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Motivation

Recall the limitations of first-order logic:

FOL is powerful, but still cannot capture

Transitive closure (Ancestor is the transitive closure of Parent)

Defaults and exceptions (birds fly by default; penguins are an exception)
Probabilistic knowledge (children suffer from JRA with probability p)
Vague knowledge (lan is tall)

We will now focus on probabilistic and (some) vague knowledge.
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Types of Uncertainty

We can distinguish the following, resembling, notions:

1. Uncertainty: Lack of sufficient information about the state of the world,
for determining whether a Boolean statement is true or false.

2. Incompleteness: Refers to sources with missing information, or that are
not able to distinguish between several situations.

3. Ambiguity: A statement does not have a clear meaning, can be formally
interpreted in several distinct ways.
Visiting relatives can be exhausting.

4. Imprecision: Refers to the contents of the considered statement and
depends on the granularity of the language.
Robin is between 25 and 30 years old.

5. Vagueness: A vague statement contains vague or gradual predicates.
lan is tall.
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Outline

Introduction
Probability Theory
Dempster-Shafer Theory

Fuzzy Logic
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Basic Terminology (1)

Most representations of uncertainty start with a set of possible worlds:
Terminology

+ A possible world is a current or future state of affairs that an agent
considers possible.

+ Asample space is a set of possible worlds.

Example

* When tossing a die, we can consider six possible worlds, one for each

outcome.
*+ This can be represented by a set W = {w;, ..., wg} consisting of worlds w;,
fori=1,...,6.

+ For each w;, the world w; is the one where the die lands face i up.
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Basic Terminology (2)

Terminology

For a sample space W, an event (or proposition) is a subset of W.

Events (propositions) are the objects of belief - the objects that are known
(or considered likely or possible or probable).

Example

Reconsider the sample space W = {wy, ..., wg} for throwing a die. The event
that “this die lands on an even number” corresponds to the set {wy, Wy, We}.

+ The set of worlds that an agent considers possible can be viewed as a
qualitative measure of its uncertainty.

+ The more worlds it considers possible, the more uncertain it is as to the
true state of affairs, and the less it knows.

« This is a very coarse-grained representation of uncertainty.
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Probability Theory
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Probability Measures

Perhaps the best-known approach to getting a more fine-grained
representation of uncertainty is probability.

Suppose that the agent’'s uncertainty is represented by the set
W = {ws, ..., wp} of possible worlds.

+ A probability measure assigns to each of the worlds in W a number - a
probability - that can be thought of as describing the likelihood of this
world being the actual world.

+ The set of objects of belief (the propositions) is the power set of W,
denoted 2%,

+ A probability function pr is a function
pr:2% - R

that satisfies the probability axioms.
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Probability Axioms

Let S be a set of propositions (i.e. a set of sets of possible worlds).

Kolmogorov axioms

1. Non-Negativity: pr(A) > 0 for allA € S.
2. Normalization: pr(T) = 1 for all necessary truths T € S.
3. Finite Additivity: pr(A Vv B) = pr(A) + pr(B) for all disjoint A, B € S.
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Closure

It is typically assumed that the set of subsets of W to which probability is
assigned satisfies some closure properties.

Definition

An algebra over W is a set ¥ C 2" such that W € F and:
IfUcFandV e F, thenUuV e Fand U € 7.

If additionally Uy, Uy, ... € Fimplies | J{U1,U,, ...} € F, then F is a o-algebra.

* An algebra is closed under finite union and complementation;

+ ao-algebra is additionally closed under countable union.
Note: If W is finite, every algebra is a g-algebra.
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Probability Measures

Consider again the example of tossing a die:

+ If each of the six outcomes is considered equally likely, then it seems
reasonable to assign to each of the six worlds the same number.
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Probability Measures

Example

Consider again the example of tossing a die:

+ If each of the six outcomes is considered equally likely, then it seems
reasonable to assign to each of the six worlds the same number.

« With 1 = pr(W) = pr({wn, ..., we}) = pr({w 1} V...V {wg}) =
pri{wi})+ ...+ pr({we}) and pr({w;}) = pr({w;}) for 1 <i,j <6, ...
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Probability Measures

Example

Consider again the example of tossing a die:

+ If each of the six outcomes is considered equally likely, then it seems
reasonable to assign to each of the six worlds the same number.

