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Motivation

Recall the limitations of first-order logic:
FOL is powerful, but still cannot capture
• Transitive closure (Ancestor is the transitive closure of Parent)
• Defaults and exceptions (birds fly by default; penguins are an exception)
• Probabilistic knowledge (children suffer from JRA with probability p)
• Vague knowledge (Ian is tall)
• . . .
We will now focus on probabilistic and (some) vague knowledge.
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Types of Uncertainty
We can distinguish the following, resembling, notions:
1. Uncertainty: Lack of sufficient information about the state of the world,for determining whether a Boolean statement is true or false.
2. Incompleteness: Refers to sources with missing information, or that arenot able to distinguish between several situations.
3. Ambiguity: A statement does not have a clear meaning, can be formallyinterpreted in several distinct ways.

Visiting relatives can be exhausting.

4. Imprecision: Refers to the contents of the considered statement anddepends on the granularity of the language.
Robin is between 25 and 30 years old.

5. Vagueness: A vague statement contains vague or gradual predicates.
Ian is tall.
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Introduction
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Basic Terminology (1)
Most representations of uncertainty start with a set of possible worlds:
Terminology
• A possible world is a current or future state of affairs that an agentconsiders possible.
• A sample space is a set of possible worlds.
Example
• When tossing a die, we can consider six possible worlds, one for eachoutcome.
• This can be represented by a set W = {w1, . . . ,w6} consisting of worlds wi,for i = 1, . . . , 6.
• For each wi, the world wi is the one where the die lands face i up.
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Basic Terminology (2)
Terminology
For a sample space W , an event (or proposition) is a subset of W .
Events (propositions) are the objects of belief – the objects that are known(or considered likely or possible or probable).
Example
Reconsider the sample space W = {w1, . . . ,w6} for throwing a die. The eventthat “this die lands on an even number” corresponds to the set {w2,w4,w6}.
• The set of worlds that an agent considers possible can be viewed as aqualitative measure of its uncertainty.• The more worlds it considers possible, the more uncertain it is as to thetrue state of affairs, and the less it knows.• This is a very coarse-grained representation of uncertainty.
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Probability Theory
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Probability Measures
Perhaps the best-known approach to getting a more fine-grainedrepresentation of uncertainty is probability.
Suppose that the agent’s uncertainty is represented by the set
W = {w1, . . . ,wn} of possible worlds.
• A probability measure assigns to each of the worlds in W a number – aprobability – that can be thought of as describing the likelihood of thisworld being the actual world.
• The set of objects of belief (the propositions) is the power set of W ,denoted 2W .
• A probability function pr is a function

pr : 2W → R

that satisfies the probability axioms.
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Probability Axioms

Let S be a set of propositions (i.e. a set of sets of possible worlds).
Kolmogorov axioms

1. Non-Negativity: pr(A) ≥ 0 for all A ∈ S.
2. Normalization: pr(T ) = 1 for all necessary truths T ∈ S.
3. Finite Additivity: pr(A∨ B) = pr(A) + pr(B) for all disjoint A,B ∈ S.
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Closure
It is typically assumed that the set of subsets of W to which probability isassigned satisfies some closure properties.
Definition
An algebra over W is a set F ⊆ 2W such that W ∈ F and:

If U ∈ F and V ∈ F, then U ∪ V ∈ F and U ∈ F.
If additionally U1,U2, . . . ∈ F implies ⋃

{U1,U2, . . .} ∈ F, then F is a σ-algebra.
• An algebra is closed under finite union and complementation;
• a σ-algebra is additionally closed under countable union.
Note: If W is finite, every algebra is a σ-algebra.
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Probability Measures
Example
Consider again the example of tossing a die:
• If each of the six outcomes is considered equally likely, then it seemsreasonable to assign to each of the six worlds the same number.

