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ABSTRACT
Concrete domains have been introduced in description logic (DL) to

enable reference to concrete objects (such as numbers) and prede-

fined predicates on these objects (such as numerical comparisons)

when defining concepts. The primary research goal in this context

was to find restrictions on the concrete domain such that its inte-

gration into certain DLs preserves decidability or tractability. In

this paper, we investigate the abstract expressive power of both

first-order and description logics extended with concrete domains,

i.e., we analyze which classes of first-order interpretations can be

expressed using these logics, compared to what first-order logic

without concrete domains can express. We demonstrate that, under

natural conditions on the concrete domain 𝔇 (which also play a

role for decidability), extensions of first-order logic (FOL) or the
well-known DL ALC with𝔇 share important formal characteris-

tics with FOL, such as the compactness and the Löwenheim-Skolem

properties. Nevertheless, their abstract expressive power need not

be contained in that of FOL, though in some cases it is. To be more

precise, we show, on the one hand, that unary concrete domains

leave the abstract expressive power within FOL if we are allowed
to introduce auxiliary predicates. On the other hand, we exhibit a

class of concrete domains that push the abstract expressive power

beyond that of FOL. As a by-product of these investigations, we ob-
tain (semi-)decidability results for some of the logics with concrete

domains considered in this paper.
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methodologies→ Description logics.
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1 INTRODUCTION
Description Logics (DLs) [8] are a prominent family of logic-based

knowledge representation formalisms, which offer a good compro-

mise between expressiveness and the complexity of reasoning and

are the formal basis for the Web ontology language OWL2.
1
To

accommodate diverse application domains, the DL community has

developed logics whose expressive power is tailored towards what

is needed in these domains while leaving reasoning decidable. In

many cases, however, the added expressiveness turned out to be use-

ful also in other applications. For example, concrete domains, which

enable reference to concrete objects (such as numbers) and prede-

fined predicates on these objects (such as numerical comparisons),

were introduced in [6] motivated by a mechanical engineering ap-

plication [7]. Due to their usefulness in many applications, they

are included in the OWL2 standard, albeit in the restricted form

of unary concrete domains (called datatypes), where all predefined

predicates have arity one [16].

Most DLs [8] are decidable fragments of first-order logic (FOL),
i.e., their expressive power [4, 17] is below that of FOL, but there are
also decidable DLs whose knowledge bases (KBs) cannot always

be expressed by an FOL sentence [5]. A case in point are DLs with

concrete domains [6, 18, 20], at least at first sight. In such DLs, the

abstract interpretation domain is complemented by the concrete

domain, and partial functions can be used to assign values in the

concrete domain to abstract objects. These values can then be con-

strained using the predefined predicates of the concrete domain. For

example, assume that we want to model physical objects, collected

in a concept (i.e., unary predicate) PO, which can be decomposed

into their proper parts using a role (i.e., binary predicate) hpp for

“has proper part.” If we want to take the weight of such objects

into account, it makes sense to assign a number for its weight to

every physical object using a feature (i.e., partial function)𝑤 , and to

state that this weight is positive and that proper parts are physical

objects that have a smaller weight than the whole. Using the syntax

employed in [10, 20] and in the present paper, these conditions

can be expressed with the help of value restrictions and concrete

domain restrictions w.r.t. an appropriate concrete domain by the

following concept inclusion (CI):

PO ⊑ ∀hpp. PO ⊓ ∃𝑤. (𝑥1 > 0) ⊓ ∀𝑤, hpp𝑤. >(𝑥1, 𝑥2) . (1)

Depending on what kind of decomposition into proper parts we

have in mind, we can use the rational numbers or the integers

1
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as concrete domain. The former would be more appropriate for

settings like cutting a cake, where a given piece can always be

cut into even smaller parts, whereas the latter is more appropriate

for settings where physical objects are composed of finitely many

atomic parts that cannot be divided any further. Interestingly, as

we will show in this paper, this decision also has an impact on the

formal properties that the logic (in the example, the well-known DL

ALC [26]) extended with such a concrete domain satisfies. If we

employ the integers, then for any element of PO there is a positive

integer such that the length of all hpp-chains issuing from it are

bounded by this number. Using this fact, it is easy to show that the

logic at hand is not compact, i.e., there may be unsatisfiable infinite

sets of sentences for which all finite subsets are satisfiable. In par-

ticular, this implies that the abstract expressive power of this logic,

which considers only the abstract domain and the interpretation of

concept and role names, but ignores the feature values, cannot be

contained in FOL. For the rational numbers, the results obtained in

this paper imply that the extension of ALC or FOL with this con-

crete domain shares the compactness and the Löwenheim-Skolem

property with FOL. The reason is that the rational numbers with >

are homomorphism 𝜔-compact [9, 10], which means that a count-

able set of constraints is solvable iff all its finite subsets are solvable.

We can, however, prove that the abstract expressive power of these

logics is nevertheless not contained in FOL, though we cannot use

a compactness argument to show this.

