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Abstract. We introduce the notion of t-approximated determinisation
and the t-twinning property of weighted tree automata (WTA) over
the tropical semiring. We provide an algorithm that accomplishes t-
approximated determinisation of an input automaton A , whenever it
terminates. Moreover, we prove that the t-twinning property of A is a
sufficient condition for the termination of our algorithm. Ultimately, we
show decidability of the t-twinning property for WTA.
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1 Introduction

In theoretical computer science, automata theory arose as a very potent field
of research. Besides having manifold applications in areas like natural language
processing, model checking, and computational biology, automata are studied
in a vast number of syntactical variations. The most prominent case of finite
string automata has been extended to handle more complex input structures
like pictures, trees, and forests (cf. [16, 17]). Another direction of generalisation
is to allow quantitative calculations rather than simple binary acceptance. Well-
studied examples of such automata are weighted string automata and weighted
tree automata over some weight structure S (cf. [9] for exhaustive references).
Prominent weight structures include commutative semirings [1], and strong bi-
monoids [10].

One of the major research fields in automata theory is the determinisation
of automata. While this problem has a well-known solution for unweighted au-
tomata, very little results are known in the weighted setting. In fact, not every
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weighted automaton can be determinised [5, Example 5.9]. One endeavour to
simplify automata that cannot be determinised is to aim for approximated de-
terminisation. Different approaches to this paradigm have been proposed, see
e.g. [2], [3], and [4]. The main idea of these papers is to take an automaton A
and construct a deterministic automaton that recognizes a “similar” language
to the one of A . The notions of similarity differ in the literature. As the present
paper aims to generalise [2] from the string case to the tree case, we subsequently
focus on [2].

In [2], the weight structure is the tropical semiring (R∞,min,+,∞, 0). The
notion of approximation is given as follows. Let t ≥ 1 be a real number, called
the approximation factor. A weighted automaton A ′ t-approximates A , if for
every input string w ∈ Σ∗ it holds that [[A ]](w) ≤ [[A ′]](w) ≤ t · [[A ]](w), where
[[A ]] denotes the weighted language recognised by A .

Aminof et al. [2] give an algorithm, called tDet, that takes as input a weighted
string automaton A and an approximation factor t and (if the algorithm ter-
minates) outputs a deterministic weighted string automaton A ′ such that A ′

t-approximates A . The algorithm tDet executes a weighted powerset construc-
tion (with a fixed factorisation) similar to the one given by Kirsten and Mäurer
[11]. That is, the states of A ′ are essentially subsets of the state set of A , where
each state of A gets assigned a residual weight. These residual weights keep
track of the difference between the weights of runs of A ′ and runs of A . For
approximated determinisation however, tDet keeps track of two bounds for ev-
ery state of A rather than a single residual weight. Namely, a lower bound and
an upper bound. These bounds describe intervals of residual weights in order to
ensure t-approximation.

Next, Aminof et al. [2] prove that tDet terminates if A satisfies the so-called
t-twinning property. The t-twinning property is a generalisation of the classical
twinning property (see [13]). Ultimately, it is proven in [2] that the t-twinning
property is decidable.

The approach of the present paper closely follows the approach by Aminof
et al. [2]. In Section 2 we introduce some elementary technical machinery and
our automaton model. Next, in Section 3 we define t-approximation for weighted
tree automata, give an algorithm for t-approximate determinisation, and prove
its partial correctness. In Section 4 we introduce the t-twinning property for
weighted tree automata and show that it is a sufficient condition for the termi-
nation of our algorithm. In Section 5 we prove that our t-twinning property is
decidable and in Section 6 we conclude the paper by posing some open questions.

2 Preliminaries

We denote the set of integers by Z, the set of nonnegative integers by N, and the
set of positive integers by N+. Moreover, we denote the set of real numbers by R
and define the set R∞ := {x ∈ R | x ≥ 0}∪{∞}. Analogously, we denote the set
of rational numbers by Q and define the set Q∞ := {x ∈ Q | x ≥ 0} ∪ {∞}. For
every x, y ∈ R, we define the interval [x, y] := {z ∈ R | x ≤ z ≤ y} and denote
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the set [∞,∞] := {∞}. For every k ∈ N, we denote the set {i ∈ N | 1 ≤ i ≤ k}
by [k]. Note that [0] = ∅. For a set A we denote the size of A by #A and for
every k ∈ N+ we denote by Ak the k-fold cartesian power of A.

An alphabet is a finite and non-empty set A and A∗ =
⋃
k∈NA

k is the set
of all (finite) words over A, where A0 = {ε} contains solely the empty word ε.
We denote by |w| the length of the word w ∈ A∗. Given words v, w ∈ A∗, their
concatenation is written v.w or simply vw. We write v � w provided that there
exists u ∈ A∗ such that vu = w. The relation � is in fact a partial order, called
the prefix order.

A ranked alphabet is a pair (Σ, rk) consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We refer to the ranked
alphabet (Σ, rk) by the set Σ whenever the map rk is clear from the context.
Furthermore, for every k ∈ N, we let Σ(k) = {σ ∈ Σ | rk(σ) = k} and we write
σ(k) to indicate that rk(σ) = k.

Throughout the rest of this paper, we assume Σ to be a ranked alphabet
and Σ(0) 6= ∅.

Given a set Z, the set of Σ-trees indexed by Z, denoted by TΣ(Z), is the
smallest set T such that Z ⊆ T and σ(ξ1, . . . , ξr) ∈ T for every r ∈ N, σ ∈ Σ(r),
and ξ1, . . . , ξr ∈ T. We abbreviate TΣ = TΣ(∅) and call every subset L ⊆ TΣ a
tree language.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let ξ ∈ TΣ(Z). The set pos(ξ) of positions of ξ is defined inductively
by pos(z) = {ε} for all z ∈ Z, and pos(σ(ξ1, . . . , ξr)) = {ε} ∪ {i.w | i ∈
[r], w ∈ pos(ξi)} for every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z). The height
of ξ is defined by height(ξ) = maxw∈pos(ξ) |w|, and the size of ξ is defined by
size(ξ) = #pos(ξ). A leaf is a position w ∈ pos(ξ) such that w.1 /∈ pos(ξ). We
denote the set of leaves of ξ by leaf(ξ). Given a position w ∈ pos(ξ), the label
of ξ at w is denoted by ξ(w). The subtree of ξ at w, denoted ξ|w, is defined for
every z ∈ Z by z|ε = z and for every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z)
by

σ(ξ1, . . . , ξr)|w =

{
σ(ξ1, . . . , ξr) if w = ε

ξi|w′ if w = i.w′ with i ∈ N and w′ ∈ pos(ξi).

