n for all multi-
agent STIT logics Ldmm

n (with n,m ∈ N) discussed in [20]—thus extending the
class of logics addressed in [4]. Second, we show how to refine these calculi to
obtain new calculi Ldmm

n L, which are suitable for proof-search. Last, for each
n ∈ N, we provide a terminating proof-search algorithm deciding the single-
agent STIT logic Ldm1

n. Although [9] provides a polynomial reduction of Ldmm
n

into the modal logic S5 (providing decidability via S5-SAT), the present work has
the advantage that it offers a syntactic decision procedure within the unreduced
Ldmm

n language and is modular, that is, it will allow us to extend our work to a
variety of STIT logics. We conclude by discussing the prospects of generalizing
the latter results to the multi-agent setting.

The paper is structured as follows: We start by introducing the class of logics
Ldmm

n in Sec. 2. In Sec. 3, corresponding labelled calculi G3Ldmm
n are provided,

which will subsequently be refined, resulting in the calculi Ldmm
n L. We devote

Sec. 4 to proof-search algorithms and counter-model extraction.

2 Logical Preliminaries

STIT logic refers to a group of modal logics using operators that capture agen-
tial choice-making. The STIT logics Ldmm

n , which will be considered throughout
this paper, employ two types of modal operators: First, they contain a settled-
ness operator � expressing which formulae are ‘settled true’ at a current mo-
ment. Second, they contain, for each agent i in the language, an atemporal—i.e.,
instantaneous—choice operator [i] expressing that ‘agent i sees to it that’. This
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basic choice operator is referred to as the Chellas STIT [3]. Using both opera-
tors, one can define the more refined notion of deliberative STIT: i.e., [i]dφ iff
[i]φ∧¬�φ. Intuitively, [i]dφ holds when ‘agent i sees to it that φ and it is possible
for φ not to hold’. The multi-agent language for Ldmm

n is defined accordingly:

Definition 1 (The Language Lm [10]). Let Ag = {1, 2, ...,m} be a finite
set of agent labels and let V ar = {p, q, r...} be a countable set of propositional
variables. Lm is defined via the following BNF grammar:

φ ::= p | p | (φ ∧ φ) | (φ ∨ φ) | (�φ) | (♦φ) | ([i]φ) | (〈i〉φ)

where i ∈ Ag and p ∈ V ar.

Notice, the language Lm consists of formulae in negation normal form. This
notation allows us to reduce the number of rules in our calculi, enhancing the
readability and simplicity of our proof theory. The negation of φ, written as φ, is
obtained by replacing each operator with its dual, each positive atom p with its
negation p, and each p with its positive variant p [4]. Consequently, we obtain
the following abbreviations: φ → ψ iff φ ∨ ψ, φ ↔ ψ iff (φ → ψ) ∧ (ψ → φ),
⊤ iff p ∨ p, and ⊥ iff p ∧ p. We will freely use these abbreviations throughout
this paper. Since we are working in negation normal form, diamond-modalities
are introduced as separate primitive operators. We take 〈i〉 and ♦ as the duals
of [i] and �, respectively.

Following [10], since we work with instantaneous, atemporal STIT it suffices
to regard only single choice-moments in our relational frames. This means that
we can forgo the traditional branching time structures of basic, atemporal STIT
logic [3]. In what follows, we define Ldmm

n frames as those STIT frames in which
n > 0 limits the amount of choices available to each agent to at most n-many
choices (imposing no limitation when n = 0).1

Definition 2 (Relational Ldmm
n Frames and Models). Let |Ag| = m and

let Ri(w) := {v ∈ W | (w, v) ∈ Ri} for i ∈ Ag. An Ldmm
n -frame is defined as a

tuple F = (W, {Ri | i ∈ Ag}) where W 6= ∅ is a set of worlds w, v, u... and:

(C1) For each i ∈ Ag, Ri ⊆W ×W is an equivalence relation;
(C2) For all u1, ..., um ∈ W ,

⋂

i Ri(ui) 6= ∅;
(C3) Let n > 0 and i ∈ Ag, then

For all w0, w1, · · · , wn ∈ W ,
∨

0≤k≤n−1, k+1≤j≤n

Riwkwj

An Ldmm
n -model is a tuple M = (F, V ) where F is an Ldmm

n -frame and V is
a valuation assigning propositional variables to subsets of W , i.e. V : V ar 7→
P(W ). Additionally, we stipulate that condition (C3) is omitted when n = 0.

As in [10], the set of worldsW is taken to represent a single moment in which
agents from Ag are making their decision. Following (C1), for every agent i, the

1 For a discussion of the philosophical utility of reasoning with limited choice see [20].
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relation Ri is an equivalence relation; that is, Ri functions as a partitioning of
W into what will be called choice-cells for agent i. Each choice-cell represents
a set of possible worlds that may be realized by a choice of the agent. The
condition (C2) expresses the STIT principle independence of agents, ensuring
that any combination of choices, available to different agents, is consistent. The
last condition (C3), represents the STIT principle which limits the amount of
choices available to an agent to a maximum of n. For a philosophical discussion
of these principles we refer to [3, Ch. 7C].

Definition 3 (Semantic Clauses for Lm [4,10]). Let M be an Ldmm
n -model

(W, {Ri | i ∈ Ag}, V ) and let w be a world in its domain W . The satisfaction
of a formula φ ∈ Lm on M at w is inductively defined as follows:

1. M,w  p iff w ∈ V (p)
2. M,w  p iff w 6∈ V (p)
3. M,w  φ∧ψ iffM,w  φ andM,w  ψ

4. M,w  φ∨ψ iff M,w  φ or M,w  ψ

5. M,w  �φ iff ∀u ∈W , M,u  φ

6. M,w  ♦φ iff ∃u ∈ W , M,u  φ

7. M,w  [i]φ iff ∀u ∈ Ri(w), M,u  φ

8. M,w  〈i〉φ iff ∃u ∈ Ri(w), M,u  φ

A formula φ is globally true on M (i.e. M  φ) iff it is satisfied at every world
w in the domain W of M . A formula φ is valid (i.e.  φ) iff it is globally true
on every Ldmm

n -model. Last, Γ semantically implies φ, written Γ  φ, iff for all
models M and worlds w of W in M , if M,w  ψ for all ψ ∈ Γ , then M,w  φ.

It is worth emphasizing that the semantic interpretation of� refers to the domain
of the model in its entirety; i.e., φ is settled true iff φ is globally true. This is an
immediate consequence of considering instantaneous STIT in a single-moment
setting (cf. semantics where a relation R� is introduced for �, e.g., [4]).

The Hilbert calculus for Ldmm
n in Fig. 1 is taken from [20]. Apart from the

propositional axioms, it consists of S5 axiomatizations for � and [i], for each
i∈Ag. It contains the standard bridge axiom (Bridge), linking [i] to �. Further-
more, it contains an independence of agents axiom (IOA), as well as an n-choice
axiom (APCi

n) for each i∈Ag. The rules are modus ponens and �-necessitation.

Theorem 1 (Soundness and Completeness [10,20]). For any formula φ ∈
Lm, Γ ⊢Ldmm

n
φ if and only if Γ  φ.