Note that it is quite natural to consider concrete domains that

are homomorphism 𝜔-compact. In fact, in the presence of CIs, in-

tegrating even rather simple concrete domains into the DL ALC
may cause undecidability [9, 19]. To overcome this problem, the

notion of 𝜔-admissible concrete domains was introduced in [20],

and it was proved that integrating such a concrete domain into

ALC leaves reasoning decidable also in the presence of CIs. By

definition, all 𝜔-admissible concrete domains are homomorphism

𝜔-compact. As examples of 𝜔-admissible concrete domains, Allen’s

interval algebra [1] and the region connection calculus RCC8 [24]

are provided in [20]. Using well-known notions and results from

model theory, additional 𝜔-admissible concrete domains were ex-

hibited in [9, 10]. A simpler, but considerably more restrictive way

of achieving decidability is to use unary concrete domains. Decid-

ability for the expressive DL SHOQ extended with such concrete

domains is shown in [16]. In [3, 25], conjunctive query answering

in extensions of the inexpressive DL DL-Lite with unary concrete

domains is investigated.

In the next section, we will introduce FOLwith concrete domains

and then define DLs with concrete domains as fragments. Subse-

quently, we present two variants of the notion of abstract expressive

power, one where one can use auxiliary predicates on the first-order

side to express sentences of the logic with concrete domains, and

one where this is not allowed. Section 3 is dedicate to proving that

FOL and DLs with concrete domains share a number of interesting

formal properties with FOL, provided that the employed concrete

domain is homomorphism 𝜔-compact and its set of predicates is

closed under negation. In Section 4, we show, on the one hand, that

FOL with a unary concrete domain can be expressed in FOL if we
are allowed to use auxiliary predicates. In addition, if we restrict

the logic with unary concrete domain to a decidable fragment like

the guarded or the two-variable fragment with counting, then de-

cidability on the concrete domain side yields decidability of the

whole logic. On the other hand, we provide conditions on concrete

domains such that ALC extended with such a concrete domain

cannot be expressed in FOL. Basically, these are concrete domains

whose predicates are closed under negation and in which equality

is definable.

2 LOGICS WITH CONCRETE DOMAINS
We introduce first-order logic with concrete domains, from which

we obtain DLs with concrete domains as fragments. Then, we define

the notion of abstract expressive power of a logic with concrete do-

mains. We assume that the reader is familiar with syntax, semantics,

and basic results for first-order logic.

Concrete domains. A concrete domain is a 𝜏-structure𝔇 for a re-

lational signature 𝜏 , i.e., it consists of a set 𝐷 , called its domain,
together with relations 𝑃𝐷 ⊆ 𝐷𝑘

for each 𝑘-ary relation symbol

𝑃 ∈ 𝜏 . A constraint system Γ for 𝔇 is a set of atoms of the form

𝑃 (𝑥1, . . . , 𝑥𝑘 ) where 𝑃 ∈ 𝜏 has arity 𝑘 and the 𝑥𝑖 are variables. The

constraint system Γ is satisfiable in 𝔇 if there is an assignment

ℎ (also called homomorphism) of elements of 𝐷 to the variables

in Γ such that (ℎ(𝑥1), . . . , ℎ(𝑥𝑘 )) ∈ 𝑃𝐷 for all atoms 𝑃 (𝑥1, . . . , 𝑥𝑘 )
in Γ. We call such a homomorphism a solution of Γ in 𝔇. For ex-

ample, consider the structure 𝔔 := (Q, >) of rational numbers

with the standard ordering relation, which we write infix. The set

Γ := {𝑥1 > 𝑥2, 𝑥2 > 𝑥3, 𝑥3 > 𝑥1} is a finite constraint system that is

unsatisfiable (i.e., not satisfiable) in𝔔.

The concrete domain𝔇 is homomorphism 𝜔-compact if the fol-
lowing holds for any countable constraint system Γ for 𝔇: Γ is

satisfiable in𝔇 iff all its finite subsets are satisfiable in𝔇. For exam-

ple,𝔔 is homomorphism 𝜔-compact. This follows from the results

in [9, 10], but is also a consequence of the fact that a constraint

system is satisfiable in𝔔 iff it does not contain a cycle of the form

𝑥1 > 𝑥2, 𝑥2 > 𝑥3, . . . , 𝑥𝑛 > 𝑥1. In contrast ℨ := (Z, >) is not ho-
momorphism 𝜔-compact: the constraint system Γ := {𝑥𝑞 > 𝑥𝑟 |
𝑞, 𝑟 ∈ Q, 𝑞 > 𝑟 } is countable and unsatisfiable in ℨ since it requires

the existence of infinitely many integers between whatever inte-

gers are assigned to 𝑥0 and 𝑥1; however, any finite subset is clearly

satisfiable.

First-order logic with concrete domains. Let𝔇 be a concrete domain

over a relational signature 𝜏 , 𝜎 be a first-order signature (which

may also contain function symbols), and F be a countable set of

feature symbols. The formulae of first-order logic with the concrete
domain𝔇, FOLF𝜎 (𝔇) (or simply FOL(𝔇) if 𝜎 and F are irrelevant

or clear from the context), are obtained by extending the usual

inductive definition for FOL with the following two base cases:

• definedness predicates Def (𝑓 ) (𝑡) with 𝑓 ∈ F and 𝑡 a 𝜎-term,

• concrete domain predicates 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑡1, . . . , 𝑡𝑛) with 𝑃 ∈
𝜏 of arity 𝑛, 𝑓𝑖 ∈ F , and 𝑡𝑖 𝜎-terms.