Let Y be a set. The set of positions of ξ labeled by elements in Y , denoted by
posY (ξ), is the set {w ∈ pos(ξ) | ξ(w) ∈ Y }. Moreover, the replacement of the
leaf w ∈ leaf(ξ) by the tree η ∈ TΣ(Z), denoted ξ[η]w, is given for every z ∈ Z
by z[η]ε = η and for every r ∈ N, i ∈ [r], σ ∈ Σ(r), ξ1, . . . , ξr ∈ TΣ(Z),
and w′ ∈ pos(ξi) by σ(ξ1, . . . , ξr)[η]i.w′ = σ(ξ1, . . . , ξi−1, ξi[η]w′ , ξi+1, . . . , ξr).

The set path(ξ) ⊆ (Σ ∪Z)∗ of paths of ξ is defined inductively by path(z) =
{z} for all z ∈ Z, and path(σ(ξ1, . . . , ξr)) = {σw | i ∈ [r], w ∈ path(ξi)} for
every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z).

We fix the set X = {x1, x2, . . . } of variables (which we impose to be disjoint
from any other set we consider), and Xn = {x1, . . . , xn} for every n ∈ N+. A
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tree ξ ∈ TΣ(X1) is a context, if #posx1
(ξ) = 1. The set of all contexts is denoted

by CΣ .
Given a context ζ ∈ CΣ and a tree ξ ∈ TΣ(Z), the substitution of ξ into ζ,

denoted by ζ[ξ], is the tree ζ[ξ]w, where w is the unique position in posX(ζ).
Note that, given ζ, ζ ′ ∈ CΣ , also ζ[ζ ′] ∈ CΣ . We write ζk for ζ[ζ[· · · ζ[ζ] · · · ]]
containing the context ζ a total of k times.

We recall the tropical semiring (R∞,min,+,∞, 0), where min and + are
binary operations on R∞ and are the natural extensions of the respective real-
valued operations.

Definition 1 (WTA). A weighted tree automaton (short: WTA) is a tuple
(Q,Σ,R∞,final, T ), where Q is an alphabet of states, final : Q → R∞ is a map
of final weights, and T is a family (Tσ : Qr ×Q→ R∞ | r ≥ 0, σ ∈ Σ(r)) of maps
of transition weights.

We call a tuple t = (q1, . . . , qr, σ, x, q) ∈ Qr × Σ × R∞ × Q a transition if

rk(σ) = r and Tσ(q1, . . . , qr, q) = x. We sometimes denote t by σ(q1, . . . , qr)
x→ q.

Definition 2 (run). Let A = (Q,Σ, S,final, T ) be a WTA and ξ ∈ TΣ ∪ CΣ
be a tree or a context. A run of A on ξ is a map ρ : pos(ξ)→ Q.

Let w ∈ pos(ξ). The weight of ρ at position w, denoted wt(ρ, w), is an el-
ement of R∞ defined inductively as follows. If label(ξ, w) ∈ X, then we de-
fine wt(ρ, w) := 0 and if label(ξ, w) = σ is in Σ(r), then we define wt(ρ, w) :=
wt(ρ, w1)+· · ·+wt(ρ, wr)+Tσ(ρ(w1), . . . , ρ(wr), ρ(w)). Furthermore, the weight
of ρ, denoted wt(ρ), is defined by wt(ρ) := wt(ρ, ε).

We say that ρ contains a state q ∈ Q if there exists w ∈ pos(ξ) such that
q = ρ(w). We say that ρ is non-vanishing if wt(ρ) 6=∞.

Remark 3. We use the following notation for a run ρ of A on a tree or context

ξ. Let q := ρ(ε) and x := wt(ρ). If ξ ∈ TΣ , then we write
ξ|ρ|x−→ q. If ξ ∈ CΣ ,

then we write p
ξ|ρ|x−→ q, where p := ρ(w) for the unique w ∈ posX(ξ). Whenever

we do not care about the name of the run, we simply write
ξ|x−→ q and p

ξ|x−→ q,

respectively. Furthermore, if
ξ|x−→ q for some tree ξ and x 6=∞, then we call the

state q reachable.

Definition 4 (sets of runs). Let A = (Q,Σ, S,final, T ) be a WTA and ξ ∈
TΣ ∪ CΣ be a tree or a context. The set of runs of A on ξ is denoted by
RunA (ξ). For every q ∈ Q and ξ ∈ TΣ we define the set RunA (ξ, q) := {ρ ∈

RunA (ξ) |
ξ|ρ|wt(ρ)
−−−→ q} and the run weight of ξ into q as θA (ξ, q) := min

{
wt(ρ) |

ρ ∈ RunA (ξ, q)
}

. Analogously, for every p, q ∈ Q and ξ ∈ CΣ we define the set

RunA (p, ξ, q) := {ρ ∈ RunA (ξ) | p
ξ|ρ|wt(ρ)
−−−→ q} and the run weight of ξ from p

into q as θA (p, ξ, q) := min
{

wt(ρ) | ρ ∈ RunA (p, ξ, q)
}

.

Definition 5 (semantics of WTA). Let A = (Q,Σ,R∞,final, T ) be a WTA.
The weighted tree language accepted by A is the map [[A ]] : TΣ → R∞, where
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for every ξ ∈ TΣ we define

[[A ]](ξ) := min
q∈Q

(
θA (ξ, q) + final(q)

)
.

Two WTA A and B are called equivalent if they accept the same weighted
tree language, that is, if [[A ]] = [[B]].

Note that our weighted tree automata are classical semiring-weighted tree
automata (cf. [9, Chapter 9]) where we fix the semiring S = R∞.

Definition 6 (deterministic). Let A = (Q,Σ,R∞,final, T ) be a WTA. We
call A deterministic if for all r ≥ 0, σ ∈ Σ(r), and q1, . . . , qr ∈ Q there exist at
most one q ∈ Q such that Tσ(q1, . . . , qr, q) 6=∞. Moreover, we call A unambigu-
ous if for every ξ ∈ TΣ there exists at most one non-vanishing run of A on ξ.
If A is unambiguous, then we define for every ξ ∈ TΣ the value θA (ξ) := wt(ρ)
as the weight of the unique non-vanishing run ρ of A on ξ (if such a run exists,
and as ∞ otherwise).