3 Refinement of the Calculi G3Ldmm

n

In this section, we introduce the labelled calculi G3Ldmm
n for multi-agent STIT

logics (with limited choice). Our calculi are modified, extended versions of the
labelled calculi for the logics Ldmm

0 (with m ∈ N) proposed in [4] and cover a
larger class of logics. The calculi G3Ldmm

n possess fundamental proof-theoretic
properties such as contraction- and cut-admissibility which follow from the gen-
eral results on labelled calculi established in [14]. The main goal of this section
is to refine the G3Ldmm

n calculi through the elimination of structural rules, re-
sulting in new calculi Ldmm

n L that derive theorems within a restricted class of
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φ→ (ψ → φ) (ψ → φ) → (φ→ ψ) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(S5�) �(φ→ ψ) → (�φ→ �ψ) �φ→ φ ♦φ→ �♦φ �φ ∨ ♦φ

(S5[i]) [i](φ → ψ) → ([i]φ → [i]ψ) [i]φ → φ 〈i〉φ→ [i]〈i〉φ [i]φ ∨ 〈i〉φ

(IOA)
∧

i∈Ag
♦[i]φi → ♦(

∧

i∈Ag
[i]φi) (Bridge) �φ→ [i]φ

φ

�φ

φ φ→ ψ

ψ

(APCi
n) ♦[i]φ1 ∧ ♦(φ

1
∧ [i]φ2) ∧ · · · ∧ ♦(φ

1
∧ · · · ∧ φn−1

∧ [i]φn) → φ1 ∨ · · · ∨ φn

Fig. 1: The Hilbert calculus for Ldmm
n [3,20]. A derivation of φ in Ldmm

n from a
set of premises Γ , is written as Γ ⊢Ldmm

n
φ, and is defined inductively in the usual

way. When Γ is the empty set, we refer to φ as a theorem and write ⊢Ldmm
n
φ.

sequents. As a result of adopting the approach in [10], the omission of the re-
lational structure corresponding to the � modality offers a simpler approach to
proving the admissibility of structural rules in the the presence of propagation
rules (Sec. 3.2). Let us start by introducing the class of G3Ldmm

n calculi.

3.1 The G3Ldm
m

n
Calculi

We define labelled sequents Λ via the following BNF grammar:

Λ ::= x : φ | Λ,Λ | Rixy, Λ

where i ∈ Ag, φ ∈ Lm and x, y are from a denumerable set of labels Lab =
{x, y, z, ...}. Labelled sequents consist exclusively of labelled formulae of the form
x : φ and relational atoms of the form Rixy. For this reason, sequents can be
partitioned into two parts: we sometimes use the notationR, Γ to denote labelled
sequents, where R is the part consisting of relational atoms and Γ is the part
consisting of labelled formulae. Last, we interpret the commas between relational
atoms in R conjunctively, the comma between R and Γ in R, Γ implicationally,
and the commas between labelled formulae in Γ disjunctively (cf. Def. 7).

The labelled STIT calculi G3Ldmm
n (where n,m ∈ N) are shown in Fig. 2.

Note that for each agent i ∈ Ag, we obtain a copy for each of the rules (〈i〉),
([i]), (refli), (eucli), and (APCi

n). We refer to (refli), (eucli), (IOA), and (APCi
n)

as the structural rules of G3Ldmm
n . The rule (IOA) captures the independence

of agents principle. Furthermore, the rule schema (APCi
n), limiting the amount

of choices available to agent i, provides different rules depending on the value
of n in G3Ldmm

n (we reserve n = 0 to assert that the rule does not appear).
When n > 0, the (APCi

n) rule contains n(n+1)/2 premises, where each sequent
R,Rixkxj , Γ (for 0 ≤ k ≤ n−1 and k+1 ≤ j ≤ n) represents a different premise
of the rule. As an example, for n = 1 and n = 2 the rules for agent i are:
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(id)
R, w : p,w : p, Γ

R, w : φ ∧ ψ,w : φ, Γ R, w : φ ∧ ψ,w : ψ,Γ
(∧)

R, w : φ ∧ ψ, Γ

R, w : φ ∨ ψ,w : φ,w : ψ, Γ
(∨)

R, w : φ ∨ ψ, Γ

R,Riwv, v : φ, Γ
([i])†

R, w : [i]φ, Γ

R, w : �φ, v : φ, Γ
(�)†

R, w : �φ, Γ

R, w : ♦φ, u : φ, Γ
(♦)

R, w : ♦φ, Γ

R,R1u1v, ...,Rmumv, Γ
(IOA)†

R, Γ

R,Riwu,w : 〈i〉φ, u : φ, Γ
(〈i〉)

R,Riwu,w : 〈i〉φ, Γ

R,Riww,Γ
(refli)

R, Γ

R,Riwu,Riwv,Riuv, Γ
(eucli)

R,Riwu,Riwv, Γ

{

R,Riwkwj , Γ
∣

∣

∣ 0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n
}

(APCi
n)R, Γ

Fig. 2: The G3Ldmm
n labelled calculi. The superscript † on the (�), ([i]), and

(IOA) rule names indicates an eigenvariable condition: the variable v occurring
in the premise of the rule cannot occur in the context of the premise (or, equiv-
alently, in the conclusion).

R,Riw0w1, Γ
(APCi

1)R, Γ

R,Riw0w1, Γ R,Riw0w2, Γ R,Riw1w2, Γ
(APCi

2)R, Γ

Theorem 2. The G3Ldmm
n calculi have the following properties:

1. All sequents of the form R, w : φ,w : φ, Γ are derivable;

2. Variable-substitution is height-preserving admissible;

3. All inference rules are height-preserving invertible;

4. Weakening and contractions are height-preserving admissible:

R, Γ
(wk)

R,R′, Γ ′, Γ

R,R′,R′, Γ
(ctr)R

R,R′, Γ

R, Γ ′, Γ ′, Γ
(ctr)F

R, Γ ′, Γ

5. The cut rule is admissible:

R, x : φ, Γ R, x : φ, Γ
(cut)

R, Γ

6. For every formula φ ∈ Lm, w : φ is derivable in G3Ldmm
n if and only if

⊢Ldmm
n
φ, i.e., G3Ldmm

n is sound and complete relative to Ldmm
n .

Proof. The proof is a basic adaption of [14] and can be found in App. A. ⊓⊔
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Proof-theoretic properties like those expressed in (4) and (5) of Thm. 2 are
essential when designing decidability procedures via proof-search. In construct-
ing a proof of a sequent, proof-search algorithms proceed by applying inference
rules of a calculus bottom-up. A bottom-up application of the (cut) rule in a
proof-search procedure, however, requires one to guess the cut formula φ, and
thus risks non-termination in the algorithm. (One can think of similar arguments
why (ctr)R and (ctr)F risk non-termination.) It is thus crucial that such rules are
admissible; i.e. everything derivable with these rules, is derivable without them.

Remark 1. To obtain contraction admissibility (Thm. 2-(4)) labelled calculi must
satisfy the closure condition [14]: if a substitution of variables in a structural rule
brings about a duplication of relational atoms in the conclusion, then the calculus
must contain another instance of the rule with this duplication contracted.

We observe that if we substitute the variable u for v in the structural rule
(eucli) (below left), we obtain the rule (eucli)

∗ (below right), when the atom
Riwu is contracted:

R,Riwu,Riwu,Riuu, Γ
(eucli)R,Riwu,Riwu, Γ

R,Riwu,Riuu, Γ
(eucli)

∗

R,Riwu, Γ

Thus, following the closure condition, we must also add (eucli)
∗ to our calcu-

lus. However, (eucli)
∗ is a special instance of the (refli) rule, and hence it is

admissible; therefore, we can omit its inclusion in our calculi. None of the other
structural rules possess duplicate relational atoms in their conclusions under
a substitution of variables, and so, each G3Ldmm

n calculus satisfies the closure
condition.

3.2 Extracting the Ldm
m

n
L Calculi

We now refine the G3Ldmm
n calculi, extracting new Ldmm

n L calculi to which proof-
search techniques from [17] may be adapted. In short, we introduce new rules to
our calculi, called propagation rules, which are well-suited for proof-search and
imply the admissibility of the less suitable structural rules (refli) and (eucli).

Propagation rules are special sequent rules that possess a nonstandard side
condition, consisting of two components. For the first component (1), we trans-
form the sequent occurring in the premise of the rule into an automaton. The la-
bels appearing in the sequent determine the states of the automaton, whereas the
relational atoms of the sequent determine the transitions between these states.
The following definition, based on [17, Def. 4.1], makes this notion precise:

Definition 4 (Propagation Automaton). Let Λ be a labelled sequent, Lab(Λ)
be the set of labels occurring in Λ, and w, u ∈ Lab(Λ). We define a propagation
automaton PΛ(w, u) to be the tuple (Σ,S, I, F, δ) s.t. (i) Σ := {〈i〉 | i ∈ Ag} is
the automaton’s alphabet, (ii) S := Lab(Λ) is the set of states, (iii) I := {w} is
the initial state, (iv) F := {u} is the accepting state, and (v) δ : S ×Σ → S is
the transition function where δ(v, 〈i〉) = v′ and δ(v′, 〈i〉) = v iff Rivv

′ ∈ Λ.