The semantics of FOL(𝔇) formulae is defined inductively, using a

first-order interpretation ℑ = (𝐼 , ·ℑ) for 𝜎 extended with a set 𝔉

of partial functions 𝑓𝔉 : 𝐼 ⇀ 𝐷 for 𝑓 ∈ F , and an assignment 𝑤

mapping variables to elements of 𝐼 . The semantics of terms, Boolean

connectives and first-order quantifiers is defined as usual, where

we denote the interpretation of a term 𝑡 by ℑ and 𝑤 as 𝑡ℑ,𝑤 . The
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new predicates are interpreted as follows, where
¯𝑓 := 𝑓1, . . . , 𝑓𝑛 and

𝑡 := 𝑡1, . . . , 𝑡𝑛 :

• (ℑ,𝔉),𝑤 |= Def (𝑓 ) (𝑡) if 𝑓𝔉 (𝑡ℑ,𝑤) is defined, and
• (ℑ,𝔉),𝑤 |= 𝑃 ( ¯𝑓 ) (𝑡) if (𝑓𝔉

1
(𝑡ℑ,𝑤

1
), . . . , 𝑓𝔉𝑛 (𝑡ℑ,𝑤𝑛 )) ∈ 𝑃𝐷 .

Note that (𝑓𝔉
1
(𝑡ℑ,𝑤

1
), . . . , 𝑓𝔉𝑛 (𝑡ℑ,𝑤𝑛 )) ∈ 𝑃𝐷 entails that 𝑓

𝔉
𝑖
(𝑡ℑ,𝑤
𝑖

)
must be defined for 𝑖 = 1, . . . , 𝑛. The tuple (ℑ,𝔉) is a model of the
FOL(𝔇) sentence 𝜙 (i.e., formula without free variables), in symbols

(ℑ,𝔉) |= 𝜙 , if (ℑ,𝔉),𝑤 |= 𝜙 for some (and thus all) assignments𝑤 .

Description Logics with concrete domains. For an arbitrary DL DL,

a given concrete domain𝔇 can be integrated intoDL with the help

of concrete domain restrictions. Concrete domain restrictions for
𝔇 are concept constructors of the form ∃𝑝.𝑃 (𝑥) or ∀𝑝.𝑃 (𝑥), with
𝑝 = 𝑝1, . . . , 𝑝𝑘 a sequence of 𝑘 feature paths, 𝑃 a 𝑘-ary predicate of

𝔇, and 𝑥 = 𝑥1, . . . , 𝑥𝑘 a 𝑘-tuple of variables. In the context of this

paper, a feature path is either a feature name 𝑓 or an expression 𝑟 𝑓

with 𝑓 a feature name and 𝑟 a role name.We denote the DL obtained

fromDL by adding these restrictions as concept constructors with

DL(𝔇). For example, ALC(𝔇) has, in addition to the concrete

domain restrictions introduced above, the concept constructors

conjunction (⊓), disjunction (⊔), negation (¬), existential restriction
(∃𝑟 .𝐶), and value restriction (∀𝑟 .𝐶).

To define the semantics of DL(𝔇), we assume that concepts of

DL can inductively be translated into FOL formulae with one free

variable𝑥 using a translation function 𝜋𝑥 . For example, 𝜋𝑥 (𝐶⊓𝐷) :=

𝜋𝑥 (𝐶) ∧ 𝜋𝑥 (𝐷) and 𝜋𝑥 (∃𝑟 .𝐶) := ∃𝑦.(𝑟 (𝑥,𝑦) ∧ 𝜋𝑦 (𝐶)). We extend

this translation function to map concepts ofDL(𝔇) to formulae of

FOL(𝔇) by providing the translation of concrete domain restrictions.

Taking 𝑥 , 𝑝 as defined above, let 𝐼 ⊆ {1, . . . , 𝑘} be such that 𝑝𝑖 = 𝑟𝑖 𝑓𝑖
if 𝑖 ∈ 𝐼 and 𝑝𝑖 = 𝑓𝑖 otherwise. We define 𝑦 := 𝑦1, . . . , 𝑦𝑘 by setting

𝑦𝑖 = 𝑥𝑖 if 𝑖 ∈ 𝐼 and 𝑦𝑖 = 𝑥 otherwise, and 𝑧 as the sequence

of variables 𝑦𝑖 with 𝑖 ∈ 𝐼 . The translation of concrete domain

restrictions is then defined as follows, where 𝛾 (𝑥,𝑦) abbreviates∧
𝑖∈𝐼 𝑟𝑖 (𝑥,𝑦𝑖 ) ∧

∧𝑘
𝑖=1

Def (𝑓𝑖 ) (𝑦𝑖 ):
𝜋𝑥 (∃𝑝.𝑃 (𝑥)) := ∃𝑧. (∧𝑖∈𝐼 𝑟𝑖 (𝑥,𝑦𝑖 ) ∧ 𝑃 (𝑓1, . . . , 𝑓𝑘 ) (𝑦)) ,
𝜋𝑥 (∀𝑝.𝑃 (𝑥)) := ∀𝑧. (𝛾 (𝑥,𝑦) → 𝑃 (𝑓1, . . . , 𝑓𝑘 ) (𝑦)) .

(2)

The semantics of TBoxes (i.e., finite sets of CIs 𝐶 ⊑ 𝐷) of the

DL DL(𝔇) is then defined in the usual way by translation into

FOL(𝔇) sentences: 𝐶 ⊑ 𝐷 is translated into ∀𝑥 .𝜋𝑥 (𝐶) → 𝜋𝑥 (𝐷). It
is easy to see that the semantics of concrete domain restrictions

given by the translation in (2) coincides with the direct model-

theoretic semantics in [10, 20]. In [20], extensions of the predicates

of a concrete domain𝔇 by disjunctions of its base predicates are

allowed to be used in concrete domain restrictions, whereas in [10]

even predicates first-order definable from the base predicates are

considered. These extensions can clearly also be translated into

FOL(𝔇). We denote them as DL∨+ (𝔇) and DL
fo
(𝔇), respectively.