A map f : TΣ → R∞ is called deterministically recognizable if there exists a
deterministic WTA A such that [[A ]] = f .

Example 7. Let Σ = {α(0), β(0), σ(2)} and consider A := (Q,Σ,R∞,final, T )
where Q := {q1, q2}, final := 0, and T is ∞ except in the cases

α
1→ q1, α

2→ q2, σ(q1, q1)
0→ q1,

β
0→ q1, σ(q2, q2)

0→ q2.

We depict WTA by hypergraphs (see Figures 1 and 2) which are read in the
following way. Each state of the WTA is represented by a circle labeled by the
name of the state. A transition of the form σ(q1, . . . , qr)

x→ q with x 6= ∞ is
represented by a box labeled by σ and having r incoming edges and a single
outgoing edge. The outgoing edge includes the weight of the transition, x, and
is indicated by an arrow. The incoming edges are ordered by counter-clockwise
traversal starting to the left of the outgoing edge. A depiction of the automaton
A can be found in Figure 1.

Let ξ ∈ TΣ . One easily verifies the following statements using the definition
of A . If ξ contains at least one β, then there exists a unique non-vanishing
run ρ of A on ξ and it holds that wt(ρ) = #posα(ξ). If ξ contains no β, then
there exist exactly two non-vanishing runs ρ1 and ρ2 of A on ξ and it holds
that wt(ρ1) = #posα(ξ) and wt(ρ2) = 2 · #posα(ξ). In total, we obtain that
[[A ]](ξ) = #posα(ξ).

Clearly, A is not deterministic, as T contains the transitions α
1→ q1 and

α
2→ q2. Furthermore A is not unambiguous, as there exist two non-vanishing

runs of A on α.
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q1 q2

α β α

σ σ

1 20

0 0
0 0

Fig. 1. Non-deterministic WTA A from Example 7.

3 Approximated Determinisation

In this section we present an algorithm that takes a weighted tree automaton
A as input and generates a tuple A ′. Under certain conditions, this tuple is a
deterministic weighted tree automaton that approximates A . After applying the
algorithm to the automaton from Example 7, we show the partial correctness of
the algorithm. That is, if the algorithm terminates, the tuple A ′ is in fact a de-
terministic weighted tree automaton that approximates A . Our approach closely
follows [2] and we start by defining approximation of weighted tree automata.

Throughout the rest of this section, we assume A = (Q,Σ,R∞,final, T )
to be an arbitrary WTA.

Definition 8 (t-approximation [2]). Let t ∈ R be a real number such that
t ≥ 1 and let B = (Q′, Σ,R∞,final′, T ′) be a WTA.

We say that B t-approximates A if for every ξ ∈ TΣ it holds that

[[A ]](ξ) ≤ [[B]](ξ) ≤ t · [[A ]](ξ).

Moreover, we call A t-approximate deterministic (or t-determinisable) if there
exists a deterministic WTA B such that B t-approximates A .

Remark 9. Note that if B t-approximates A , then supp([[A ]]) = supp([[B]]).
Moreover, B 1-approximates A if and only if [[A ]] = [[B]].

Throughout the rest of this section, we assume that t ∈ R such that
t ≥ 1.

Remark 10. Note that, in general, A is not t-determinisable. In fact, if Σ con-
tains two distinct symbols σ(r) and τ (s) (where r, s > 0), then there exists a
WTA B such that B is not t′-determinisable for any t′ ≥ 1.

In [2, Theorem 1], this is proven for strings and the constructions can easily
be adapted to the tree case by considering comb trees over σ and τ , which behave
similarly to strings.
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Next we introduce our approximate determinisation algorithm. For a sum-
mary of the conceptional details of our approach and how it fits into the existing
literature, we refer to Section 1. Recall that our algorithm executes a weighted
powerset construction with a fixed factorisation (see [11]). In this intermediate
text, we present the intuitive idea of our algorithm and the relevant technicalities.

Given the automaton A and the approximation factor t, the algorithm builds
up a deterministic automaton A ′ = (Q′, Σ,R∞,final′, T ′) by iteratively adding
new states and transitions to A ′ (which is initially empty). The states of A ′ are
subsets of (R∞ × R∞)Q, which we think about as follows. Each state P ∈ Q′
maps every state q ∈ Q to a lower bound lPq and an upper bound uPq . Thus, we

denote (lPq , u
P
q ) := P (q). These bounds represent an interval in R∞ and will be

determined by the algorithm such that the following holds.

Let ρ be the (unique) non-vanishing run of A ′ on a tree ξ and let ρ(ε) = P .
For every q ∈ Q it holds that the interval [θA (ξ, q), t · θA (ξ, q)] contains the
interval [lPq +wt(ρ), uPq +wt(ρ)] (see Lemma 14). Note that [θA (ξ, q), t ·θA (ξ, q)]
is the interval which t-approximates θA (ξ, q). Therefore, A ′ t-approximates A
as long as the final weight map of A ′ respects the lower and upper bounds.

Moreover, we use of the following concept. Given two states P, P ′ : Q→ R∞×
R∞, we say that P ′ refines P if for every q ∈ Q it holds that [lP

′

q , uP
′

q ] ⊆ [lPq , u
P
q ].

Refinement plays a major role in ensuring the termination of Algorithm 1.

The overall structure of Algorithm 1 is the following. We initialise A ′ as an
empty WTA (line 1). Next, we iteratively generate non-vanishing transitions for
A ′, which in some cases add new states to the state set of A ′. The family of
sets (Stack(σ) | σ ∈ Σ) is used to keep track of transitions that have already
been processed. Given a left-hand side σ(P1, . . . , Pr) of a transition that has not
been processed (lines 4 and 5), we calculate an intermediate successor state P
by accumulating the lower bounds and the upper bounds respectively with the
transition weights (lines 7 – 9). Next, we determine the new transition weight
c′ as the minimal resulting upper bound in P (line 8). If c′ is not ∞, then we
define P ′ as P − c′ (lines 11 and 12). We check if P ′ is refined by some already
existing state P ′′ (line 13). If this is the case, we add a red transition to A ′ by
letting T ′σ(P1, . . . , Pr, P

′′) = c′ (line 14). Otherwise, we add P ′ as a new state
and add a green transition to A ′ by letting T ′σ(P1, . . . , Pr, P

′) = c′ (lines 16 and
18). We ultimately define the new final weights (line 17).