We will often write v
〈i〉
−→ v′ instead of δ(v, 〈i〉) = v′ to denote a transition

between states. A string is a, possibly empty, concatenation of symbols from Σ
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(where ε indicates the empty string). We say that an automaton accepts a string

ω = 〈i1〉〈i2〉 · · · 〈ik〉 iff there exists a transition sequence w
〈i1〉
−→ v

〈i2〉
−→ · · ·

〈ik〉
−→ u

from the initial state w to the accepting state u. Last, we will abuse notation and
use PΛ(w, u) equivocally to represent both the automaton and the set of strings
ω accepted by the automaton, i.e. {ω | PΛ(w, u) accepts string ω}. The use of
notation can be determined from the context.

The second component (2) of the rule’s side condition restricts the application
of the rule to a particular language that specifies and determines which types
of strings occurring in the automaton allow for a correct application of the
propagation rule. We define this language accordingly:

Definition 5 (Agent i Application Language). For each i ∈ Ag, we de-
fine the application language Li to be the language generated from the regular
expression 〈i〉∗, that is, Li = {ε, 〈i〉, 〈i〉〈i〉, 〈i〉〈i〉〈i〉, · · · } with ε the empty string.2

Bringing components (1) and (2) together, a propagation rule is applica-
ble only if the associated propagation automaton accepts a certain string—
corresponding to a path of relational atoms in the premise of the rule—and
the string is in the application language.

Definition 6 (Propagation Rule). Let i ∈ Ag, Λ1 = R, w : 〈i〉φ, u : φ, Γ ,
and Λ2 = R, w : 〈i〉φ, Γ . The propagation rule (Pri) is defined as follows:

R, w : 〈i〉φ, u : φ, Γ
(Pri)

††

R, w : 〈i〉φ, Γ

The superscript †† indicates that PΛk
(w, u) ∩ Li 6= ∅ for k ∈ {1, 2}.3

We use PR := {(Pri) | i ∈ Ag} to represent the set of all propagation rules.

The underlying intuition of the rule (applied bottom-up) is that, given some
labelled sequent Λ, a formula φ is propagated from w : 〈i〉φ to another label
u, if w and u are connected by a sequence of Ri relational atoms in Λ (with
i fixed). In the corresponding propagation automaton PΛ(w, u), this amounts
to the existence of a string ω ∈ PΛ(w, u) ∩ Li which represents a sequence of
transitions from w to u, such that all transitions are solely labelled with 〈i〉. To
see how the language Li secures the soundness of the rule, we refer to Thm. 4.
For an introduction to propagation rules and propagation automata, see [17].

Let us make the introduced notions more concrete by providing an example:

Example 1. Let Λ = R1wu,R2uv,R1vz, w : 〈1〉φ. The propagation automaton
PΛ(w, z) is depicted graphically as (where the single-boxed node w designates
the initial state and a double-boxed node z represents the accepting state):

2 For further information on regular languages and expressions, consult [16].
3 Observe that PΛ1

(w, u)=PΛ2
(w, u). Hence, deciding which automaton to employ in

determining the side condition is inconsequential: when applying the rule top-down
we may consult Λ1, whereas during bottom-up proof-search we may regard Λ2.
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(id)
R, w : p,w : p, Γ

R, w : φ ∧ ψ,w : φ, Γ R, w : φ ∧ ψ,w : ψ, Γ
(∧)

R, w : φ ∧ ψ, Γ

R, w : φ ∨ ψ,w : φ,w : ψ, Γ
(∨)

R, w : φ ∨ ψ, Γ

R, w : �φ, v : φ, Γ
(�)†

R, w : �φ, Γ

R, w : ♦φ, u : φ,Γ
(♦)

R, w : ♦φ,Γ

R,R1u1v, ...,Rmumv, Γ
(IOA)†

R, Γ

R,Riwv,w : [i]φ, v : φ,Γ
([i])†

R, w : [i]φ, Γ

R, w : 〈i〉φ, u : φ, Γ
(Pri)

††

R, w : 〈i〉φ, Γ

{

R,Riwkwj , Γ
∣

∣

∣ 0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n
}

(APCi
n)R, Γ

Fig. 3: The labelled calculus Ldmm
n L. The superscript † on the (�), ([i]), and

(IOA) rules indicate that v is an eigenvariable. The †† side condition is the same
as in Def. 6. Last, we have ([i]), (Pri), and (APCi

n) rules for each i ∈ Ag.

w
〈1〉

88 u
〈2〉

99

〈1〉
ww

v
〈1〉

66

〈2〉
yy

z

〈1〉
xx

Observe that every string the automaton accepts must contain at least one
〈2〉 symbol. Since no string of this form exists in L1, it is not valid to propagate
the formula φ to z. That is, the sequent R1wu,R2uv,R1vz, w : 〈1〉φ, z : φ does
not follow from applying the propagation rule (Pr1) (bottom-up) to Λ.

On the other hand, consider the propagation automaton PΛ(w, u):

w
〈1〉

66 u
〈2〉

88

〈1〉
vv

v
〈1〉

99

〈2〉
vv

z

〈1〉
yy

The automaton accepts the simple string 〈1〉, which is included in the language
L1. Therefore, it is permissible to apply the propagation rule (Pr1) (bottom-up)
and derive R1wu,R2uv,R1vz, w : 〈1〉φ, u : φ from Λ.

Remark 2. We observe that both of the languages PΛ(w, u) and Li are regular,
and thus, the problem of determining whether PΛ(w, u)∩Li 6= ∅, is decidable [17].
Consequently, the propagation rules in PR may be integrated into our proof-
search algorithm without risking non-termination.

The proof theoretic properties of G3Ldmm
n are preserved when extended with

the set of propagation rules PR (Lem. 1). Moreover, the nature of our propagation
rules allows us to prove the admissibility of the structural rules (refli) and (eucli),
for each i ∈ Ag (resp. Lem. 2 and 3), which results in the refined calculi Ldmm

n L

(shown in Fig. 3). The proofs of Lem. 1 and 2 are App. A (the latter is similar
to the proof of Lem. 3 presented here).
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Lemma 1. The G3Ldmm
n +PR calculi have the following properties: (i) all se-

quents Λ of the form Λ = R, w: φ,w: φ, Γ are derivable; (ii) variable-substitution
is height-preserving admissible; (iii) all inference rules are height-preserving in-
vertible; (iv) the (wk), (ctr)R and (ctr)F rules are height-preserving admissible.

Lemma 2 ((refli)-Elimination). Every sequent Λ derivable in G3Ldmm
n + PR

is derivable without the use of (refli).

Lemma 3 ((eucli)-Elimination). Every sequent Λ derivable in G3Ldmm
n +PR

is derivable without the use of (eucli).

Proof. The result is proven by induction on the height of the given derivation.
We show that the topmost instance of a (eucli) rule can be permuted upward in a
derivation until it is eliminated entirely; by successively eliminating each (eucli)
inference from the derivation, we obtain a derivation free of such inferences. Also,
we evoke Lem. 2 and assume that all instances of (refli) have been eliminated
from the given derivation.

Base Case. An application of (eucli) on an initial sequent (below left) can be
re-written as an instance of the (id) rule (below right).

R,Riwu,Riwv,Riuv, z : p, z : p, Γ
(eucli)R,Riwu,Riwv, z : p, z : p, Γ

(id)
R,Riwu,Riwv, z : p, z : p, Γ

Inductive step. We show the inductive step for the non-trivial cases: (〈i〉) and
(Pri) (case (i) and (ii), respectively). All other cases are resolved by applying IH
to the premise followed by an application of the corresponding rule.