Abstract expressive power. If we want to compare the expressive

power of (a fragment of) FOL with that of (a fragment of) FOL(𝔇),
we have the problem that the semantic structures they are based

on differ in that, for the latter, one additionally has a collection

of partial functions into the concrete domain. To overcome this

difference, we say that the first-order interpretation ℑ is an abstract
model of the FOL(𝔇) sentence 𝜙 , in symbols ℑ |=𝔇 𝜙 , if there is an

interpretation of the feature symbols𝔉 such that (ℑ,𝔉) |= 𝜙 . The

FOL sentence𝜓 is an abstract definition of the FOL(𝔇) sentence 𝜙 if

the abstract models of 𝜙 are exactly the models of 𝜓 . In this case

we also say that 𝜙 and𝜓 are abstractly equivalent.

Example 2.1. Consider the unary concrete domain𝔑 := (N, even,
odd) where even, odd are unary relations with the standard mean-

ing. The ALC(𝔑) TBox T := {𝐴 ⊑ ∃𝑓 .even(𝑥), 𝐵 ⊑ ∃𝑓 .odd(𝑥)}
is abstractly equivalent to the ALC TBox T ′

:= {𝐴 ⊑ ¬𝐵}. In fact,

𝐴 and 𝐵 must be interpreted as disjoint sets in any model of T .

Conversely, any model of T ′
can be extended to a model of T by

defining 𝑓 to yield 0 for the elements of 𝐴, 1 for the elements of 𝐵,

and no value for all other elements.

We will show in the next section that such a definability result

always holds for unary concrete domains. However, in general

one may need to introduce auxiliary predicates to express the con-

crete domain restrictions. The following definition allows for such

additional predicates. Let 𝜙 be an FOL(𝔇) sentence and 𝜓 an FOL
sentence that may contain auxiliary predicates not occurring in 𝜙 .

Then𝜓 is an abstract projective definition of 𝜙 if the abstract models

of 𝜙 are exactly the reducts of the models of𝜓 , where in a reduct we

just forget about the interpretation of the auxiliary predicates. In

this case we also say that 𝜙 and𝜓 are abstractly projectively equiv-
alent. The abstract expressive power of (a fragment of) FOL(𝔇) is
determined by which classes of abstract models can be defined by

its sentences.

Definition 2.2. Given a fragment 𝐹 of FOL(𝔇), we say that its

abstract expressive power is (projectively) contained in a fragment 𝐺

of FOL if every sentence of 𝐹 has an abstract (projective) definition

in 𝐺 .

Example 2.3. In the introductionwe have given an example show-

ing that, for a concrete domain𝔇 over the integers with predicates

𝑥 > 𝑦 and 𝑥 > 0, the abstract expressive power of ALC(𝔇) is not
contained in FOL. The argument we have used there (which is based

on the fact that FOL is compact, but ALC(𝔇) is not) also works

in the projective setting. In fact, the CI (1) enforces that, for any

element of PO, there is a positive integer such that the length of all

hpp-chains issuing from it are bounded by this number. Assume that

𝜓 is an FOL sentence that is an abstract projective definition of this

CI. Clearly we can write, for all 𝑛 ≥ 1, an FOL sentence𝜓𝑛 that says

that the constant 𝑎 is an element of PO and the starting point of an

hpp-chain of length 𝑛. Then any finite subset of {𝜓 } ∪ {𝜓𝑛 | 𝑛 ≥ 1}
is satisfiable, but the whole set cannot be satisfiable since the CI (1)

enforces a finite bound on the length of chains issuing from 𝑎. Since

FOL is compact, this shows that𝜓 cannot be a first-order sentence.

However, compactness of ALC(𝔇) for a given concrete do-

main 𝔇 does not guarantee that its abstract expressive power is

projectively contained in FOL.

Example 2.4. Consider the concrete domain𝔔′
:= (Q, >,=). The

results shown in the next section imply that the logic FOL(𝔔′)
is compact, and thus also its fragment ALC(𝔔′). Nevertheless,
the abstract expressive power of ALC(𝔔′) is not projectively
contained in FOL. To see this, consider the TBox T := {⊤ ⊑
∃𝑓 , 𝑓 .=(𝑥1, 𝑥2) ⊓ ∀𝑓 , 𝑟 𝑓 .>(𝑥1, 𝑥2)} and assume that there is an FOL
formula𝜓 that is an abstract projective definition of it. Then (Q, >),
where > is the interpretation of 𝑟 , is an abstract model of T . In fact,
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one can use the identity function to interpret the feature 𝑓 . Thus,

(Q, >) can be extended to a model of𝜓 (by appropriate interpreta-

tions of the auxiliary predicates contained in𝜓 , if any). Since (Q, >)
satisfies the formula 𝜏 := ∀𝑥,𝑦.(𝑟 (𝑥,𝑦) ∨ 𝑥 = 𝑦 ∨ 𝑟 (𝑦, 𝑥)), we can
conclude that𝜓 ∧ 𝜏 is satisfiable. The upward Löwenheim-Skolem

property of FOL yields an uncountable model of𝜓 ∧ 𝜏 . Since𝜓 is an

abstract projective definition of T , the reduct ℜ of this uncount-

able model to the signature consisting of 𝑟 must be extendable to

a model of T . This means that there is an interpretation 𝑓𝔉 of

𝑓 such that (ℜ,𝔉) is a model of T . The conjunct ∃𝑓 , 𝑓 .=(𝑥1, 𝑥2)
on the right-hand side of the CI forces 𝑓𝔉 to be total. Let a, ` be

distinct elements of ℜ. Since ℜ satisfies 𝜏 , we know that a and `

are related via 𝑟 , in one direction or the other. Then the restriction

∀𝑓 , 𝑟 𝑓 .>(𝑥1, 𝑥2) yields 𝑓𝔉 (a) ≠ 𝑓𝔉 (`), and thus 𝑓𝔉 is injective.