• With 1 = pr(W) = pr({w1, . . . ,w6}) = pr({w1} ∨ . . . ∨ {w6}) =
pr({w1}) + . . . + pr({w6}) and pr({wi}) = pr({wj

}) for 1 ≤ i, j ≤ 6, . . .
• . . .we get pr({wi}) = 16 for every wi ∈ {w1, . . . ,w6}.
• Applying the Kolmogorov axioms we then get

pr(W ′) = 1
6 ·

∣∣W ′∣∣
for every W ′ ⊆ {w1, . . . ,w6}.
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Justifying Probability
• If belief is quantified using probability, then we need to explain what thenumbers represent.• Without such an explanation, it will not be clear how to assignprobabilities in applications, nor how to interpret the results obtained byusing probability.
Classical approach: Reduce a situation to a number of elementary outcomes.
Terminology
An elementary outcome is an event that is a singleton set.
Principle of Indifference

All elementary outcomes are equally likely.
Intuitively: In the absence of any other information, there is no reason toconsider one more likely than another.
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More Interpretations of Probabilities

The relative-frequency interpretation:Takes probability to be an objective property of a situation.
The (extreme) subjective viewpoint:Argues that there is no such thing as an objective notion of probability.In this view:
• Probability is a number assigned by an individual representing theirsubjective assessment of likelihood.
• This assessment is valid as long as it satisfies the probability axioms.
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Problems with Probabilities (1)
Despite its widespread acceptance, using probabilities to representuncertainty is not without problems.
Example

Suppose that a coin is tossed once.

There are two possible worlds, heads and tails.

• If the coin is known to be fair, it seems reasonable to assign probability1/2 to each of these worlds.
• However, suppose that the coin has an unknown bias. How should thisbe represented?
• One approach is to continue to take heads and tails as the elementaryoutcomes and to apply the principle of indifference.
• Still, there seems to be a significant difference between a fair coin and acoin of unknown bias.
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Problems with Probabilities (2)

Example
Suppose that a bag contains 100 marbles.

30 are known to be red.

The remaining 70 are known to be either blue or yellow.

The exact proportion between blue and yellow is not known.

• What is the likelihood that a marble taken out of the bag is yellow?
• This can be modeled with three possible worlds: red, blue, and yellow(one for each outcome).
• It seems reasonable to assign probability 0.3 to the outcome of choosinga red marble, and thus probability 0.7 to choosing either blue or yellow.But what probability should be assigned to the other two outcomes?
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Summary – Problems with Probabilities

In a nutshell. . .
Problem 1:
Probability is not good at representing severe uncertainty.

Problem 2:
While an agent may be prepared to assign probabilities to some sets, it maynot be prepared to assign probabilities to all sets.
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Dempster-Shafer Theory
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Dempster-Shafer Theory
The Dempster-Shafer theory of evidence provides another approach toattaching likelihood to events.
It is based on two ideas:
• The idea of obtaining degrees of belief for one question from subjectiveprobabilities for a related question.
• Dempster’s rule for combining such degrees of belief when they arebased on independent items of evidence.
Definition
Let W be a set of possible worlds.
A belief function is a function Bel : 2W → [0, 1].
Intuitively: For any U ⊆ W , the value Bel(U) expresses the degree of belief in U.
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Belief Functions: Example

To illustrate this view, consider the following example:
• Let T be the proposition that It will snow in Dresden on New Year’s day in

2036 and suppose our agent’s belief function assigns a value of 0.6 to thisclaim.
• We represent this by writing Bel(T ) = 0.6.
Note the differences to a probability function:
• If the agent’s belief function was a probability function, then it wouldfollow that: Bel(¬T ) = 0.4.
• However, our belief function can assign any value less than or equal to0.4 to ¬T .
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Belief Functions versus Probability Functions

More generally:
For a probability function pr : 2W → [0, 1] and A,B ⊆ W , we always have that

A∩ B = ∅ =⇒ pr(A∪ B) = pr(A) + pr(B)
For a belief function Bel : 2W → [0, 1] and A,B ⊆ W , we only require that