(i). Let Riuv be active in the (〈i〉) inference of the initial derivation (below
(1)). Observe that when we apply the (eucli) rule first (below (2)), the atom
Riuv is no longer present in Λ = R,Riwu,Riwv, u : 〈i〉φ, v : φ, Γ , and so, the
(〈i〉) rule is not necessarily applicable. Nevertheless, we may apply the (Pri) rule
to derive the desired conclusion since 〈i〉〈i〉 ∈ PΛ(u, v) ∩ Li. Namely, the fact
that 〈i〉〈i〉 ∈ PΛ(u, v) only relies on the presence of Riwu,Riwv in Λ.

R,Riwu,Riwv,Riuv, u : 〈i〉φ, v : φ, Γ
(〈i〉)

R,Riwu,Riwv,Riuv, u : 〈i〉φ, Γ
(eucli)

R,Riwu,Riwv, u : 〈i〉φ, Γ

(1)

R,Riwu,Riwv,Riuv, u : 〈i〉φ, v : φ, Γ
(eucli)

R,Riwu,Riwv, u : 〈i〉φ, v : φ, Γ
(Pri)

R,Riwu,Riwv, u : 〈i〉φ, Γ

(2)

(ii). Let Λ1 be the first premise R,Riwu,Riwv,Riuv, x : 〈i〉φ, y : φ, Γ of
the initial derivation (below (3)). In the (Pri) inference of the top derivation, we
assume that Riuv is active, that is, the side condition of (Pri) is satisfied because
some string 〈i〉n ∈ PΛ1

(x, y) ∩ Li with n ∈ N. (NB. For the non-trivial case, we
assume that 〈i〉n ∈ PΛ1

(x, y) relies on the presence of Riuv ∈ Λ1, that is, the
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automaton PΛ1
(x, y) makes use of transitions u

〈i〉
−→ v or v

〈i〉
−→ u defined relative

to Riuv.) When we apply the (eucli) rule first in our derivation (below (4)), we
can no longer rely on the relational atom Riuv to apply the (Pri) rule. However,
due to the presence of Riwu,Riwv in Λ2 = R,Riwu,Riwv, x : 〈i〉φ, y : φ, Γ we
may still apply the (Pri) rule. Namely, since 〈i〉n ∈ PΛ1

(x, y), we know there is

a sequence of n transitions x
〈i〉
−→ z1

〈i〉
−→ · · · zn−1

〈i〉
−→ y from x to y. We replace

each occurrence of u
〈i〉
−→ v with u

〈i〉
−→ w

〈i〉
−→ v and each occurrence of v

〈i〉
−→ u

with v
〈i〉
−→ w

〈i〉
−→ u. There will thus be a string in PΛ2

(x, y) ∩ Li, and so, the
(Pri) rule may be applied.

R,Riwu,Riwv,Riuv, x : 〈i〉φ, y : φ, Γ
(Pri)

R,Riwu,Riwv,Riuv, x : 〈i〉φ, Γ
(eucli)

R,Riwu,Riwv, x : 〈i〉φ, Γ

(3)

R,Riwu,Riwv,Riuv, x : 〈i〉φ, y : φ, Γ
(eucli)

R,Riwu,Riwv, x : 〈i〉φ, y : φ, Γ
(Pri)

R,Riwu,Riwv, x : 〈i〉φ, Γ

(4)

⊓⊔

Theorem 3 (Cut-free Completeness of Ldmm
n L). For any formula φ ∈ Lm,

if  φ, then x : φ is cut-free derivable in Ldmm
n L.

Proof. Follows from Thm. 2, Lem.’s 1–3, and the fact that, for each i ∈ Ag, the
(〈i〉) rule is admissible, that is, the (〈i〉) rule is an instance of the rule (Pri). ⊓⊔

Last, we must ensure that Ldmm
n L is sound. To prove this, we need to stipulate

how to interpret sequents on Ldmm
n -models. Our definition is based on [4]:

Definition 7 (Interpretation, Satisfaction, Validity). Let M be an Ldmm
n -

model with domain W , Λ = R, Γ a labelled sequent, and Lab the set of labels.
Let I be an interpretation function mapping labels to worlds: i.e. I: Lab 7→W .

Λ is satisfied in M with I iff for all relational atoms Rixy ∈ R, if Rix
IyI

holds in M , then there exists some z : φ ∈ Γ such that M, zI  φ.
Λ is valid iff it is satisfiable in every M with any interpretation function I.

Theorem 4 (Ldmm
n L Soundness). Every sequent derivable in Ldmm

n L is valid.

Proof. We know by Thm. 2 that all rules of Ldmm
n L, with the exception of (Pri),

preserve validity. Details of the (Pri) rule are given in App. A. ⊓⊔

4 Proof-Search and Decidability

In this section, we provide a class of proof-search algorithms, each deciding a logic
Ldm1

n (with n ∈ N). (We use 1 to denote the agent in the single-agent setting.) In
the single-agent case, the independence of agents condition is trivially satisfied,
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meaning we can omit the (IOA) rule from each calculus and from consideration
during proof-search. We end the section by commenting on the more complicated
multi-agent setting.

In what follows, we prove that derivations in Ldm1
nL need only use forestlike

sequents. The forestlike structure of a sequent Λ refers to a graph corresponding
to the sequent. This control in sequential structure is what allows us to adapt
methods from [17] to Ldm1

nL, and produce a proof-search algorithm that decides
Ldm1

n, for each n ∈ N. Let us start by making the aforementioned notions precise.

Definition 8 (Sequent Graph). We define a graph G to be a tuple (V,E, L),
where V is the non-empty set of vertices, the set of edges E ⊆ V × V , and L is
the labelling function that maps edges from E into some non-empty set S and
vertices from V into some non-empty set S′.

Let Λ = R, Γ be a labelled sequent and let Lab(Λ) be the set of labels in Λ.
The graph of Λ, denoted G(Λ), is the tuple (V,E, L), where (i) V = Lab(Λ), (ii)
(w, u) ∈ E and L(w, u) = i iff Riwu ∈ R, and (iii) L(w) = φ iff w : φ ∈ Γ .

Example 2. The sequent graph G(Λ) corresponding to the labelled sequent Λ =
R1xy,R1zx, x : p, y : p ∨ q, z : r, z : ♦q is shown below:

y

p ∨ q
x

p1oo
z

r,♦q1oo

Definition 9 (Tree, Forest, Forestlike Sequent, Choice-tree). We say
that a graph G = (V,E, L) is a tree iff there exists a node w, called the root,
such that there is exactly one directed path from w to any other node u in the
graph. We say that a graph is a forest iff it consists of a disjoint union of trees.

A sequent Λ is forestlike iff its graph G(Λ) is a forest. We refer to each
disjoint tree in the graph of a forestlike sequent as a choice-tree and for any
label w in Λ, we let CT (w) represent the choice-tree that w belongs to.

The above notions will be significant for our proof-search algorithms, for
example:

Remark 3. When interpreting a sequent, each choice-tree that occurs in the
graph of the sequent is a syntactic representation of an equivalence class of
R1 (i.e., a choice-cell for agent 1). Using this insight, we know that if agent 1 is
restricted to n-many choices, then if there are m > n choice-trees in the sequent,
at least two choice-trees must correspond to the same equivalence class in R1.
We use this observation to specify how APC1

n is applied in the algorithm.

The following definitions introduce the necessary tools for the algorithms:

Definition 10 (Saturation, �−, [1]-realization, ♦−, 〈1〉-propagated). Let
Λ be a forestlike sequent and let w be a label in Λ.