However, since ℜ is uncountable and Q is countable, there cannot

be an injective function from the domain of ℜ to Q.

3 FIRST-ORDER PROPERTIES OF LOGICS
WITH CONCRETE DOMAINS

First-order logic satisfies a number of interesting formal character-

istics, usually shown in any introductory textbook in logic [12, 14].

Assuming that Φ is an at most countable set of sentences in our

target language, these properties can be specified as follows:

(Downward) Löwenheim-Skolem: If Φ is satisfiable, then it

has a model whose domain is at most countable;

(Upward) Löwenheim-Skolem: If Φ has a model with an in-

finite domain, then it has a model with an uncountable do-

main;

(Countable) Compactness: If every finite subset of Φ is sat-

isfiable, then Φ is satisfiable;

Recursive enumerability: The set of unsatisfiable sentences
is recursively enumerable (r.e.).

We will show that, under natural conditions on the concrete do-

main 𝔇, FOL(𝔇) shares most and ALC(𝔇) shares all of these
properties with FOL. The first condition is that𝔇 is homomorphism
𝜔-compact, i.e., that constraint solving in𝔇 is compact in the sense

that a countable constraint system for𝔇 is satisfiable iff every of

its finite subsets is satisfiable. As mentioned before, this property is

part of the𝜔-admissibility condition, which guarantees decidability

of ALC(𝔇). The second condition is that the concrete domain𝔇

is closed under negation, i.e. for every predicate symbol 𝑃 of𝔇 there

is a predicate symbol 𝑃𝑐 of 𝔇 such that
¯𝑑 ∈ 𝑃𝐷 iff

¯𝑑 ∉ 𝑃𝐷𝑐 . This

condition appears in the definition of admissibility for concrete

domains [6], and is needed since our logics can express negation of

concrete domain predicates. If it is not satisfied (as, e.g., for the con-

crete domain𝔔′
in Example 2.4), then one can extend the concrete

domain by the missing predicates. However, then homomorphism

𝜔-compactness needs to hold for the extended concrete domain

(as is the case for the extension of 𝔔′
by the complements of its

predicates).

We assume in this section that the concrete domain𝔇 is homo-

morphism 𝜔-compact and closed under negation. The main tool

for showing our results is a satisfiability-preserving translation of

sets of FOL(𝔇) sentences into sets of FOL sentences.

Rewriting to first-order logic. Let Φ be an at most countable set of

FOL(𝔇) sentences. We translate Φ into a set of FOL sentences ΦFOL

by replacing every atom of the form 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑡1, . . . , 𝑡𝑛) occur-
ring in Φ with 𝑃 𝑓1,...,𝑓𝑛 (𝑡1, . . . , 𝑡𝑛), where for every 𝑛-ary concrete

domain predicate 𝑃 and features 𝑓1, . . . , 𝑓𝑛 we assume that 𝑃 𝑓1,...,𝑓𝑛

is a new 𝑛-ary predicate symbol in the first-order signature. Simi-

larly, every atom of the form Def (𝑓 ) (𝑡) is replaced with Def 𝑓 (𝑡)
where Def 𝑓 is a new predicate symbol for every feature 𝑓 .

Every set Γ of atoms of the form 𝑃 𝑓1,...,𝑓𝑛 (𝑥1, . . . , 𝑥𝑛) induces the
constraint system Γ̂ := {𝑃 (𝑓 1

𝑥1

, . . . , 𝑓 𝑛𝑥𝑛 ) | 𝑃 𝑓 1,...,𝑓 𝑛 (𝑥1, . . . , 𝑥𝑛) ∈
Γ},where 𝑓𝑥 is a new variable for each feature name 𝑓 and variable𝑥 .

To capture the semantics of the concrete domain predicates and

the definedness predicate, we additionally consider the set of FOL

sentences Ψ𝔇
where:

• assuming that 𝑥 := 𝑥1, . . . , 𝑥𝑛 , we add for each of the new

predicate symbols 𝑃 𝑓1,...,𝑓𝑛
the sentences

∀𝑥 .𝑃 𝑓1,...,𝑓𝑛 (𝑥) → Def 𝑓1 (𝑥1) ∧ · · · ∧ Def 𝑓𝑛 (𝑥𝑛),

∀𝑥 .¬𝑃 𝑓1,...,𝑓𝑛 (𝑥) → 𝑃
𝑓1,...,𝑓𝑛
𝑐 (𝑥) ∨∨𝑛

𝑖=1
(¬Def 𝑓𝑖 (𝑥𝑖 )),

• for every finite set Γ of atoms of the form 𝑃 𝑓1,...,𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)
we add the sentence ∀𝑥 .∧ Γ → ⊥ if the constraint system

Γ̂ is unsatisfiable in 𝔇, where 𝑥 collects all the variables

occurring in Γ.