A∩ B = ∅ =⇒ Bel(A∪ B) ≥ Bel(A) + Bel(B)
Thus the belief function is not a probability function, as the third probabilityaxiom does not apply.
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Theory of Evidence

Belief functions are part of a theory of evidence.
Intuitively, evidence supports events to varying degrees.
Example
Consider again an urn that contains 100 marbles:
• The information that there are exactly 30 red marbles provides supportin degree 0.3 for {red}.
• The information that there are 70 yellow and blue marbles does notprovide any positive support for either {blue} or {yellow}.
• But it does provide support 0.7 for {blue, yellow}.
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Theory of Evidence

In general, evidence provides some degree of support (possibly 0) for eachsubset of W .
• The total amount of support is 1.
• The belief that U holds, Bel(U), is then the sum of all the supports onsubsets of U.
Formally, this is captured by defining belief functions and plausibilityfunctions based on so-called mass functions:
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Basic Terminology

Definition
Amass function (sometimes called basic probability assignment) on W is afunctionm : 2W → [0, 1] satisfying the following properties:

m(∅) = 0 (M1)∑
U⊆W

m(U) = 1 (M2)

Intuitively,m(U) describes the extent to which the evidence supports U.
Let us see next how we could motivate M1 and M2.
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Mass Function – Explanation

Terminology
Consider a set W of possible worlds and suppose U ⊆ W is an observation.We say that observation U is accurate iff:

if U is observed, then the actual world is in U.
With that,m(U) can be viewed as the likelihood of observing U.
Motivation, M1: It is impossible to observe ∅.
Motivation, M2: Something must be observed.
Given a mass functionm, the likelihood of the actual world being in U can beapproximated from below using a belief function, and from above using aplausibility function.
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Belief Function and Plausibility Function
Definition
Letm : 2W → [0, 1] be a mass function.
• The belief function based onm is Belm : 2W → [0, 1] with

Belm(U) = ∑
U′⊆U

m(U′)
• The plausibility function based onm is Plausm : 2W → [0, 1] with

Plausm(U) = ∑
U′⊆W ,
U′∩U 6=∅

m(U′)

• Intuitively, Belm(U) is the sum of the probabilities of the evidence orobservations that guarantees that the actual world is in U.• Plausm(U) can be thought of as the sum of the probabilities of theevidence that is compatible with the actual world being in U.
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Belief Function – Interpretation
One way to interpret the idea of a belief function, is as a measure of theweight of evidence for each proposition.
Consider again agent A’s belief function that assigns a value of 0.6 toproposition S.
• Suppose that A asked a friend whether it will snow in Dresden that daywho is sure that it will.

• A considers this friend to be reliable in 60% of cases of this sort (this iswhy A’s belief function assigns a value of 0.6 to this claim).
• If this is all evidence A has, her belief function assigns a value of 0 to ¬S.
• This zero does not mean that A is sure that ¬S is not the case but that herfriend’s testimony gives no reason to believe that ¬S.
• In cases where she has evidence from two different sources (anotherfriend gives her opinion on S), then the belief functions that result fromthese different bodies of evidence need to be combined.
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Combination Rules

Combination rules are special types of aggregation methods for dataobtained from multiple sources.
In Dempster-Shafer theory we assume that these sources are independent.
Central Question
How do we aggregate our data from multiple sources?
From a set-theoretic standpoint, these rules can potentially occupy acontinuum between
• conjunction (set intersection) and
• disjunction (set union).
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Combination Rules