The label w is saturated iff the following hold: (i) If w : φ ∈ Λ, then w : φ 6∈
Λ, (ii) if w : φ ∨ ψ ∈ Λ, then w : φ ∈ Λ and w : ψ ∈ Λ, (iii) if w : φ ∧ ψ ∈ Λ,
then w : φ ∈ Λ or w : ψ ∈ Λ.
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A label w in Λ is �-realized iff for every w : �φ ∈ Λ, there exists a label u
such that u : φ ∈ Λ. A label w in Λ is [1]-realized iff for every w : [1]φ ∈ Λ, there
exists a label u in CT (w) such that u : φ ∈ Λ.

A label w in Λ is ♦-propagated iff for every w : ♦φ ∈ Λ, we have u : φ ∈ Λ
for all labels u in Λ. A label w in Λ is 〈1〉-propagated iff for every w : 〈1〉φ ∈ Λ,
we have u : φ ∈ Λ for all labels u in CT (w).

Definition 11 (n-choice Consistency). Let Λ be a forestlike sequent and let
our logic be Ldm1

n with n > 0. We say that Λ is n-choice consistent iff G(Λ)
contains at most n-many choice-trees.

Definition 12 (Stability). A forestlike labelled sequent Λ is stable iff (i) all
labels w in Λ are saturated, (ii) all labels are �- and [1]-realized, (iii) all labels
are ♦- and 〈1〉-propagated, and (iv) Λ is n-choice consistent.

We are now able to define our proof-search algorithms for the logics Ldm1
n.

The algorithms are provided in Fig. 4 and are inspired by [17]. We emphasize that
the execution of instruction 4 in Fig. 4 corresponds to an instance of the (Pr1)
rule. The algorithms are correct (Thm. 5) and terminate (Thm. 6). Last, Lem. 4
ensures that the concepts of realization, propagation, n-choice consistency, and
stability are defined at each stage of the computation (Def. 10 - 12). The proofs
of Lem. 4 and Thm. 6 can be found in App. A.

Lemma 4. Every labelled sequent generated throughout the course of computing
Proven(w : φ) is forestlike.

Theorem 5 (Correctness). (i) If Proven(w : φ) returns true, then w : φ is
Ldm1

nL-provable. (ii) If Proven(w : φ) returns false, then w : φ is not Ldm1
nL-

provable.

Proof. (i) It suffices to observe that each step of Proven(·) is a backwards ap-
plication of a rule in Ldm1

nL, and so, if the proof-search algorithm returns true,
the formula w : φ is derivable in Ldm1

nL with arbitrary label w.
(ii) To prove this statement, we assume that Proven(w : φ) returned false

and show that we can construct a counter-model for φ. By assumption, we know
that a stable sequent Λ was generated with w : φ ∈ Λ. We define our counter-
model M = (W,R1, V ) as follows: W = Lab(Λ); R1uv iff PΛ(u, v) ∩ L1 6= ∅;
and w ∈ V (p) iff w : p ∈ Λ.

We argue that F = (W,R1) is an Ldmm
n -frame. It is easy to see that W 6= ∅

(at the very least, the label w must occur in Λ). Moreover, condition (C2) is
trivially satisfied in the single-agent setting. We prove (C1) and (C3):

(C1) We need to prove that R1 is (i) reflexive and (ii) Euclidean. To prove
(i), it suffices to show that for each u ∈ Lab(Λ) there exists a string ω in both
PΛ(u, u) and L1. By Def. 4, we know that ε ∈ PΛ(u, u) since u is both the
initial and accepting state. Also, by Def. 5 we know that ε ∈ L1. To prove (ii),
we assume that R1wu and R1wv hold, and show that R1uv holds as well. By
our assumption, there exist strings 〈1〉k ∈ PΛ(w, u) ∩L1 and 〈1〉m ∈ PΛ(w, v) ∩
L1 (with k,m ∈ N). It is not difficult to prove that if 〈1〉k ∈ PΛ(w, u), then
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Function Proven(Sequent R, Γ) : Boolean

1. If R, Γ = R, w : p,w : p, Γ ′, return true.

2. If R, Γ is stable, return false.

3. If some label w in R, Γ is not saturated, then:

(i) If w : φ ∨ ψ ∈ R, Γ, but either w : φ 6∈ R, Γ or w : ψ 6∈ R, Γ, then let

R, Γ ′ = R, w : φ,w : ψ, Γ and return Proven(R, Γ
′).

(ii) If w : φ ∧ ψ ∈ R, Γ, but neither w : φ 6∈ R, Γ nor w : ψ 6∈ R, Γ, then

let R, Γ1 = R, w : φ, Γ, let R, Γ2 = R, w : ψ, Γ, and return false if

Proven(R, Γi) = false for some i ∈ {1, 2}, and return true otherwise.

4. If some label w in R, Γ is not 〈1〉-propagated, then there is a label u

in CT (w) such that u : φ 6∈ Γ. Let R, Γ ′ = R, u : φ, Γ and return

Proven(R, Γ
′).

5. If some label w in R, Γ is not ♦-propagated, then there is a label u

such that u : φ 6∈ Γ. Let R, Γ ′ = R, u : φ, Γ and return Proven(R, Γ
′).

6. If there is a label w that is not [1]-realized, then there is a

w : [1]φ ∈ Γ such that u : φ 6∈ Γ for every label u ∈ CT (w). Let

R′, Γ ′ = R,R1wv, v : φ, Γ with v fresh and return Proven(R
′, Γ ′).

7. If there is a label w that is not �-realized, then there is a

w : �φ ∈ Γ such that u : φ 6∈ Γ for every label u in R, Γ. Let

R, Γ ′ = R, v : φ, Γ with v fresh and return Proven(R, Γ
′).

8. If R, Γ is not n-choice consistent, then let Rk,j , Γ = R,R1wkwj , Γ

(with 0 ≤ k ≤ n− 1 and k + 1 ≤ j ≤ n) and where each wk and wj are

distinct roots of choice-trees in R, Γ. Return false if

Proven(Rk,j , Γ) = false for some k and j, and return true otherwise.

Fig. 4: The proof-search algorithms for Ldm1
n with n > 0. The algorithm for

Ldm1
0 is obtained by deleting line 8.

〈1〉k ∈ PΛ(u,w), and also that if 〈1〉k ∈ PΛ(u,w) and 〈1〉m ∈ PΛ(w, v), then
〈1〉k+m ∈ PΛ(u, v). Hence, we know 〈1〉k+m ∈ PΛ(u, v), which, together with
〈1〉k+m ∈ L1 (Def. 5), gives us the desired R1uv.

(C3) By assumption we know Λ is stable. Consequently, when n > 0 for
Ldm1

nL, the sequent Λ must be n-choice consistent. Hence, the graph of Λ must
contain k ≤ n choice-trees. Condition (C3) follows straightforwardly.

Since F is an Ldmm
n -frame, M is an Ldmm

n -model. We show by induction on
the complexity of ψ that for any u : ψ ∈ Λ, M,u 6 ψ. Consequently, M is a
counter-model for φ, and so, by Thm. 4, we know w : φ is not provable in Ldm1

nL.

Base Case. Assume u : p ∈ Λ. Since Λ is stable, we know that u : p 6∈ Λ.
Hence, by the definition of V , we know that u 6∈ V (p), implying that M,u 6 p.

Inductive Step. We consider each connective in turn. (i) Assume that u :
θ∨χ ∈ Λ. Since Λ is stable, it is saturated, meaning that u : θ, u : χ ∈ Λ. Hence,
by IH, M,u 6 θ and M,u 6 χ, which implies that M,u 6 θ ∨ χ. (ii) The case
u : θ ∧ χ ∈ Λ is similar to the previous case. (iii) Assume u : 〈1〉θ ∈ Λ. Since
Λ is stable, we know that every label is 〈1〉-propagated. Therefore, for all labels
v ∈ CT (u) we have v : θ ∈ Λ. By IH, M, v 6 θ for all v ∈ CT (u). In general, the
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definition of R1 implies that R1xy iff y ∈ CT (x). The former two statements
imply that M, v 6 θ for all v such that R1uv, and so, M,u 6 〈1〉θ. (iv) Assume
that u : ♦θ ∈ Λ. Since Λ is stable, every label is ♦-propagated, which implies that
for all labels v in Λ, v : θ ∈ Λ. By IH, this implies that for all v ∈ W , M, v 6 θ.
Thus,M,u 6 ♦θ. (v) Assume u : [1]θ ∈ Λ. Since Λ is stable, we know every label
in Λ is [1]-realized. Therefore, there exists a label v in CT (u) such that v : θ ∈ Λ.
By IH, we conclude that M, v 6 θ. Moreover, since R1xy iff y ∈ CT (x), we also
know that R1uv, which implies M,u 6 [1]ψ. (vi) Assume u : �θ ∈ Λ. Since Λ is
stable, we know that every label is �-realized. Consequently, there exists a label
v such that v : θ ∈ Λ. By IH, we conclude M, v 6 θ; hence, M,u 6 �θ. ⊓⊔

Theorem 6 (Termination). For each formula w : φ, Proven(w: φ) terminates.