« With 1 = pr(W) = pr({ws, ..., we}) = pr({wq} V...V {we}) =
pri{wi})+ ...+ pr({we}) and pr({w;}) = pr({w;}) for 1 <i,j <6, ...

« ... we get pr({w;}) = % for every w; € {wy, ..., we}.
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Probability Measures

Example

Consider again the example of tossing a die:

+ If each of the six outcomes is considered equally likely, then it seems
reasonable to assign to each of the six worlds the same number.

« With 1 = pr(W) = pr({ws, ..., we}) = pr({wq} V...V {we}) =
pri{wi})+ ...+ pr({we}) and pr({w;}) = pr({w;}) for 1 <i,j <6, ...

« ... we get pr({w;}) = % for every w; € {wy, ..., we}.
+ Applying the Kolmogorov axioms we then get

/_,I ’
pr(W)_g-|W|

for every W' C {wy, ..., wg}.
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justlfylng Probability

If belief is quantified using probability, then we need to explain what the
numbers represent.

+  Without such an explanation, it will not be clear how to assign

probabilities in applications, nor how to interpret the results obtained by
using probability.

Classical approach: Reduce a situation to a number of elementary outcomes.
Terminology

An elementary outcome is an event that is a singleton set.

Principle of Indifference

All elementary outcomes are equally likely.

Intuitively: In the absence of any other information, there is no reason to
consider one more likely than another.
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More Interpretations of Probabilities

The relative-frequency interpretation:
Takes probability to be an objective property of a situation.

The (extreme) subjective viewpoint:

Argues that there is no such thing as an objective notion of probability.
In this view:

* Probability is a number assigned by an individual representing their
subjective assessment of likelihood.

+ This assessment is valid as long as it satisfies the probability axioms.
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Problems with Probabilities (1)

Despite its widespread acceptance, using probabilities to represent
uncertainty is not without problems.

Example

Suppose that a coin is tossed once.
There are two possible worlds, heads and tails.

+ If the coin is known to be fair, it seems reasonable to assign probability
1/2 to each of these worlds.

* However, suppose that the coin has an unknown bias. How should this
be represented?

+ One approach is to continue to take heads and tails as the elementary
outcomes and to apply the principle of indifference.

+ Still, there seems to be a significant difference between a fair coin and a
coin of unknown bias.
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Problems with Probabilities (2)

Example

Suppose that a bag contains 100 marbles.

30 are known to be red.

The remaining 70 are known to be either blue or yellow.

The exact proportion between blue and yellow is not known.

+ What is the likelihood that a marble taken out of the bag is yellow?
+ This can be modeled with three possible worlds: red, blue, and yellow
(one for each outcome).

+ It seems reasonable to assign probability 0.3 to the outcome of choosing
a red marble, and thus probability 0.7 to choosing either blue or yellow.
But what probability should be assigned to the other two outcomes?
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Summary - Problems with Probabilities

In a nutshell...

Problem 1:
Probability is not good at representing severe uncertainty.

Problem 2:

While an agent may be prepared to assign probabilities to some sets, it may
not be prepared to assign probabilities to all sets.
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Dempster-Shafer Theory
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Dempster-Shafer Theory

The Dempster-Shafer theory of evidence provides another approach to
attaching likelihood to events.

It is based on two ideas:

* The idea of obtaining degrees of belief for one question from subjective
probabilities for a related question.

+ Dempster’s rule for combining such degrees of belief when they are
based on independent items of evidence.

Definition

Let W be a set of possible worlds.

A belief function is a function Bel: 2% — [0, 1].

Intuitively: For any U C W, the value Bel(U) expresses the degree of belief in U.
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Belief Functions: Example

To illustrate this view, consider the following example:

* Let T be the proposition that /t will snow in Dresden on New Year’s day in
2036 and suppose our agent’s belief function assigns a value of 0.6 to this
claim.

* We represent this by writing Bel(T) = 0.6.
Note the differences to a probability function:

+ If the agent’s belief function was a probability function, then it would
follow that: Bel(~T) = 0.4.

* However, our belief function can assign any value less than or equal to

0.4to —T.
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Belief Functions versus Probability Functions

More generally:

For a probability function pr:2" — [0, 1] and A, B C W, we always have that
ANB =0 = pr(AuB) = pr(A) + pr(B)
For a belief function Bel: 2" — [0, 1] and A, B C W, we only require that
ANB =0 = Bel(AUB) > Bel(A) + Bel(B)

Thus the belief function is not a probability function, as the third probability
axiom does not apply.
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Theory of Evidence

Belief functions are part of a theory of evidence.
Intuitively, evidence supports events to varying degrees.