Theorem 3.1. Let 𝔇 be a homomorphism 𝜔-compact concrete
domain that is closed under negation. The set Φ of FOL(𝔇) formulae
is satisfiable in FOL(𝔇) iff ΦFOL ∪ Ψ𝔇 is satisfiable in FOL.

Proof. “⇐” Assume that ΦFOL ∪ Ψ𝔇
is satisfiable. Since this is

a countable set of first-order formulae, we apply the downward

Löwenheim-Skolem property of FOL to get an at most countable

model ℑ of ΦFOL ∪ Ψ𝔇
. We show that we can extend ℑ with an

interpretation 𝔉 of the features such that (ℑ,𝔉) is a model of Φ.
To this purpose, introduce a fresh variable 𝑥𝑑 for every 𝑑 ∈ 𝐼 and

consider the set Γℑ consisting of all atoms 𝑃 𝑓 1,...,𝑓 𝑛 (𝑥𝑑1
, . . . , 𝑥𝑑𝑛 )

such that 𝑃 𝑓 1,...,𝑓 𝑛 (𝑑1, . . . , 𝑑𝑛) is satisfied in ℑ, where 𝑑1, . . . , 𝑑𝑛
ranges over all elements of ℑ and 𝑓 1, . . . , 𝑓 𝑛 over all feature names.

Due to our construction of Ψ𝔇
and the fact that ℑ is a model of

this set, we know that all finite subsets of Γ̂ℑ are satisfiable in

𝔇. Since Γ̂ℑ is countable, homomorphism 𝜔-compactness implies

that there exists a solution ℎ of it in 𝔇. For all feature names 𝑓

and elements 𝑑 ∈ 𝐼 for which the variable 𝑓𝑥𝑑 occurs in Γ̂ℑ, we

define 𝑓𝔉 (𝑑) := ℎ(𝑓𝑥𝑑 ). Otherwise, we choose an arbitrary value for
𝑓𝔉 (𝑑) if Def 𝑓 (𝑑) is true in ℑ, and leave 𝑓𝔉 (𝑑) undefined otherwise.
The fact that, together with this interpretation of the features 𝔉,

the FOL interpretation ℑ is indeed a model of Φ, is an immediate

consequence of the following two claims:

(1) Def 𝑓 (𝑑) is true in ℑ iff Def (𝑓 ) (𝑑) is true in (ℑ,𝔉);
(2) 𝑃 𝑓1,...,𝑓𝑛 (𝑑1, . . . , 𝑑𝑛) is true in ℑ iff 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑑1, . . . , 𝑑𝑛)

is true in (ℑ,𝔉).
To show the first claim, assume that Def 𝑓 (𝑑) is true in ℑ. Then

𝑓𝔉 (𝑑) is defined either by the solution ℎ of the constraint system

Γ̂ℑ in𝔇 or it has received some arbitrary value. If Def 𝑓 (𝑑) is not
true in ℑ, then 𝑓𝔉 (𝑑) cannot have been defined in terms of ℎ, since
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otherwise an expression 𝑃 𝑓1,...,𝑓𝑛 (𝑑1, . . . , 𝑑𝑛) that is true in ℑ would

have to exist such that 𝑓 = 𝑓𝑖 and 𝑑 = 𝑑𝑖 . But then Ψ𝔇
would

have enforced Def 𝑓 (𝑑) to be true in ℑ, leading to a contradiction.

In addition, since Def 𝑓 (𝑑) is not true in ℑ, no arbitrary value is

assigned to 𝑓𝔉 (𝑑). Thus 𝑓𝔉 (𝑑) is undefined.
Regarding the second claim, first assume 𝑃 𝑓1,...,𝑓𝑛 (𝑑1, . . . , 𝑑𝑛)

is true in ℑ, which means that 𝑃 𝑓 1,...,𝑓 𝑛 (𝑥𝑑1
, . . . , 𝑥𝑑𝑛 ) belongs to

Γℑ. Since 𝔉 was defined using a solution of Γ̂ℑ, we know that

𝑃 (𝑓𝔉
1
(𝑑1), . . . , 𝑓𝔉𝑛 (𝑑𝑛)) holds in𝔇, and thus 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑑1, . . . , 𝑑𝑛)

is true in (ℑ,𝔉). Conversely, assume that 𝑃 𝑓1,...,𝑓𝑛 (𝑑1, . . . , 𝑑𝑛) is not
true in ℑ, which means that its negation is true in ℑ. Since ℑ is a

model of Ψ𝔇
, this implies that

𝑃
𝑓1,...,𝑓𝑛
𝑐 (𝑑1, . . . , 𝑑𝑛) ∨ ¬Def 𝑓1 (𝑑1) ∨ . . . ∨ ¬Def 𝑓𝑛 (𝑑𝑛)

is true in ℑ. If 𝑃
𝑓1,...,𝑓𝑛
𝑐 (𝑑1, . . . , 𝑑𝑛) is true in ℑ, then we can em-

ploy the same approach as for the only-if direction to show that

𝑃𝑐 (𝑓1, . . . , 𝑓𝑛) (𝑑1, . . . , 𝑑𝑛) is true in (ℑ,𝔉), which clearly implies

that 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑑1, . . . , 𝑑𝑛) cannot be true in (ℑ,𝔉). Similarly, if

¬Def 𝑓𝑖 (𝑑𝑖 ) is true inℑ, then according to the first claim,Def (𝑓𝑖 ) (𝑑𝑖 )
cannot be true in (ℑ,𝔉). Thus, 𝑃 (𝑓1, . . . , 𝑓𝑛) (𝑑1, . . . , 𝑑𝑛) also cannot
be true since ℑ satisfies Ψ𝔇

.