Corollary 1 (Decidability and FMP). For each n ∈ N, the logic Ldm1
n is

decidable and has the finite model property.

Proof. Follows from Thm. 5 and 6 above. The finite model property follows from
the fact that the counter-models constructed in Thm. 5 are all finite. ⊓⊔

Additionally, from a computational viewpoint, it is interesting to know if
completeness is preserved under a restricted class of sequents (cf. [6]). Indeed,
Lem. 4, Thm. 5 and Thm. 6, imply that completeness is preserved when we re-
strict Ldm1

nL derivations to forestlike sequents; that is, when inputting a formula
into our algorithms, the sequent produced at each step of the computation will be
forestlike. Interestingly, this result was obtained via our proof-search algorithms.

Corollary 2 (Forestlike Derivations). For each n ∈ N, if a labelled formula
w : φ is derivable in Ldm1

nL, then it is derivable using only forestlike sequents.

A Note on the Multi-Agent Setting of Ldmm

n
L. As a concluding remark,

we briefly touch upon extending the current results to the multi-agent calculi
Ldmm

n L. In the multi-agent setting (when n = 0), our sequents have the struc-
ture of directed acyclic graphs (i.e., directed graphs free of cycles), due to the
independence of agents rule (IOA). In such graphs, one can easily recognize loop-
nodes—i.e., a path from an ancestor node to the alleged loop-node such that both
nodes are labelled with the same multiset of formulae—and use this information
to bound the depth of the sequent during proof-search (cf. [17]).

The main challenge concerns the (IOA) rule, which when applied bottom-up
during proof-search, introduces a fresh label v to the sequent. As a consequence,
one must ensure that if proof-search terminates in a counter-model construction,
this label v satisfies the independence of agents condition in that model. At
first glance, one might conjecture that for every application of the (IOA) rule
an additional application of the rule is needed to saturate the independence of
agents condition. Of course, in such a case the algorithm will not terminate with
a sequent that is readily convertible to a counter-model. Fortunately, it turns out
that only finitely many applications of (IOA) are needed to construct a counter-
model satisfying independence of agents. The authors have planned to devote
their future work to answer this open problem for the multi-agent setting.
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5 Conclusion

This paper introduced the first cut-free complete calculi for the class of multi-
agent Ldmm

n logics, introduced in [20]. We adapted propagation rules, discussed
in [17], in order to refine the multi-agent G3Ldmm

n labelled calculi and generate
the proof-search friendly Ldmm

n L calculi. For the single agent case, we provided
a class of terminating proof-search algorithms, each deciding a logic Ldm1

n (with
n ∈ N), including counter-model extraction from failed proof-search.

As discussed in Sec. 4, we plan to devote future research to leveraging the
current results for the multi-agent setting and to provide terminating proof-
search procedures for the entire Ldmm

n class. As a natural extension, we aim to
implement the proof-search algorithms from Sec. 4 in Prolog (e.g., as in [8]).
Additionally, we plan to expand the current framework to include deontic STIT

operators (e.g., from [11,13]) with the goal of automating normative, agent-based
reasoning. Last, it is shown in [2] that Ldm1

0
has an NP-complete satisfiability

problem and each logic Ldmm

0
, with m > 0, is NEXPTIME-complete. Along with

expanding our proof-search algorithms to the class of all Ldmm
n logics, we aim

to investigate the complexity and optimality of our associated algorithms.
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Appendix

A Proofs

Theorem 2 The G3Ldmm
n calculi have the following properties:

1. All sequents of the form R, w : φ,w : φ, Γ are derivable;
2. Variable-substitution is height-preserving admissible;
3. All inference rules are height-preserving invertible;
4. The weakening rule (wk) and two contraction rules (ctr) (below) are height-

preserving admissible;

R, Γ
(wk)

R,R′, Γ ′, Γ

R,R′,R′, Γ
(ctr)R

R,R′, Γ

R, Γ ′, Γ ′, Γ
(ctr)F

R, Γ ′, Γ

5. The cut rule (cut) (below) is admissible;

R, x : φ, Γ R, x : φ, Γ
(cut)

R, Γ

6. For every formula φ ∈ L, ⊢ w : φ is derivable in G3Ldmm
n if and only if

⊢Ldmm
n
φ, i.e. G3Ldmm

n is sound and complete relative to Ldmm
n .

Proof. Clause (1) is proven by induction on the complexity of the formula φ,
whereas clauses (2)-(4) are proven by induction on the height of the given deriva-
tion. Moreover, clause (5) is proven by induction on the complexity of the cut
formula φ with a subinduction on the sum of the heights of the premises of
the (cut) rule. All proofs are similar to proofs of the same properties for modal
calculi presented in [14].

Concerning clause (5), the proof of soundness is argued along the same lines
as in [?, Sec. 5.1] and uses Def. 7. Completeness is proven by showing that all
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axioms of Ldmm
n can be derived and that if the premise of an inference rule is

derivable, then so is the conclusion. All proofs are fairly simple, with the excep-
tion of the derivation of the (IOA) and (APCi

n) axioms, which we provide below.

(IOA):

Π1 · · · Πm

R1y1v, . . . ,Rmymv, x : �〈1〉φ
1
, . . . , x : �〈m〉φm, y1 : 〈1〉φ

1
, . . . , ym : 〈m〉φm, x : ♦([1]φ1 ∧ · · · ∧ [m]φm), v : [1]φ1 ∧ · · · ∧ [m]φm

R1y1v, . . . ,Rmymv, x : �〈1〉φ
1
, . . . , x : �〈m〉φm, y1 : 〈1〉φ

1
, . . . , ym : 〈m〉φm, x : ♦([1]φ1 ∧ · · · ∧ [m]φm)

x : �〈1〉φ
1
, . . . , x : �〈m〉φm, y1 : 〈1〉φ

1
, . . . , ym : 〈m〉φm, x : ♦([1]φ1 ∧ · · · ∧ [m]φm)

x : �〈1〉φ
1
, . . . , x : �〈m〉φm, x : ♦([1]φ1 ∧ · · · ∧ [m]φm)

x : �〈1〉φ
1
∨ · · · ∨ �〈m〉φm ∨ ♦([1]φ1 ∧ · · · ∧ [m]φm)

with Πi (for 1 ≤ i ≤ m) given by:

Rivu,Riyiv,Riyiu, ..., yi : 〈i〉φi, u : φi, u : φi

Rivu,Riyiv,Riyiyi,Rivyi,Riyiu, ..., yi : 〈i〉φi, u : φi

Rivu,Riyiv,Riyiyi,Rivyi, ..., yi : 〈i〉φi, u : φi

Rivu,Riyiv,Riyiyi, ..., yi : 〈i〉φi, u : φi

Rivu,Riyiv, ..., yi : 〈i〉φi, u : φi

Riyiv, ..., yi : 〈i〉φi, v : [i]φi

(APCi
n):

{

Πk,j

∣

∣

∣
0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n

}

w0 : �〈i〉φ1, w1 : φ1, w0 : �(φ1 ∨ 〈i〉φ2), w2 : φ1, w2 : 〈i〉φ2, . . . , w0 : �(φ1 ∨ · · · φn−1 ∨ 〈i〉φn), wn : φ1, . . . , wn : φn−1, wn : 〈i〉φn, w0 : φ1, . . . , w0 : φn

w0 : �〈i〉φ1, w0 : �(φ1 ∨ 〈i〉φ2), . . . , w0 : �(φ1 ∨ · · ·φn−1 ∨ 〈i〉φn), w0 : φ1, . . . , w0 : φn

w0 : �〈i〉φ1 ∨ �(φ1 ∨ 〈i〉φ2) ∨ · · · ∨ �(φ1 ∨ · · ·φn−1 ∨ 〈i〉φn) ∨ φ1 ∨ · · · ∨ φn

The Π0,j (for 1 ≤ j ≤ n) derivations are shown below left, and the Πk,j (for
0 < k ≤ n− 1 and k + 1 ≤ j ≤ n) derivations are shown below right.