We distinguish between red and green transitions for the following reason.
A transition t = (P1, . . . , Pr, σ, c, P ) is green if and only if it was the first non-
vanishing transition with successor state P which was generated by Algorithm 1.
Otherwise, t is either vanishing or a red transition. This defines a green subgraph
of A ′ (viewed as a hypergraph). The proofs of our main theorems rely on the
green subgraph of A ′ in order to use induction over the set of states of A ′.

Note that we define states of A ′ using a relational notation (see lines 7 and
12) rather than a functional notation, for better readability. Moreover, note that
line 3 is merely a technical requirement that forces the second execution of the
outermost while-loop (line 2) to happen immediately after each symbol from
Σ(0) has been processed.
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Algorithm 1: Procedure ttDet with input A and t

1 Q′ := ∅, final′ :=∞, (Stack(σ) := ∅ | σ ∈ Σ), T ′ := (T ′σ | σ ∈ Σ) where
T ′σ :=∞

2 while ∃σ ∈ Σ : (Q′)rk(σ) \ Stack(σ) 6= ∅ do
3 Q′′ := Q′

4 foreach r ∈ N, σ ∈ Σ(r) do
5 foreach ((P1, . . . , Pr) ∈ (Q′′)r \ Stack(σ)) do
6 Stack(σ) := Stack(σ) ∪ {(P1, . . . , Pr)}
7 P :=

{(
q, (lq, uq)

)
| q ∈ Q

}
where

8 lq := min{lP1
q1 + · · ·+ lPr

qr + Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q}
9

uq := min{uP1
q1 +· · ·+uPr

qr +t·Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q}
10 c′ := minq∈Q u

P
q

11 if c′ <∞ then
12 P ′ :=

{(
q, (lPq − c′, uPq − c′)

)
| q ∈ Q

}
13 if ∃P ′′ ∈ Q′ such that P ′′ refines P ′ then
14 T ′σ(P1, . . . , Pr, P

′′) := c′ // red transition

15 else
16 Q′ := Q′ ∪ {P ′}
17 final′(P ′) := minq∈Q(uP

′

q + t · final(q))

18 T ′σ(P1, . . . , Pr, P
′) := c′ // green transition

19 return (Q′, Σ,R∞,final′, T ′)

Definition 11. We define A ′ as the tuple returned4 by ttDet applied to A and
t and denote its components by A ′ = (Q′, Σ,R∞,final′, T ′).

Example 12. We continue Example 7 by applying ttDet to A and t for t ≥ 2.
First consider α ∈ Σ(0). Via lines 7 – 10 we calculate

P =
{(
q1, (1, t)

)
,
(
q2, (2, 2t)

)}
and c′ = t.

By line 12 we obtain P ′ =
{(
q1, (1− t, 0)

)
,
(
q2, (2− t, t)

)}
. As Q′ is still empty,

P ′ is not refined by some other state and we enter the else-case (lines 16 – 18).
We denote P ′1 := P ′ and execute lines 16, 17, and 18 to update

Q′ = {P ′1}, final′(P ′1) = 0, and T ′α(P ′1) = t.

Note that this transition is a green transition.
Next consider β ∈ Σ(0). We calculate P = {(q1, (0, 0)), (q2, (∞,∞))} (lines 7

– 9) and c′ = 0 (line 10). By line 12 we obtain P ′ = P . As P ′1 does not refine

4 We denote by A ′
i the tuple (Q′, Σ,R∞, final′, T ′) during the i-th execution of line

2. If ttDet does not terminate on the input A and t, the limit of these tuples for
i→∞ is their componentwise union and we say that ttDet returns this limit.
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P ′
1 P ′

2

α β

σ

σ

σ σ

t 0

0 0
0 0

0

0

Fig. 2. Deterministic WTA A ′ t-approximating the WTA A from Example 7.

P ′, we again enter the else-case (lines 16 – 18). We denote P ′2 := P ′ and execute
lines 16, 17, and 18 to update

Q′ = {P ′1, P ′2}, final′(P ′2) = 0, and T ′β(P ′2) = 0.

Note that this transition is a green transition.
Next consider σ ∈ Σ(2). As Stack(σ) is still empty, we consider (P ′1, P

′
1) ∈

(Q′)2 \Stack(σ) (line 5). By lines 7 – 12 we obtain P = {(q1, (2−2t, 0)), (q2, (4−
2t, 2t))}, c′ = 0, and P ′ = P . Note that P ′2 does not refine P ′ and that P ′1 refines
P ′ if and only if

2− 2t ≤ 1− t, 0 ≤ 0, 4− 2t ≤ 2− t, and t ≤ 2t.

Therefore, P ′ is refined by P ′1 if and only if t ≥ 2, which is true by assumption.
Hence, we enter the if-case (line 14) and add the red transition T ′σ(P ′1, P

′
1, P

′
1) = 0

to T ′.
By continuing to execute the algorithm, we add more red transitions to T ′σ

and arrive at the automaton A ′ = (Q′, Σ,R∞,final′, T ′), where Q′ = {P ′1, P ′2},
final′ = 0, and T ′ is ∞ except in the cases

α
t→ P ′1, σ(P ′1, P

′
1)

0→ P ′1, σ(P ′1, P
′
2)

0→ P ′2,

β
0→ P ′2, σ(P ′2, P

′
1)

0→ P ′2, σ(P ′2, P
′
2)

0→ P ′2.

A depiction of A ′ can be found in Figure 2. Note that green transitions are
depicted by continuous lines and red transitions are depicted by dotted lines.

Remark 13. Note that ttDet does not preserve the weighted language of A , even
if A is itself deterministic. This is due to the fact that the state normalisation
(lines 10 and 12) is done with respect to the upper bounds uPq . Therefore, A ′

realises t · [[A ]] rather than [[A ]] in many basic examples.

A straightforward induction on the depth of states in the green subgraph of
A ′ shows that if ttDet terminates, then A ′ is a deterministic WTA. Similarly,
the following lemma can be proven.
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Lemma 14. Let ξ ∈ TΣ and P ∈ Q′ such that
ξ|θA ′ (ξ)

−−−→ P . For every q ∈ Q it
holds that

θA (ξ, q)− θA ′(ξ) ≤ lPq ≤ uPq ≤ t · θA (ξ, q)− θA ′(ξ).