We can distinguish the following situations:
• In the situation where all sources are considered reliable, a conjunctiveoperation is appropriate (A and B and C . . . ).
• In the case where there is one reliable source among many, we can justifythe use of a disjunctive combination operation (A or B or C . . . ).
• However, many combination operations lie between these two extremes(A and B or C, A and C or B, etc.).
• Dempster’s rule strongly emphasizes the agreement between multiplesources and ignores all the conflicting evidence through a normalizationfactor.
• This can be considered a strict AND-operation.
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The Rule of Combination
How does the Rule of Combination work intuitively?
• Suppose that an agent obtains evidence from two sources, onecharacterized bym1 and the other bym2.• An observation U1 from the first source and an observation U2 from thesecond source can be viewed as together providing evidence for U1 ∩U2.• The evidence for a set U3 should consist of all the ways of observing sets

U1 from the first source and U2 from the second source such that
U1 ∩U2 = U3.• Assuming that the two sources are independent, the likelihood ofobserving both U1 and U2 is the product of the likelihood of observingeach one, namely,m1(U1)m2(U2).• This suggests that the contribution of U1 and U2 to the mass of U3according tom1 ⊕m2 should bem1(U1)m2(U2).
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The Rule of Combination
Dempster’s Rule of Combination provides a way of constructing a new massfunctionm1 ⊕m2, provided there are at least two sets U1 and U2 such that
U1 ∩U2 6= ∅ andm1(U1)m2(U2) > 0.
Rule of Combination
For U 6= ∅:

(For U = ∅ clearly (m1 ⊕m2)(∅) = 0.)

(m1 ⊕m2)(U) =

1
c

∑
U1,U2⊆W ,
U1∩U2=U

m1(U1)m2(U2)

where the normalisation constant c is defined by
c =

∑
U1,U2⊆W ,
U1∩U2 6=∅

m1(U1)m2(U2)

Uncertainty (Lecture 11)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2025/26 Slide 31 of 41 Computational
Logic ∴ Group



The Rule of Combination
Dempster’s Rule of Combination provides a way of constructing a new massfunctionm1 ⊕m2, provided there are at least two sets U1 and U2 such that
U1 ∩U2 6= ∅ andm1(U1)m2(U2) > 0.
Rule of Combination
For U 6= ∅:

(For U = ∅ clearly (m1 ⊕m2)(∅) = 0.)

(m1 ⊕m2)(U) = 1
c

∑
U1,U2⊆W ,
U1∩U2=U

m1(U1)m2(U2)

where the normalisation constant c is defined by
c =

∑
U1,U2⊆W ,
U1∩U2 6=∅

m1(U1)m2(U2)

Uncertainty (Lecture 11)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2025/26 Slide 31 of 41 Computational
Logic ∴ Group



The Rule of Combination
Dempster’s Rule of Combination provides a way of constructing a new massfunctionm1 ⊕m2, provided there are at least two sets U1 and U2 such that
U1 ∩U2 6= ∅ andm1(U1)m2(U2) > 0.
Rule of Combination
For U 6= ∅: (For U = ∅ clearly (m1 ⊕m2)(∅) = 0.)

(m1 ⊕m2)(U) = 1
c

∑
U1,U2⊆W ,
U1∩U2=U

m1(U1)m2(U2)

where the normalisation constant c is defined by
c =

∑
U1,U2⊆W ,
U1∩U2 6=∅

m1(U1)m2(U2)

Uncertainty (Lecture 11)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2025/26 Slide 31 of 41 Computational
Logic ∴ Group



Rule of Combination – Example (1)

Suppose that a physician sees a case of jaundice.
She considers four possible hypotheses regarding its cause:
1. hepatitis (hep),
2. cirrhosis (cirr),
3. gallstone (gall), and
4. pancreatic cancer (pan).
• Suppose that these are the only causes of jaundice, and that a patientwith jaundice suffers from exactly one of those problems.
• Thus, the physician can take the set of possible worlds to be

W = {hep, cirr, gall,pan}.
• Only subsets of 2W are of diagnostic significance.
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Rule of Combination – Example (2)

Suppose there are two types of test:
• There are tests that support each of the individual hypotheses,
• and tests that support