Consider again an urn that contains 100 marbles:

+ The information that there are exactly 30 red marbles provides support
in degree 0.3 for {red}.

+ The information that there are 70 yellow and blue marbles does not
provide any positive support for either {blue} or {yellow}.

+ Butit does provide support 0.7 for {blue, yellow}.
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Theory of Evidence

In general, evidence provides some degree of support (possibly 0) for each
subset of W.

« The total amount of supportis 1.

+ The belief that U holds, Bel(U), is then the sum of all the supports on
subsets of U.

Formally, this is captured by defining belief functions and plausibility
functions based on so-called mass functions:
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Basic Terminology

Definition
A mass function (sometimes called basic probability assignment) on W is a
function m: 2" — [0, 1] satisfying the following properties:

m(@) =0 (M1)
Z m(U) = 1 (M2)

ucw

Intuitively, m(U) describes the extent to which the evidence supports U.

Let us see next how we could motivate M1 and M2.
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Mass Function - Explanation

Terminology

Consider a set W of possible worlds and suppose U C W is an observation.
We say that observation U is accurate iff:

if U is observed, then the actual world is in U.

With that, m(U) can be viewed as the likelihood of observing U.
Motivation, M1: It is impossible to observe §.
Motivation, M2: Something must be observed.

Given a mass function m, the likelihood of the actual world being in U can be
approximated from below using a belief function, and from above using a
plausibility function.
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Belief Function and Plausibility Function

Definition
Let m:2W — [0, 1] be a mass function.
+ The belief function based on m is Bel,, : 2" — [0, 1] with

Belp(U) = Z m(U’)

ucu

+ The plausibility function based on m is Plausp, : 2" — [0, 1] with

Plaus,(U) = Z m(U’)
ucw,
UnU+g

* Intuitively, Bel»(U) is the sum of the probabilities of the evidence or
observations that guarantees that the actual world is in U.
* Plausm,(U) can be thought of as the sum of the probabilities of the

~evidence that is compatible with the actual world beinginv.
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Belief Function - Interpretation

One way to interpret the idea of a belief function, is as a measure of the

weight of evidence for each proposition.

Consider again agent A's belief function that assigns a value of 0.6 to

proposition S.

+ Suppose that A asked a friend whether it will snow in Dresden that day
who is sure that it will.
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Belief Function - Interpretation

One way to interpret the idea of a belief function, is as a measure of the

weight of evidence for each proposition.

Consider again agent A's belief function that assigns a value of 0.6 to

proposition S.

+ Suppose that A asked a friend whether it will snow in Dresden that day
who is sure that it will.

« A considers this friend to be reliable in 60% of cases of this sort (this is
why A’s belief function assigns a value of 0.6 to this claim).
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Belief Function - Interpretation

One way to interpret the idea of a belief function, is as a measure of the

weight of evidence for each proposition.

Consider again agent A's belief function that assigns a value of 0.6 to

proposition S.

+ Suppose that A asked a friend whether it will snow in Dresden that day
who is sure that it will.

« A considers this friend to be reliable in 60% of cases of this sort (this is
why A’s belief function assigns a value of 0.6 to this claim).

+ If thisis all evidence A has, her belief function assigns a value of 0 to -S.
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Belief Function - Interpretation

One way to interpret the idea of a belief function, is as a measure of the
weight of evidence for each proposition.

Consider again agent A's belief function that assigns a value of 0.6 to

proposition S.

+ Suppose that A asked a friend whether it will snow in Dresden that day
who is sure that it will.

« A considers this friend to be reliable in 60% of cases of this sort (this is
why A’s belief function assigns a value of 0.6 to this claim).

+ If thisis all evidence A has, her belief function assigns a value of 0 to -S.

« This zero does not mean that A is sure that =S is not the case but that her
friend’s testimony gives no reason to believe that -S.
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Belief Function - Interpretation

One way to interpret the idea of a belief function, is as a measure of the
weight of evidence for each proposition.

Consider again agent A's belief function that assigns a value of 0.6 to
proposition S.

Suppose that A asked a friend whether it will snow in Dresden that day
who is sure that it will.