The following theorem states the partial correctness of Algorithm 1 and fol-
lows from Lemma 14 and the definition of final′.

Theorem 15. If ttDet terminates on input A and t, then A ′ is a deterministic
WTA that t-approximates A . In this case, A is in particular t-determinisable.

4 Approximated Twinning Property

In this section, we prove a sufficient condition for the termination of the algo-
rithm, namely the t-twinning property. Our proof closely follows [2]. We start by
defining the t-twinning property of weighted tree automata, which is a natural
extension of both, the string case [2] and the tree case without approximation
(that is, t = 1) [7] and [14].

Definition 16 (t-twinning property). Let A = (Q,Σ,R∞,final, T ) be a
WTA.

Let p, q ∈ Q. We call p and q siblings if there exists a tree ξ ∈ TΣ and non-
vanishing runs ρ1 ∈ RunA (ξ, p) and ρ2 ∈ RunA (ξ, q). Siblings p and q are called
t-twins if for every ζ ∈ CΣ it holds that either θ(p, ζ, p) =∞, θ(q, ζ, q) =∞, or
1
t · θ(q, ζ, q) ≤ θ(p, ζ, p) ≤ t · θ(q, ζ, q).

We say that A has the t-twinning property if for all siblings p, q ∈ Q it holds
that p and q are t-twins.

Throughout the rest of this section, we assume A = (Q,Σ,Q∞,final, T )
to be a WTA with rational weights in Q∞ and t ∈ R such that t ≥ 1.

Theorem 17. If A satisfies the t-twinning property, ttDet terminates on input
A and t.

The proof of Theorem 17 is very similar to the proof of [2, Theorem 8]. The
main difference is that, in the tree case, we apply a version of König’s Lemma
that can handle the hypergraph structure of A ′. Note that in [2, Theorem 8], t
is a rational number, whereas we allow for t to be a real number. This can be
resolved by multiplying t and all weights occurring in A by 1

t .

Corollary 18. If A satisfies the t-twinning property, A is t-determinisable.

Proof of Corollary 18. This follows immediately from Theorems 15 and 17.

Example 19. We continue Example 7 by showing that A satisfies the 2-twinning
property but not the 1-twinning property. First note that q1 and q2 are siblings
as there are two runs ρ1 and ρ2 on ξ = α ending in q1 and q2, respectively.
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Let ζ ∈ CΣ and ρ be a non-vanishing run of A on ζ. If ζ contains a β,
we have that θ(q2, ζ, q2) = ∞ and hence we only have to check the 2-twinning
property for the case that ζ does not contain a β. One easily sees that ρ either
maps each position to q1 (in this case wt(ρ) = #posα(ζ)) or to q2 (in this case
wt(ρ) = 2 · #posα(ζ)). In particular, θ(q2, ζ, q2) = 2 · θ(q1, ζ, q1). This proves
that A satisfies the 2-twinning property.

Moreover, A does not satisfy the 1-twinning property, as q1 and q2 are sib-
lings but ζ = σ(α, x1) does not satisfy θ(q1, ζ, q1) = θ(q2, ζ, q2).

Note that ttDet does not terminate on input A and 1. In Example 12,
we generated the state P ′ = {(q1, (2 − 2t, 0)), (q2, (4 − 2t, 2t))} by consider-
ing the input σ(P ′1, P

′
1). If t = 2, P ′ is refined by P ′1. For t = 1, however,

P ′ = {(q1, (0, 0)), (q2, (2, 2))} is not refined and therefore added to the state
space. Next, considering σ(P ′, P ′), we obtain another unrefineable state, namely
P ′′ = {(q1, (0, 0)), (q2, (4, 4))}. One easily sees that the construction continues
to generate every state of the form {(q1, (0, 0)), (q2, (2

k, 2k))} and hence ttDet
does not terminate on input A and 1.

5 Decidability of the Twinning Property

In the following theorem we prove the decidability of the t−twinning property.
This is due to the fact, that if a WTA A does not satisfy the t-twinning property,
then this non-satisfaction is already witnessed by a small context tree.

Theorem 20. The t-twinning property is decidable for every WTA A and
t ≥ 1.

6 Outlook

In this paper we generalised [2] from the string case to the tree case. First we
provided an algorithm for t-determinisation and proved its correctness, assuming
termination of the algorithm. Next, we introduced the t-twinning property for
trees and showed that, for WTA with weights in Q∞, the t-twinning property
implies the termination of our algorithm. We ultimately showed that our t-
twinning property is decidable.

We conclude this paper by listing future research directions. Recent work
has shown that the twinning property is equivalent to determinisability in some
cases (e.g. [8]). It would be worthwhile to determine whether in our case the
t-twinning property is necessary for t-determinisability. Another interesting re-
search direction is to introduce approximated determinisation for general classes
of semirings rather than only considering the tropical semiring. Moreover, it
seems rather arbitrary to say x ∈ R is approximated exactly by the values in
the interval [x, t · x]. It would be interesting to introduce more general notions
of “approximation” and find sufficient conditions for this general approximated
determinisability.
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A Appendix

The following auxiliary lemma is a simple result that can be proven in a straight-
forward manner by induction on ξ using distributivity (cf. Equation 7 of the proof
of [15, Theorem 4.1.] and [6, Lemma 4.1.13]).

Lemma 21. Let A = (Q,Σ,R∞,final, T ) be a WTA, ξ ∈ TΣ , and q ∈ Q.
Moreover, let r ≥ 0, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ such that ξ = σ(ξ1, . . . , ξr).
It holds that

θA (ξ, q) = min{
( r∑
i=1

θA (ξi, qi)
)

+ Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q}.

The remainder of this appendix supplies proofs to Section 3. We recall that
A = (Q,Σ,R∞,final, T ) is a WTA, t ≥ 1 is an approximation factor, and
A ′ = (Q′, Σ,R∞,final′, T ′) is the tuple returned by ttDet applied to A and t.

Definition 22. For every P ∈ Q′ we define the green-depth of P , denoted
gdepth(P ), as the minimal height of a tree ξ ∈ TΣ such that there exists a

green run
ξ|θA ′ (ξ)

−−−→ P if such a tree ξ exists and as ∞ otherwise.

Lemma 23. Let P ∈ Q′.