Riw0wj ,Riwjw0, , . . . , w0 : φj , wj : 〈i〉φj , w0 : φj

Riw0wj ,Riwjw0, . . . , w0 : φj , wj : 〈i〉φj

Riw0wj , . . . , w0 : φj , wj : 〈i〉φj

Riwkwj , . . . , wk : 〈i〉φk, wj : φk, wj : φk

Riwkwj , . . . , wk : 〈i〉φk, wj : φk

Note that the dashed lines in the above derivations represent applications of
the (symi) rule (below left); however, we may apply this rule since it is admissible
in G3Ldmm

n (as shown below right).

R,Riwu,Riuw, Γ
(symi)R,Riwu, Γ

R,Riwu,Riuw, Γ
Lem. 2, Clause (4)

R,Riwu,Riuu,Riuw, Γ
(eucli)

R,Riwu,Riww, Γ
(refli)

R,Riwu, Γ

Lemma 1 The calculus G3Ldmm
n + PR has the following properties: (i) All se-

quents of the form R, w : φ,w : φ, Γ are derivable, (ii) Variable-substitution is
height-preserving admissible, (iii) All inference rules are height-preserving in-
vertible, (iv) The (wk), (ctr)R and (ctr)F rules are height-preserving admissible.



Automating Agential Reasoning 19

Proof. (i) is proved by induction on the complexity of φ and (ii)-(iv) are shown by
induction on the height of the given derivation. All proofs are routine, so we only
prove the most significant result: height-preserving admissibility of contraction.

We proceed by induction on the height of the given derivation. With the
exception of (Pri), the proof is exactly the same as for Thm. 2 clause 4 (see
[14,?] for details). Hence, we only prove the (Pri) case in the inductive step.

First, we show that (ctr)F can be permuted with (Pri). There are two cases:
either the derivation performs a formula contraction solely in the formula-context
Γ (below left), or the derivation performs a contraction with the auxiliary for-
mula w : 〈i〉φ (below right) (potentially performing a contraction in Γ ):

R, w : 〈i〉φ, u : φ, Γ
(Pri)

R, w : 〈i〉φ, Γ
(ctr)F

R, w : 〈i〉φ, Γ ′

R, w : 〈i〉φ,w : 〈i〉φ, u : φ, Γ
(Pri)

R, w : 〈i〉φ,w : 〈i〉φ, Γ
(ctr)F

R, w : 〈i〉φ, Γ ′

In both cases, any sequence of transitions between w and u will be preserved,
meaning that the (ctr)F rule may be freely permuted with the (Pri) rule without
affecting the side condition of the propagation rule.

Secondly, we consider the (ctr)R case, which has the following form:

R, w : 〈i〉φ, u : φ, Γ
(Pri)

R, w : 〈i〉φ, Γ
(ctr)R

R′, w : 〈i〉φ, Γ

Since the (Pri) rule is applied first, we know there exists a sequence of tran-

sitions w
〈i〉
−→ v1

〈i〉
−→ · · · vn

〈i〉
−→ u from w to u. Notice that (ctr)R contracts

identical relational atoms in R, resulting in a single copy still present in R′.
Hence, if we apply (ctr)R first, we may still apply (Pri) afterwards, since the
same sequence of transitions from w to u remains present in R′. See [?, Lem.
6.12] for further details on the preservation of transitions under contractions.

Lemma 2 ((refli)-Elimination) Every sequent Λ derivable in G3Ldmm
n + PR

is derivable without the use of (refli).

Proof. The result is proven by induction on the height of the given derivation.
We assume that (refl) is used once as the last inference in the given derivation.
The general result follows by successively eliminating topmost occurrences of
(refl) rule instances.

Base Case. An application of (refli) on an initial sequent (below left), where
possibly w = u, can be re-written as an instance of the (id) rule (below right):

R,Riww, u : p, u : p, Γ
(refli)R, u : p, u : p, Γ

(id)
R, u : p, u : p, Γ

Inductive step. We show the inductive step for the (IOA) and (APCi
n) rules,

as well as for the non-trivial (〈i〉), (eucli), and (Pri) cases. All other cases are
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resolved by applying IH to the premise followed by an application of the corre-
sponding rule.

(i) The (refli) rule may be freely permuted with the (IOA) rule:

R,Riww,R1u1v, ...,Rnunv, Γ
(IOA)

R,Riww, Γ
(refli)R, Γ

R,Riww,R1u1v, ...,Rnunv, Γ
(refli)R,R1u1v, ...,Rnunv, Γ

(IOA)
R, Γ

(ii) We may easily permute the (refli) rule with the (APCi
n) rule:

{

R,Riuu,Riwkwj , Γ
∣

∣

∣
0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n

}

(APCi
n)R,Riuu, Γ

(refli)R, Γ
{

R,Riuu,Riwkwj , Γ
∣

∣

∣
0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n

}

(refli)×
n(n+1)

2
{

R,Riwkwj , Γ
∣

∣

∣
0 ≤ k ≤ n− 1, k + 1 ≤ j ≤ n

}

(APCi
n)R, Γ

(iii) In the case of (〈i〉), when applying the (refli) rule to the first premise of the
left derivation instead, the propagation rule (Pri) may be applied to the resulting
sequent Λ = R, w : 〈i〉φ,w : φ, Γ since the empty string ε ∈ PΛ(w,w) ∩ Li:

R,Riww,w : 〈i〉φ,w : φ, Γ
(〈i〉)

R,Riww,w : 〈i〉φ, Γ
(refli)

R, w : 〈i〉φ, Γ

R,Riww,w : 〈i〉φ,w : φ, Γ
(refli)

R, w : 〈i〉φ,w : φ, Γ
(Pri)

R, w : 〈i〉φ, Γ

(iv) The non-trivial case of permuting the (refli) rule with the (eucli) rule is
shown below. The case may be resolved by leveraging admissibility of contrac-
tion. Note that dashed lines (below right) have been used to represent an ap-
plication of height-preserving admissibility of contraction (Lem. 1), the use of
which decreases the height of the derivation by 1. As a consequence, the height
of the (refli) rule application also decreases by 1. The two cases are accordingly:

R,Riww,Riww,Riww, Γ
(eucli)R,Riww,Riww, Γ

(refli)R,Riww, Γ

R,Riww,Riww,Riww, Γ
Lem. 1

R,Riww, Γ

R,Riww,Riwu,Riwu, Γ
(eucli)R,Riww,Riwu, Γ

(refli)R,Riwu, Γ

R,Riww,Riwu,Riwu, Γ
Lem. 1

R,Riww,Riwu, Γ
(refli)R,Riwu, Γ

(v) Last, the non-trivial case of permuting (refli) over (Pri) occurs when a re-
lational atom of the form Riww is auxiliary in (Pri). We therefore assume that
in the first premise Λ1 = R,Riww, x : 〈i〉φ, y : φ, Γ of the initial derivation
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(below left), the propagation rule is applied because there exists some string
〈i〉n ∈ PΛ1

(x, y) ∩ Li with n 6= 0 ∈ N and there exists a sequence of tran-

sitions from x to y containing transitions of the form w
〈i〉
−→ w (defined rel-

ative to Riww). If instead we apply the (refli) rule first (below right), then
we obtain the sequent Λ2 = R, x : 〈i〉φ, y : φ, Γ which no longer contains
the relational atom Riww that was used to apply the propagation rule in the
initial derivation (left). Nevertheless, since 〈i〉n ∈ PΛ1

(x, y), there exists a se-

quence of transitions x
〈i〉
−→ z1

〈i〉
−→ · · · zn−1

〈i〉
−→ y containing transitions of the

form w
〈i〉
−→ w. If we delete all transitions of the form w

〈i〉
−→ w from the se-

quence of transitions, we will still have a valid sequence of transitions between

x and y. That is, if · · · zi
〈i〉
−→ w

〈i〉
−→ w

〈i〉
−→ zj · · · occurs in our sequence,

then clearly · · · zi
〈i〉
−→ w

〈i〉
−→ zj · · · is a valid sequence.4 Moreover, the resulting

string 〈i〉k with k < n will be in Li. Therefore, since there exists some string
〈i〉k ∈ PΛ2

(x, y) ∩ Li, the propagation rule may still be applied to Λ2.