A considers this friend to be reliable in 60% of cases of this sort (this is
why A’s belief function assigns a value of 0.6 to this claim).

If this is all evidence A has, her belief function assigns a value of 0 to -S.
This zero does not mean that A is sure that =S is not the case but that her
friend’s testimony gives no reason to believe that -S.

In cases where she has evidence from two different sources (another
friend gives her opinion on S), then the belief functions that result from
these different bodies of evidence need to be combined.
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Combination Rules

Combination rules are special types of aggregation methods for data
obtained from multiple sources.

In Dempster-Shafer theory we assume that these sources are independent.

Central Question

How do we aggregate our data from multiple sources?

From a set-theoretic standpoint, these rules can potentially occupy a
continuum between

* conjunction (set intersection) and
+ disjunction (set union).
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Combination Rules

We can distinguish the following situations:

*+ In the situation where all sources are considered reliable, a conjunctive
operation is appropriate (Aand Band C....).

* Inthe case where there is one reliable source among many, we can justify
the use of a disjunctive combination operation (Aor Bor C...).

* However, many combination operations lie between these two extremes
(Aand Bor C, Aand C or B, etc.).

+ Dempster’s rule strongly emphasizes the agreement between multiple
sources and ignores all the conflicting evidence through a normalization
factor.

* This can be considered a strict AND-operation.

TECHNISCHE Uncertainty (Lecture 11) 7Y .
UNIVERSITAT Computational Logic Group // Sebastian Rudolph Slide 29 of 41 5 ‘L::"i’g‘f"’s"g';"'
DRESDEN Foundations of Knowledge Representation, WS 2025/26 [ gic = P



The Rule of Combination

How does the Rule of Combination work intuitively?

* Suppose that an agent obtains evidence from two sources, one
characterized by m; and the other by m,.

« An observation U from the first source and an observation U, from the
second source can be viewed as together providing evidence for Uy N U,.

+ The evidence for a set Uz should consist of all the ways of observing sets
U, from the first source and U, from the second source such that
Urnu, = Us.

* Assuming that the two sources are independent, the likelihood of
observing both Uy and U, is the product of the likelihood of observing
each one, namely, m;(Uy)m,(U>).

* This suggests that the contribution of U; and U, to the mass of Us
according to my & my should be my(Uy)my(U,).
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The Rule of Combination

Dempster’s Rule of Combination provides a way of constructing a new mass
function my @ m,, provided there are at least two sets Uy and U, such that
UynU, + @ and m{(U;)m>(Us) > 0.

Rule of Combination

For U + @:
(mem)U)= Y  mU)myUy)
Uy, U, CW,
UinUy=U
ﬁﬁ?&'z’#gﬁ'ﬁ ggr?;;?t?t%éée\i‘;gri gr)oup // Sebastian Rudolph Slide 31 of 41  Computational

| ic -
DRESDEN Foundations of Knowledge Representation, WS 2025/26 GI- Logic -~ Group



The Rule of Combination

Dempster’s Rule of Combination provides a way of constructing a new mass
function my @ m,, provided there are at least two sets Uy and U, such that
UynU, + @ and m{(U;)m>(Us) > 0.

Rule of Combination
For U + @:

1

(mem)U)=—_ 5  mU)my(Us)
Uy, U, W,
UynUp=U

where the normalisation constant c is defined by

c= ) my(Uy)my(Us)

U, U W,
UinU,#8
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The Rule of Combination

Dempster’s Rule of Combination provides a way of constructing a new mass
function my @ m,, provided there are at least two sets U; and U, such that
UynU, + @ and m{(U;)m>(Us) > 0.

Rule of Combination
For U + @: (For U = @ clearly (m1 & my)(@) = 0.)

1

(mem)U)=—_ 5  mU)my(Us)
Uy, U, W,
UynUp=U

where the normalisation constant c is defined by

c= ) my(Uy)my(Us)

U, U W,
UinU,#8
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Rule of Combination - Example (1)

Suppose that a physician sees a case of jaundice.

She considers four possible hypotheses regarding its cause:

1. hepatitis (hep),

2. cirrhosis (cirr),

3. gallstone (gall), and

4. pancreatic cancer (pan).

« Suppose that these are the only causes of jaundice, and that a patient
with jaundice suffers from exactly one of those problems.

* Thus, the physician can take the set of possible worlds to be
W = {hep, cirr, gall, pan}.