(a) gdepth(P ) is finite. In particular, there exists a green run ρ of A such that
ρ(ε) = P .

(b) For every green transition of the form T ′σ(P1, . . . , Pr, P ) and every i ∈ [r] it
holds that gdepth(Pi) < gdepth(P ).

Proof. By definition of A ′ there exists an i ∈ N+ such that P is an element of
the state set of A ′i (recall that A ′i denotes the tuple (Q′, Σ,R∞,final′, T ′) during
the i-th execution of line 2). We show that gdepth(P ) is finite by induction on
i.

Every state P ′ of A ′1 has been generated by some α ∈ Σ(0) and hence the
claim follows for i = 1. Assume that the claim holds for all states of A ′i for
some i ∈ N+. If P is a state of A ′i+1 but not a state of A ′i , there is a green
transition of the form T ′σ(P1, . . . , Pr, P ) in A ′i+1 such that P1, . . . , Pr are states
of A ′i . Therefore, we obtain gdepth(P ) = 1 + max{gdepth(Pi) | i ∈ [r]}. This
immediately implies claim (b) and moreover implies claim (a) by the induction
assumption.

In the following we prove the partial correctness of the algorithm (Theo-
rem 15). The main tool is the fact that all calculated lower and upper bounds
within states of A ′ describe ranges of real numbers respecting the desired t-
approximation of A (Lemma 27). Lemma 27 relies on multiple technical lem-
mas, namely Lemmas 24 and 25. Note that we also have to prove that A ′ is
indeed a WTA. In order to do this, we have to check that T ′ and final′ have the
correct types, that is, that all occurring weights are in R∞. This is derived from
Lemma 24 and is proven in Lemma 25.
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Lemma 24. Let P ∈ Q′. For every q ∈ Q it holds that uPq ≥ 0. Moreover, there

exists q ∈ Q such that uPq = 0.

Proof. We prove the claim by induction on gdepth(P ). Let P ∈ Q′ such that
the claim holds for every P ′ ∈ Q′ such that gdepth(P ′) < gdepth(P ).

By item (a) of Lemma 23 there exists ξ ∈ TΣ and a green run
ξ|θA ′ (ξ)−→ P . Let

r ≥ 0, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ such that ξ = σ(ξ1, . . . , ξr). Moreover, let

P1, . . . , Pr ∈ Q′ be the states such that
ξi|xi−→ Pi for every i ∈ [r] (and some weights

x1, . . . , xr ∈ R∞). Item (b) of Lemma 23 and the fact that T ′σ(P1, . . . , Pr, P ) is a
green transition imply that gdepth(Pi) < gdepth(P ) (and hence the claim holds
for Pi) for every i ∈ [r].

By the definition of T ′, the for-loop starting in line 5 of Algorithm 1 was
executed where the variables P1, . . . , Pr were assigned to the states P1, . . . , Pr
of Q′, respectively, and the variable P ′ was assigned to the state P . By the
induction assumption and the nonnegativity of T , each upper bound uq defined
via line 9 is nonnegative. Hence by lines 10 and 12, we obtain the claim of
the lemma for P . This concludes the induction step and hence the proof of the
lemma.

Lemma 25. For all σ ∈ Σ it holds that im(T ′σ) ⊆ R∞ and im(final′) ⊆ R∞.

Proof. One easily sees that all occurring weights are in R ∪ {∞}. Therefore, we
only show their nonnegativity.

Every transition weight in T ′ is either ∞ or defined by line 10 of Algorithm
1. Thus, it suffices to prove that the variables uq defined in line 9 only take on
nonnegative values. However, this easily follows from Lemma 24, the fact that
t ≥ 1, and the fact that im(Tσ) ⊆ R∞ for every σ ∈ Σ.

Analogously, every final weight in final′ is either ∞ or defined by line 17.
However, by Lemma 24, the fact that t ≥ 1, and the fact that im(final) ⊆ R∞,
we obtain that line 17 only defines nonnegative final weights.

Corollary 26. If ttDet terminates on input A and t, then A ′ is a deterministic
WTA.

Lemma 27. Let ξ ∈ TΣ and P ∈ Q′ such that
ξ|θA ′ (ξ)

−−−→ P . It holds that for every
q ∈ Q,

θA (ξ, q)− θA ′(ξ)
?
≤ lPq ≤ uPq

?
≤ t · θA (ξ, q)− θA ′(ξ). (1)

Moreover, if
ξ|θA ′ (ξ)

−−−→ P is a green5 run, the ?-inequalities hold as equalities.

Proof. We first prove the inequality “lPq ≤ uPq ” by induction on gdepth(P ). Note
that the inequality is independent of ξ and hence by item (a) of Lemma 23 we can
assume w.l.o.g. that there exists a green run ρ of A ′ on ξ. Let r ≥ 0, σ ∈ Σ(r),

5 We call a run ρ green if all transitions occurring in ρ are green.
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and ξ1, . . . , ξr ∈ TΣ such that ξ = σ(ξ1, . . . , ξr). Moreover, let P1, . . . , Pr ∈ Q′ be

the states such that
ξi|xi−→ Pi for every i ∈ [r] (and some weights x1, . . . , xr ∈ R∞).

By item (b) of Lemma 23 and the induction hypothesis we obtain the claimed
inequality for P1, . . . , Pr. The transition T ′σ(P1, . . . , Pr, P ) is green by assumption
and hence has been generated by line 18 of Algorithm 1 (where the variables
P1, . . . , Pr were assigned to the states P1, . . . , Pr, respectively, and the variable
P ′ was assigned to the state P ). By lines 10 and 12 it suffices to show that
lPq ≤ uPq for every q ∈ Q and the variable P defined in line 7. However, for every
q1, . . . , qr ∈ Q it holds that

lP1
q1 + · · ·+ lPr

qr + Tσ(q1, . . . , qr, q) ≤ uP1
q1 + · · ·+ uPr

qr + t · Tσ(q1, . . . , qr, q)

by the induction assumption and the fact that t ≥ 1. This shows lPq ≤ uPq for
the variable P defined in line 7, as desired.

Next we prove the ?-inequalities. The proof is done by induction on ξ. Let
r ≥ 0, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ such that ξ = σ(ξ1, . . . , ξr). We obtain
the claimed inequalities for ξi for every i ∈ [r] by the induction assumption.