“⇒” Assume that Φ is satisfiable in FOL(𝔇) by the interpretation
ℑ of the FOL part and the interpretation𝔉 of the features. We extend

ℑ to an interpretation ℑ′
that also takes the new predicates Def 𝑓

and 𝑃 𝑓1,...,𝑓𝑛
into account:

• 𝑑 ∈ Def
ℑ′

𝑓
iff 𝑓𝔉 (𝑑) is defined,

• (𝑑1, . . . , 𝑑𝑛) ∈ (𝑃 𝑓1,...,𝑓𝑛 )ℑ′
iff (𝑓𝔉

1
(𝑑1), . . . , 𝑓𝔉𝑛 (𝑑𝑛)) ∈ 𝑃𝔇.

Since (ℑ,𝔉) makesΦ true, it is easy to see thatℑ′
is a model of ΦFOL

.

In addition, it is a model of Ψ𝔇
due to the semantics of concrete

domain restriction in FOL(𝔇) and the fact that 𝑃𝑐 is the complement

of 𝑃 in𝔇. □

Thanks to this theorem, we can transfer the properties of FOL
introduced above to FOL(𝔇).

Corollary 3.2. FODcompactness If 𝔇 is a homomorphism 𝜔-
compact concrete domain that is closed under negation, then FOL(𝔇)
is countably compact and satisfies the downward Löwenheim-Skolem
property. Homomorphism𝜔-compactness is also a necessary condition
for countable compactness. In general, FOL(𝔇) need not satisfy the
upward Löwenheim-Skolem property. If the finite unsatisfiable con-
straint systems for𝔇 are r.e., then so are the unsatisfiable sentences
of FOL(𝔇).

Proof sketch. Compactness follows from Theorem 3.1. In fact,

if Φ is unsatisfiable, then this theorem and compactness of FOL

yield a finite subset Ψ of ΦFOL ∪ Ψ𝔇
that is unsatisfiable. Then

translating Ψ ∩ ΦFOL
back to FOL(𝔇) yields an unsatisfiable finite

subset of Φ. The downward Löwenheim-Skolem property follows

from the construction of the abstract model ℑ in the if-direction of

Theorem 3.1, which is at most countable.

Assume that the countable constraint system Γ for𝔇 is a coun-

terexample to the homomorphism 𝜔-compactness of𝔇. Then

ΦΓ := {∀𝑥 .(𝑃 (𝑓𝑥1
, . . . , 𝑓𝑥𝑛 ) (𝑥, . . . , 𝑥)) | 𝑃 (𝑥1, . . . , 𝑥𝑛) ∈ Γ}

is a countable set of FOL(𝔇) sentences that is a counterexample to

countable compactness of FOL(𝔇).
Next, consider the concrete domain 𝔔= := (Q,=,≠), which is

closed under negation and easily seen to be homomorphism 𝜔-

compact. The FOL (𝔔=) sentence
𝜙up := ∀𝑥,𝑦.Def (𝑓 ) (𝑥) ∧ (𝑥 ≠ 𝑦 → ≠(𝑓 , 𝑓 ) (𝑥,𝑦))

states that 𝑓 is an injective function from the domain of an abstract

model of 𝜙up into Q. Thus, no abstract model of 𝜙up can have an

uncountable domain, as Q is is countable.

Finally, assume that Φ = {𝜙} for an FOL(𝔇) sentence 𝜙 . The
assumption that the finite unsatisfiable constraint systems for𝔇 are

r.e. entails that the set ΦFOL∪Ψ𝔇
is r.e. as well. We can now dovetail

a partial decision procedure for unsatisfiability of finite sets of FOL

sentences with the enumeration ofΦFOL∪Ψ𝔇
to get a procedure that

terminates iff ΦFOL∪Ψ𝔇
is unsatisfiable. Together with Theorem 3.1

this shows that unsatisfiability of FOL(𝔇) sentences is partially
decidable, and thus r.e. □

For ALC with a concrete domain, we can strengthen the result

of Corollary 3.2 as following.

Corollary 3.3. ALCDcompactness Let𝔇 be a homomorphism
𝜔-compact concrete domain that is closed under negation, and L be
either ALC(𝔇), ALC∨+ (𝔇) or ALCfo (𝔇). Then L is countably
compact and satisfies the upward and the downward Löwenheim-
Skolem property. Homomorphism 𝜔-compactness is also a necessary
condition for countable compactness.

Proof sketch. The downward Löwenheim-Skolem property

and countable compactness are an immediate consequence of the

fact that L can be expressed in FOL(𝔇). Regarding necessity of ho-

momorphism𝜔-compactness, it is easy to see that a counterexample

to this property for𝔇 can also be turned into a counterexample to

countable compactness ofL, similar to the construction for FOL(𝔇).
The upward Löwenheim-Skolem property is an immediate conse-

quence of the fact that, like ALC [8], its extension L is closed

under disjoint unions. □

4 FIRST-ORDER (NON-)DEFINABILITY AND
DECIDABILITY

In Section 2, we have seen an example of a unary concrete domain𝔑

and anALC(𝔑) TBox T such that T is abstractly equivalent to an

ALC TBox T ′
. Basically, the first part of this section generalizes

this result to all unary concrete domains𝔇 that are closed under

negation. To be more precise, we show that, in this setting, every

FOL(𝔇) sentence has an abstract projective definition in FOL, and
likewise everyALC(𝔇) TBox is abstractly projectively equivalent
to an ALC TBox. As a byproduct of these results, we are able to

show that, under the additional assumption that constraint satis-

faction in 𝔇 is decidable, extending the guarded or two-variable

fragments with counting of FOLwith such a concrete domain leaves

the resulting logic decidable.