« Only subsets of 2" are of diagnostic significance.
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Rule of Combination - Example (2)

Suppose there are two types of test:

* There are tests that support each of the individual hypotheses,
+ and tests that support

- intrahepatic cholestasis, {hep, cirr}, and

- extrahepatic cholestasis, {gall, pan};

+ the latter two tests do not provide further support for the individual
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Rule of Combination - Example

To begin with, suppose that a single test is carried out that provides
evidence for intrahepatic cholestasis to degree 0.6.

That is, no combination of evidences has to take place:
* This can be represented by a mass function that assigns 0.6 to {hep, cirr}

and the remaining 0.4 to W.

+ The fact that the test provides support only 0.6 {hep, cirr} does not mean
that it provides support 0.4 for its complement, {gall, pan}.

* Rather, the remaining 0.4 is viewed as uncommitted. As a result
Bel({hep, cirr}) = 0.6 and Plaus({hep, cirr}) = 1.
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Rule of Combination - Example

Now, suppose that two tests are carried out:

+ The first confirms hepatitis to degree 0.8 and says nothing about the
other hypotheses;

+ this is captured by the mass function my such that m({hep}) = 0.8 and
mq(W) = 0.2.

+ The second confirms intrahepatic cholestasis to degree 0.6; it is captured
by the mass function m; such that my({hep, cirr}) = 0.6 and m,(W) = 0.4).

A straightforward computation shows that c = 1, and
(m1 @ my)({hep}) = 0.8

(m1 ® my)({hep, cirr}) = 0.12
(my & my)(W) = 0.08
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Fuzzy Logic

Uncertainty (Lecture ~ :
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Fuzzy Logic - A Very Brief Outlook

« Fuzzy logic may be viewed as an extension of classical logical systems.

It provides an effective conceptual framework for dealing with
applications in KR in an environment of uncertainty and imprecision.

Most experts believe that the likelihood of a severe earthquake in the near
future is very low.

FOL and classical probability theory lack the means for representing the
meaning of fuzzy concepts.
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Basic Idea

A fuzzy set is a mapping F from 8 (the set of possible states of affairs) to a
totally ordered set £ often chosen to be the unit interval [0, 1].

The value F(s) is the membership degree of the elementsin F.

It evaluates the compatibility between the situation s and the predicate F.
The membership degree can be seen as a degree of truth of a
proposition.

L has a natural ordering <, ranging from total falsity (represented by 0) to

total truth (represented by 1) through a continuum of intermediate truth
degrees.
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Basic Idea - Formally

Connectives are to be interpreted truth-functionally over the set of
truth-degrees. Such truth-functions are assumed to behave classically on
the extremal values 0 and 1.

A very natural behavior of conjunction and disjunction is achieved by
imposing x Ay = min{x,y} and x Vy = max{x,y} for each x,y € [0, 1].

Another, non-idempotent, conjunction is typically added:

+ lItisinterpreted by a binary operation on [0,1], which is still associative,
commutative, non-decreasing in both arguments and has 1 as neutral
element.

+ Itis based on the idea that applying partially true hypothesis twice might
lead to a different degree of truth than using it only once.
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A Dangerous Confusion

Notice the difference between
+ adegree of truth (1), and
+ adegree of certainty (2):

(1) John is very young.
(2) John is probably young.

(1) expresses the fact that the degree of membership of age(John) to the
fuzzy set of young ages is high, and this is certain.

For instance, take age(John) = 22. The degree of membership F(s)
represents the degree of adequacy of a fuzzy category, here F = young, to a
state of affairs, here s = 22.

(2) Here, it is not ruled out that John is not young at all.

TECHNISCHE Uncertainty (Lecture 11) 7Y .
UNIVERSITAT Computational Logic Group // Sebastian Rudolph Slide 40 of 41 5 ‘L:g"i’g‘f"’s“g';"'
DRESDEN Foundations of Knowledge Representation, WS 2025/26 [ gic = P



Choosing a Representation

Summary of our models of uncertainty:

* Probability has the advantage of being well understood. However,
probability theory has some drawbacks when there is uncertainty about
the likelihood.

+ Belief functions may prove useful as a model of evidence, especially when
combined with Dempster’s Rule of Combination. It has the resources
designed to model severe uncertainty.

* Fuzzy logic is of great use for approximate reasoning: when information
is not only uncertain but also lexically imprecise.
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