R,Riww, x : 〈i〉φ, y : φ, Γ
(Pri)

R,Riww, x : 〈i〉φ, Γ
(refli)

R, x : 〈i〉φ, Γ

R,Riww, x : 〈i〉φ, y : φ, Γ
(refli)

R, x : 〈i〉φ, y : φ, Γ
(Pri)

R, x : 〈i〉φ, Γ

Theorem 4 (Soundness of Ldmm
n L) Every sequent derivable in Ldmm

n L is valid.

Proof. We know by Thm. 2 that all rules of Ldmm
n L, with the exception of

(Pri), preserve validity. We therefore only consider the (Pri) case and argue by
contraposition that if the conclusion of the rule is invalid, then so is the premise.
Consider the following inference:

R, w : 〈i〉φ, u : φ, Γ
(Pri)

R, w : 〈i〉φ, Γ

Let Λ1 = R, w : 〈i〉φ, u : φ, Γ and Λ2 = R, w : 〈i〉φ, Γ . Assume that there
exists a model M with interpretation I such that R, w : 〈i〉φ, Γ is not satisfied
in M with I. In other words, R holds in M with I, but for all labelled formulae
v : ψ in w : 〈i〉φ, Γ the following holds: M, vI 6 ψ.

We additionally assume that the side condition holds; that is, there exists
some string ω ∈ PΛ1

(w, u) ∩ Li. Since ω ∈ Li, we know that ω is of the form
〈i〉n with n ∈ N. Additionally, since ω = 〈i〉n ∈ PΛ1

(w, u), this means that
there exists a sequence of relational atoms of the form Riwz1, · · · ,Rizn−1u or
Riuz1, · · · ,Rizn−1w connecting w and u. Therefore, we have that (wI , zI1), · · · ,
(zIn−1, u

I) ∈ Ri or (uI , zI1), · · · , (z
I
n−1, w

I) ∈ Ri in M under I, which implies
that w and u are mapped to worlds in the same equivalence class, i.e., Riw

IuI

holds without loss of generality. By assumption, M,wI 6 〈i〉φ holds, meaning

4 Note that in the marginal case where our sequence of transitions is of the form

w
〈i〉
−→ w

〈i〉
−→ · · ·w

〈i〉
−→ w, with all states (including x and y) equal to w, the

corresponding propagation automaton is PΛ2
(w,w), which accepts the empty string

ε ∈ Li, thus allowing for the desired application of (Pri).
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that M,wI  [i]φ holds. Since both Riw
IuI and M,wI  [i]φ hold, we know

that M,uI  φ, implying that M,uI 6 φ. Thus, the premise is falsified by M
under I.

Lemma 4 Every labelled sequent generated throughout the course of computing
Proven(w : φ) is forestlike.

Proof. We prove the result by induction on the number of instructions executed.
Note that the input sequent w : φ is trivially forestlike.

Base Case. We assume that one of the instructions (2 - 7) has been executed
in the algorithm (initially, instructions 1 and 8 cannot be executed): (2) If w : φ
is stable, then no sequent is generated. (3) If instruction 3 is executed, then in
case (i) w : φ = w : ψ ∨ χ, so the generated sequent is w : φ,w : ψ,w : χ, which
is forestlike; in case (ii) w : φ = w : ψ ∧ χ, so the sequents w : φ,w : ψ and w :
φ,w : χ are generated, which are both forestlike. (4) If instruction 4 is executed,
then w : φ = w : 〈1〉ψ, so the sequent generated is of the form w : φ,w : ψ, which
is forestlike. (5) If instruction 5 is executed, then w : φ = w : ♦ψ, so the sequent
generated is of the form w : φ,w : ψ, which is forestlike. (6) If instruction 6 is
executed, then w : φ = w : [1]ψ, and the sequent R1wv,wφ, v : ψ is generated,
which is forestlike. (7) If instruction 7 is executed, then w : φ = w : �ψ, so the
sequent w : φ, v : ψ is generated, which is forestlike.

Inductive Step. We assume that our input sequent is forestlike, and argue
that the generated sequent is forestlike: (1) If instruction 1 is executed, then no
sequent is generated. (2) If instruction 2 is executed, then no sequent is gener-
ated. (3) Each of the operations in instruction 3 preserves the set of relational
atoms R as well as the set of labels in the sequent; hence, the sequent gener-
ated after an execution of instruction 3 will be forestlike. (4) Instruction 4 labels
nodes in the graph of the input sequent with additional formulae, but does not
change the structure of the graph; therefore, the generated (output) sequent will
be forestlike. (5) Similar to case 4. (6) Instruction 6 adds one additional R1 edge
to a fresh labelled node v in the graph of the input sequent, which adds addi-
tional branching in the graph of the generated sequent, and thus preserves the
forestlike structure of the sequent. (7) Instruction 7 adds a new labelled formula
to the sequent, which is akin to adding a new, disjoint labelled node to the graph
of the input sequent; this preserves the forestlike structure of the sequent. (8)
Instruction 8 connects the root of one choice-tree to the root of another choice-
tree in the graph of the input sequent; the result is another tree, and thus, the
generated sequent will be forestlike.

Theorem 6 (Termination) For every labelled formula w : φ, Proven(w : φ)
terminates.

Proof. Let sufo(φ) be the multiset of subformulae of φ defined in the usual way.
Observe that new labels are only created through instructions 6 and 7 of the
algorithm, and each time instruction 6 or 7 executes, the formula w : [1]ψ or
w : �ψ (resp.) responsible for the instruction’s execution, no longer influences
the non-[1]-realization or non-�-realization of w. Therefore, the number of labels
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in any sequent generated by the algorithm is bounded by the number of [1]- and
�-formulae contained in sufo(φ) plus 1 (which is the label of the input formula).
Moreover, the number of R1 relational atoms is bounded by the number of [1]-
formulae.

Instructions 3–5 add strict subformulae of formulae occurring in sufo(φ) and
do not create new labels or relational atoms. Due to the blocking conditions in
instructions 3–5, any formula that is added with a label will only be added once.
Therefore, the number of executions of instructions 3–5 is bounded by |sufo(φ)|
multiplied by 1 plus the number of [1]- and �-formulae occurring in sufo(φ).

Last, observe that instruction 6 increases the breadth or height of a choice-
tree in the input sequent, whereas instruction 7 adds a new label which acts as
the root of a new choice-tree. This implies that the number of choice-trees is
bounded by the number of �-formulae occurring in sufo(φ). Each time instruc-
tion 8 executes the number of choice-trees in a resulting sequent decreases by 1.
Since the number of choice-trees is bounded by the number of �-subformulae,
eventually the number of choice-trees will decrease to k ≤ n, at which point, the
generated sequent will be n-choice consistent, and instruction 8 will no longer
be applicable.

Therefore, the algorithm will terminate.
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