– intrahepatic cholestasis, {hep, cirr}, and– extrahepatic cholestasis, {gall,pan};
• the latter two tests do not provide further support for the individualhypotheses.
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Rule of Combination – Example

To begin with, suppose that a single test is carried out that providesevidence for intrahepatic cholestasis to degree 0.6.
That is, no combination of evidences has to take place:
• This can be represented by a mass function that assigns 0.6 to {hep, cirr}and the remaining 0.4 to W.
• The fact that the test provides support only 0.6 {hep, cirr} does not meanthat it provides support 0.4 for its complement, {gall,pan}.
• Rather, the remaining 0.4 is viewed as uncommitted. As a result

Bel({hep, cirr}) = 0.6 and Plaus({hep, cirr}) = 1.
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Rule of Combination – Example
Now, suppose that two tests are carried out:
• The first confirms hepatitis to degree 0.8 and says nothing about theother hypotheses;
• this is captured by the mass functionm1 such thatm1({hep}) = 0.8 and

m1(W) = 0.2.
• The second confirms intrahepatic cholestasis to degree 0.6; it is capturedby the mass functionm2 such thatm2({hep, cirr}) = 0.6 andm2(W) = 0.4).
A straightforward computation shows that c = 1, and

(m1 ⊕m2)({hep}) = 0.8
(m1 ⊕m2)({hep, cirr}) = 0.12
(m1 ⊕m2)(W) = 0.08

Uncertainty (Lecture 11)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2025/26 Slide 35 of 41 Computational
Logic ∴ Group



Fuzzy Logic
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Fuzzy Logic – A Very Brief Outlook

• Fuzzy logic may be viewed as an extension of classical logical systems.
• It provides an effective conceptual framework for dealing withapplications in KR in an environment of uncertainty and imprecision.
Example
Most experts believe that the likelihood of a severe earthquake in the nearfuture is very low.
FOL and classical probability theory lack the means for representing themeaning of fuzzy concepts.
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Basic Idea

A fuzzy set is a mapping F from S (the set of possible states of affairs) to atotally ordered set L often chosen to be the unit interval [0, 1].
• The value F(s) is the membership degree of the element s in F.
• It evaluates the compatibility between the situation s and the predicate F.
• The membership degree can be seen as a degree of truth of aproposition.
• L has a natural ordering ≤, ranging from total falsity (represented by 0) tototal truth (represented by 1) through a continuum of intermediate truthdegrees.
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Basic Idea – Formally

Connectives are to be interpreted truth-functionally over the set oftruth-degrees. Such truth-functions are assumed to behave classically onthe extremal values 0 and 1.
A very natural behavior of conjunction and disjunction is achieved byimposing x ∧ y = min{x, y} and x ∨ y = max{x, y} for each x, y ∈ [0, 1].
Another, non-idempotent, conjunction is typically added:
• It is interpreted by a binary operation on [0,1], which is still associative,commutative, non-decreasing in both arguments and has 1 as neutralelement.
• It is based on the idea that applying partially true hypothesis twice mightlead to a different degree of truth than using it only once.
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A Dangerous Confusion
Notice the difference between
• a degree of truth (1), and
• a degree of certainty (2):
(1) John is very young.
(2) John is probably young.
(1) expresses the fact that the degree of membership of age( John) to thefuzzy set of young ages is high, and this is certain.
For instance, take age( John) = 22. The degree of membership F(s)represents the degree of adequacy of a fuzzy category, here F = young, to astate of affairs, here s = 22.
(2) Here, it is not ruled out that John is not young at all.
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Choosing a Representation

Summary of our models of uncertainty:
• Probability has the advantage of being well understood. However,probability theory has some drawbacks when there is uncertainty aboutthe likelihood.
• Belief functions may prove useful as a model of evidence, especially whencombined with Dempster’s Rule of Combination. It has the resourcesdesigned to model severe uncertainty.
• Fuzzy logic is of great use for approximate reasoning: when informationis not only uncertain but also lexically imprecise.
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