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This system demonstration presents Nemo, a new logic programming engine with a focus on reli-
ability and performance. Nemo is built for data-centric analytic computations, modelled in a fully
declarative Datalog dialect. Its scalability for these tasks matches or exceeds that of leading Datalog
systems. We demonstrate uses in reasoning with knowledge graphs and ontologies with 105 − 108

input facts, all on a laptop. Nemo is written in Rust and available as a free and open source tool.

From the early days of logic programming, it has been clear that declarative rules can also be useful for
data analysis and query answering. Datalog can either be viewed as the core of virtually every logic
programming language, or as the generalisation of conjunctive queries with recursion [2]. This bridge
between rule-based systems and databases has become even more important recently, since it fits well
with the growing demand for data analytics, graph-based data management, and declarative processing.

Accordingly, there is a great number of Datalog-based rule engines, with widely different goals and
features. The following overview of relevant system types is far from complete:

1. logic programming systems, esp. for ASP [8, 3] and Prolog [10],

2. knowledge graph and deductive database engines like RDFox [11], VLog [12], and Vadalog [5],

3. specialised data-analytics systems like Souffé [9], LogicBlox [4], or EmptyHeaded [1], and

4. data management frameworks such as Datomic, Google Logica, and CozoDB.

Our new system Nemo is most closely related to tools of type (2) and (3). From tools of type (2),
it inherits the focus on scalability (especially with regards to data size), compatibility with open data
standards like RDF, and its support for existential rules (a.k.a. tuple-generating dependencies), which are
important in databases and rule-based ontologies. At the same time, it aims to support a broader range
of datatypes, built-in operations, and aggregates, as are typically used in data analytics tools of type (3).
A commonality shared with most tools above (except those of type (4)) is that Nemo runs in memory,
without a persistent database backend (though using input data from such databases is planned).

Nemo is still at an early stage of development, but already able to solve real and synthetic bench-
marking tasks at speeds that can compete with other tools mentioned above. This system demonstration
offers a first glimpse at the current functionalities and planned upcoming features. Nemo is developed in
Rust. Its source code, releases, and documentation are at https://github.com/knowsys/nemo/. A
live demo of Nemo can be tried online at https://tools.iccl.inf.tu-dresden.de/nemo/.

Supported Datalog Dialect Nemo works on a custom Datalog dialect that modifies common notation
from logic programming to accommodate the more flexible and accurate data model from the W3C RDF
and SPARQL standards. The syntax is widely compatible with that of Rulewerk [7, formerly VLog4j],
and with the Datalog fragment of RDFox [11]. An example is shown in Figure 1.

The program in Figure 1 integrates two data sources – public trees in Dresden and taxonomic
information about plant species from Wikidata – to find old lime (linden) trees, i.e., trees of any sub-
species of genus Tilia. The datasets are loaded in @source directives, where the comments note the
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@declare tree(any,any,integer,integer) .
@source tree[4]: load-csv("dresden-trees.csv") . % location,species,age,height
@source taxon[3]: load-csv("wikidata-taxons.csv.gz") . % taxon,label,supertaxon

lime(?id, "Tilia") :- taxon(?id, "Tilia", ?parentId) .
lime(?id, ?name) :- taxon(?id, ?name, ?parentId), lime(?parentId, ?parentName) .
oldLime(?loc,?species,?age) :- tree(?loc,?species,?age,?height), ?age>200, lime(?id,?species) .

Figure 1: Finding Dresden’s oldest lime (linden) trees in Nemo

Doctors-1M Ontology-256 LUBM-01k Deep200 Galen EL SNOMED CT
Inferred facts 792,500 5,674,201 186,742,694 725,457 1,858,810 24,117,991

Nemo (sec) 3.2 13.4 163.3 5.1 3.6 62.1
VLog (sec) 2.5 22.2 199.4 timeout 45.2 oom

Table 1: Selected benchmarking results (loading+reasoning); timeout: 60min; oom: out of memory

meaning of the parameters. For tree, we @declare specific datatypes, where any is the most general
type that supports all data (the default if no declaration is given), whereas integer loads numeric values.
The first two rules find all species of lime tree by recursively collecting all taxons below the genus
Tilia in the tree of life. The third rule then finds trees of some such species and an age of over 200
years. Finding Dresden’s seven old limes (the oldest a small-leaved lime of 337 years) from the >88,000
city trees with known age and >3.6M taxons takes about 7 sec on a laptop, of which 200 msec are
used to apply rules (the rest is for data loading). The example data and program is available online at
https://github.com/knowsys/nemo-examples in directory examples/lime-trees.

In addition to the features illustrated above, Nemo also supports stratified negation (denoted ~),
conjunctions in rule heads (denoted ,), further datatypes and built-ins (esp. floating point numbers), and
existentially quantified head variables (using ! instead of ? in front of the variable name).

System Overview The underlying reasoning procedure is based on materialisation (forward chaining
of rules) using semi-naive evaluation [2] and the restricted chase [6]. Key to overall performance is
a combination of columnar data structures (introduced for Datalog by Urbani et al. [12]), a multiway
join algorithm based on leapfrog triejoin [13], and own new optimisation techniques based on careful
computation planning. The columnar design also allows for efficient support for values of different types
at the lowest level. The system aims at maximal declarativity and syntax-independent performance (e.g.,
the order or parameters in predicates or the order of atoms in rules has no effect on performance).

As a system, Nemo can be invoked through a command-line client nmo, which includes options for
storing results. Various input and output formats are supported, currently CSV and TSV, RDF, and logic
programming facts. We strive to support both the elaborate type system and data representation forms
of RDF, and the more basic data schemes often found in CSV or classical logic programming, without a
burden on the user. Nemo is implemented in Rust and can also be used as a Rust library (a crate).

Experiments We compare runtimes (loading and reasoning) of Nemo (v0.2.0) and VLog (v1.3.6) on
established benchmarks and real-world tasks. Times were measured on a notebook (Dell XPS 13; Ubuntu
Linux 22.04; Intel i7-1165G7@2.80GHz; 16GB RAM; 512 GB SSD). Table 1 presents an overview of
the results obtained. The first four result columns are existential rule benchmarks from ChaseBench [6];
the final two columns used an unoptimised encoding of a well-known OWL EL reasoning calculus on two
different ontologies. Nemo matched or outperformed VLog in all experiments, with notable advantages
on hard cases (Deep200 is a synthetic stress test; SNOMED is one of the largest real-world ontologies).
Full details are at https://github.com/knowsys/nemo-examples/ under evaluations/iclp2023.
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Outlook Nemo is still in its early stages, and many additional features are under development. They
include further datatypes, built-in functions, and (stratified) aggregates; support for structured data (func-
tional terms, sets, frames, etc.); and interface improvements (programming APIs, extended client func-
tionality). Moreover, we are researching new optimisation and explanation approaches for rule reasoning.
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