Moreover, let Pi ∈ Q′ be the state such that
ξi|θA ′ (ξi)

−−−−−→ Pi for every i ∈ [r]. We
define the weight

c′ := min{uP1
q1 + · · ·+ uPr

qr + t · Tσ(q1, . . . , qr, q) | q, q1, . . . , qr ∈ Q}

and obtain the following inequality chain for every q ∈ Q.

θA (ξ, q)− θA ′(ξ)

?1= min{
( r∑
i=1

θA (ξi, qi)
)

+ Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q} − θA ′(ξ)

?2= min{
( r∑
i=1

θA (ξi, qi)
)

+ Tσ(q1, . . . , qr, q)−
( r∑
i=1

θA ′(ξi)
)

+ c′ | q1, . . . , qr ∈ Q}

?3= min{
( r∑
i=1

θA (ξi, qi)− θA ′(ξi)
)

+ Tσ(q1, . . . , qr, q)− c′ | q1, . . . , qr ∈ Q}

?4
≤min{lP1

q1 + · · ·+ lPr
qr + Tσ(q1, . . . , qr, q)− c′ | q1, . . . , qr ∈ Q}

?5
≤ lPq

Equality ?1 uses Lemma 21. Equality ?2 first pulls the term θA ′(ξ) inside the
minimum and then uses the following argumentation. θA ′(ξ) is the weight wt(ρ)
of the unique non-vanishing run ρ of A ′ on ξ and analogously θA ′(ξi) = wt(ρi)
for the unique non-vanishing run ρi of A ′ on ξi for every i ∈ [r]. By assumption,
ρ(ε) = P and ρi(ε) = Pi for every i ∈ [r]. By the uniqueness of these runs,
wt(ρ) = T ′σ(P1, . . . , Pr, P ) +

∑r
i=1 wt(ρi), whence θA ′(ξ) =

∑r
i=1 θA ′(ξi) +

c′ by lines 14 and 18. Equality ?3 simply rearranges the weights. Inequality
?4 applies the induction hypothesis. Inequality ?5 can be seen as follows. If
Tσ(P1, . . . , Pr, P ) is a green transition, lPq is defined by lines 8, 10, and 12 and
therefore, inequality ?5 in fact holds as an equality. If Tσ(P1, . . . , Pr, P ) is a red
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transition, lPq is by refinement (line 13) greater or equal than the value defined
by lines 8, 10, and 12.

We moreover obtain the following inequality chain for every q ∈ Q.

uPq ≤ min{uP1
q1 + · · ·+ uPr

qr + t · Tσ(q1, . . . , qr, q)− c′ | q1, . . . , qr ∈ Q}

≤ min{
( r∑
i=1

t · θA (ξi, qi)− θA ′(ξi)
)

+ t · Tσ(q1, . . . , qr, q)− c′

| q1, . . . , qr ∈ Q}

= min{t ·
(( r∑

i=1

θA (ξi, qi)
)

+ Tσ(q1, . . . , qr, q)
)
−
(( r∑

i=1

θA ′(ξi)
)

+ c′
)

| q1, . . . , qr ∈ Q}

= t ·min{
( r∑
i=1

θA (ξi, qi)
)

+ Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q} − θA ′(ξ)

= t · θA (ξ, q)− θA ′(ξ)

Note that these equalities and inequalities are proven analogously to ?1, . . . , ?5,
exchanging lower residues by upper residues.

If
ξ|θA ′ (ξ)

−−−→ P is a green run, inequality ?5 holds as an equality by lines 8, 10,
and 12 of Algorithm 1. Furthermore, inequality ?4 holds as an equality by the

induction assumption, as
ξi|xi

−−−→ Pi is a green run for every i ∈ [r]. This concludes
the proof of the lemma.

Proof of Theorem 15. Recall that we have to show [[A ]](ξ) ≤ [[A ′]](ξ) ≤ t·[[A ]](ξ)
for every ξ ∈ TΣ .

Let ξ ∈ TΣ and let P ∈ Q′ be the state such that there exists a run
ξ|θA ′ (ξ)

−−−→ P
of A ′ on ξ. It thus holds that [[A ′]](ξ) = θA ′(ξ) + final′(P ). Therefore, by
subtracting θA ′(ξ) from all sides of the inequalities and using that [[A ]](ξ) =
min{θA (ξ, q) + final(q) | q ∈ Q}, we only need to show that

min
q∈Q

(
θA (ξ, q) + final(q)

)
− θA ′(ξ)

?1
≤ final′(P )

?2
≤ t ·min

q∈Q

(
θA (ξ, q) + final(q)

)
− θA ′(ξ).

However, we already know that final′(P ) = minq∈Q(uPq + t · final(q)) (line 17)

and hence by applying Lemma 27 to each uPq we obtain

min
q∈Q

(
θA (ξ, q) + t · final(q)

)
− θA ′(ξ)

?3
≤ final′(P )

?4
≤ min

q∈Q

(
t · θA (ξ, q) + t · final(q)

)
− θA ′(ξ).

Inequalities ?3 and ?4 imply inequalities ?1 and ?2, respectively, as it holds that
t ≥ 1. This concludes the proof.
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Proof of Theorem 17. First note the following fact. Given a constant c ∈ R∞,
denote by c · A the WTA constructed from A by multiplying all occurring
weights by c. If some deterministic WTA B t-approximates A , then c · B t-
approximates c·A . Define d as the common denominator of all weights occurring
in A and c := 1

t · d. We show that c ·A is t-approximate determinisable, which
proves the claim for A = 1

c · c · A . Therefore, we henceforth assume that all
weights of A are in 1

t · N ∪ {∞}.
Assume that A satisfies the t-twinning property and ttDet does not ter-

minate on input A and t. Hence, ttDet applied to A and t generates an infi-
nite number of states. Observe that there exists an infinite sequence of states
π = P0P1P2 . . . such that for every n ∈ N the finite sequence Pn . . . P0 is a path
of a green run6 of A ′. The proof of this observation can be done similarly to
the proof of König’s Lemma [12]. In essence, the proof goes as follows. Consider
the hypergraph G of green transitions of A ′. Note that for every i ∈ N there
exist finitely many (but more than zero) vertices of depth i in G. Therefore, by
induction, each Pi can be chosen such that infinitely many green runs contain
Pi . . . P0 as a suffix of a path. Then, the axiom of dependent choice yields the
claim. In order to maintain the focus of this paper, we omit the formal proof of
the existence of π.

Next observe that there exist states q̂, q̄ ∈ Q and a subsequence π′ =

Pi0Pi1 . . . of π such that the sequence (l
Pik

q̂ )k∈N monotonically increases towards

infinity for k → ∞ and u
Pik
q̄ = 0 for all k ∈ N. In fact, the very same property

is proven during the proof of [2, Theorem 8] (for rational t). Our argumentation
differs merely in the fact that all weights are multiplied by the factor 1

t from the
argumentation presented in [2] and hence we omit the proof of this property.

We define the value

x := max{wt(ρ̂)− t · wt(ρ̄) | ξ ∈ TΣ ,height(ξ) ≤ #Q2,

ρ̂ ∈ RunA (ξ, q̂), ρ̄ ∈ RunA (ξ, q̄)}.

Recall that for every k ∈ N the state Pik is reachable by a green run on some

tree ξk ∈ TΣ . Therefore, Lemma 27 implies that θA (ξk, q̂)− θA ′(ξk) = l
Pik

q̂ and

t · θA (ξk, q̄) − θA ′(ξk) = u
Pik
q̄ (= 0). Subtracting the second equation from the

first, we obtain θA (ξk, q̂)− t · θA (ξk, q̄) = l
Pik

q̂ for all k ∈ N. By our construction
of π′, we obtain that there exists a k ∈ N such that θA (ξk, q̂)− t · θA (ξk, q̄) > x.
Therefore, by the definition of x we know that height(ξk) > #Q2. Let ρ̂ ∈
RunA (ξk, q̂) and ρ̄ ∈ RunA (ξk, q̄) be runs such that wt(ρ̂) = θA (ξk, q̂) and
wt(ρ̄) = θA (ξk, q̄). There exist ζ ′, ζ ∈ CΣ , and ξ′ ∈ TΣ such that ξk = ζ ′[ζ[ξ′]],
size(ζ) > 1, and both ρ̂ and ρ̄ loop7 on ζ. Consider the restrictions8 ρ̂|ζ′[ξ′] and

6 This is well-defined since runs of A ′ can be interpreted as trees in TQ′ .
7 In order to prove this, we consider the direct product automaton A ×A and identify

a loop in ρ̂× ρ̄.
8 Formally, let u be the unique position in posX(ζ′) and v be the unique position in

posX(ζ′[ζ]). Then, ρ̂|ζ′[ξ′] : pos(ζ′[ξ′])→ Q where w 7→ ρ̂(w) for every w ∈ posΣ(ζ′)
and uw 7→ ρ̂(vw) for every w ∈ pos(ξ).
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ρ̄|ζ′[ξ′] of ρ̂ and ρ̄ to ζ ′[ξ′], respectively. Note that wt(ρ̂)−wt(ρ̂ζ′[ξ′]) = θ(q̂, ζ, q̂)
by the assumption that wt(ρ̂) = θA (ξk, q̂). Analogously, wt(ρ̄) − wt(ρ̄ζ′[ξ′]) =
θ(q̄, ζ, q̄). Therefore, the fact that A satisfies the t-twinning property implies
that wt(ρ̂) − wt(ρ̂ζ′[ξ′]) ≤ t · (wt(ρ̄) − wt(ρ̄ζ′[ξ′])), which can be rearranged as
follows.

wt(ρ̂ζ′[ξ′])− t · wt(ρ̄ζ′[ξ′]) ≥ wt(ρ̂)− t · wt(ρ̄)

Therefore, in total we obtain wt(ρ̂ζ′[ξ′]) − t · wt(ρ̄ζ′[ξ′]) > x. As size(ζ ′[ξ′]) <
size(ξk), repeated removal of loops from ρ̂ and ρ̄ results in a contradiction with
the definition of x. This concludes the proof.

Lemma 28. Let A = (Q,Σ,R∞,final, T ) be a WTA and t ∈ R such that t ≥ 1.
If A does not satisfy the t-twinning property, then there are siblings p, q ∈ Q

and a context ζ ∈ CΣ such that size(ζ) ≤ maxrk(Σ)#Q2+1 and it holds that
∞ > θ(p, ζ, p) > t · θ(q, ζ, q).

Proof. Assume that A does not satisfy the t-twinning property. Thus, there exist
siblings p, q ∈ Q and a context ζ ∈ CΣ such that ∞ > θ(p, ζ, p) > t · θ(q, ζ, q)
(after swapping p and q, if necessary). Among all possible such ζ, we chose
the context such that size(ζ) is minimal. Assume by way of contradiction that

size(ζ) > maxrk(Σ)#Q2+1.
Let ρ1 and ρ2 be two runs of A on ζ such that wt(ρ1) = θ(p, ζ, p) and

wt(ρ2) = θ(q, ζ, q). Hence, there exist ζ ′, ζ ′′, η ∈ CΣ such that ζ = ζ ′[η[ζ ′′]],
size(ζ) > size(η) > 1, and both ρ1 and ρ2 loop on η (in states q1 and q2,
respectively). Consider the restrictions ρ1|ζ′[ζ′′] and ρ2|ζ′[ζ′′] of ρ1 and ρ2 to
ζ ′[ζ ′′], respectively. The fact that size(ζ) > size(η) implies that θ(q1, η, q1) ≤
t · θ(q2, η, q2). We ultimately obtain

θ(p, ζ ′[ζ ′′], p)
?
= θ(p, ζ, p)−θ(q1, η, q1) > t·(θ(q, ζ, q)−θ(q2, η, q2))

?
= t·θ(q, ζ ′[ζ ′′], q),

where the ?-equations follow from the fact that ρ1 and ρ2 have minimal weights
on ζ, on η, and on ζ ′[ζ ′′]. In particular, we have found a smaller witness of the
non-satisfaction of the t-twinning property than ζ, which is a contradiction.

Proof of Theorem 20. First note that we can determine the set of siblings in Q
by only considering trees ξ ∈ TΣ such that size(ξ) ≤ maxrk(Σ)#Q2+1. This fact
is proven analogously to Lemma 28 by removing synchronised loops from runs
on bigger input trees.

By Lemma 28 A does not satisfy the t-twinning property if and only if there
is a small witness to the non-satisfaction of the t-twinning property. Hence,
we can calculate the finitely many values θ(p, ζ, p) for states p ∈ Q and small
contexts ζ ∈ CΣ and check for the t-twinning property using the fact that we
have already determined the set of siblings of Q.