Regarding non-definability, Section 2 presents an example of a

homomorphism𝜔-compact concrete domain𝔔′
and anALC(𝔔′)

TBox T that has no abstract projective definition in FOL. In the

second part of this section, we will generalize this result from𝔔′
to

countable concrete domains in which (in)equality is appropriately
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definable. We will also show that adding such concrete domains to

FOL destroys the upward Löwenheim-Skolem property.

4.1 Unary concrete domains
We recall that a concrete domain is unary if it contains only unary

relations. Assume that𝔇 is a unary concrete domain that is closed

under negation. Let 𝜙 be an FOL(𝔇) sentence and Φ := {𝜙}. The
rewriting approach described in Section 3 produces a singleton

set ΦFOL
consisting of an FOL sentence 𝜙FOL and a set Ψ𝔇

of FOL
sentences consisting of

• finitely many sentences ∀𝑥 .𝑃 𝑓 (𝑥) → Def 𝑓 (𝑥),
• finitely many sentences ∀𝑥 .¬𝑃 𝑓 (𝑥) → 𝑃

𝑓
𝑐 (𝑐) ∨ ¬Def 𝑓 (𝑥),

• finitely many sentences of the form ∀𝑥 .Γ → ⊥ where Γ is a

set of atoms {𝑃 𝑓

1
(𝑥), . . . , 𝑃 𝑓

𝑛 (𝑥)} s.t. Γ̂ is unsatisfiable in𝔇.

The first two points are justified by the fact that we can restrict our

attention to the concrete domain predicates and feature symbols

that occur in 𝜙 . Regarding the last point, we notice that, in a setting

where all concrete domain predicates are unary, constraints of the

form 𝑃 𝑓 (𝑥) and 𝑄𝑔 (𝑦), where 𝑓 ≠ 𝑔 or 𝑥 ≠ 𝑦, cannot influence

each other. Thus, one can restrict the attention to constraint sys-

tems built using a single feature name 𝑓 and variable 𝑥 . In fact,

any unsatisfiable constraint systems must contain an unsatisfiable

one of this form. Since we can again restrict the attention to the

concrete domain predicates and feature symbols occurring in 𝜙 ,

and the name of single variable is irrelevant, there are only finitely

many sentences of this form. Overall, this rewriting approach yields

an FOL sentence𝜓 := 𝜙FOL ∧∧
Ψ𝔇

. We cannot directly apply The-

orem 3.1 to conclude that 𝜙 and𝜓 are equisatisfiable since we have

not assumed that 𝔇 is homomorphism 𝜔-compact. The proof of

the following results shows that, even without this assumption, we

obtain the stronger result that𝜓 is a first-order abstract projective

definition of 𝜙 .

Corollary 4.1. Let𝔇 be a unary concrete domain that is closed
under negation. Then, every FOL(𝔇) sentence has an abstract projec-
tive definition in FOL.

Proof. Let 𝜙 be a FOL(𝔇) sentence and 𝜓 the FOL sentence

obtained by the rewriting process described above. First, we show

that every model of𝜓 is an abstract model of 𝜙 . Let ℑ be a model

of𝜓 . Since𝔇 is unary, the constraint system Γℑ considered in the

proof of Theorem 3.1 contains all expressions 𝑃 𝑓 (𝑥𝑑 ) such that

𝑃 𝑓 (𝑑) holds in ℑ for 𝑓 a feature name and 𝑑 ∈ 𝐼 . For every feature

name 𝑓 and 𝑑 ∈ 𝐼 , let Γ𝑑,𝑓 be the subsystem of Γℑ containing all and

only expressions of the form 𝑃 𝑓 (𝑥𝑑 ). We notice that each of these

subsystems is finite, and that they partition Γℑ . In particular, Γℑ is

satisfiable in𝔇 iff Γ𝑑,𝑓 is satisfiable in𝔇 for every 𝑓 and 𝑑 ∈ 𝐼 . The

satisfiability of each such Γ𝑑,𝑓 in𝔇 is a consequence of the fact that

ℑ is a model of𝜓 , and thus of Ψ𝔇
. Otherwise, Ψ𝔇

would contain

the sentence ∀𝑥 .Γ𝑑,𝑓 → ⊥ and this would lead to a contradiction.

We conclude that Γℑ has a solution ℎ in𝔇, which we use as in the

proof of Theorem 3.1 to define an interpretation𝔉 of feature names

such that (ℑ,𝔉) is a model of 𝜙 .

Second, we must show that every abstract model 𝜙 can be ex-

tended to a model of 𝜓 by interpreting the new predicates of the

form 𝑃 𝑓
and Def 𝑓 appropriately. This can be done exactly as in the

proof of Theorem 3.1. □

Recall that, in the proof of Theorem 3.1, we used the downward

Löwenheim-Skolem property of first-order logic to ensure that

the constraint system Γℑ is countable, a necessary requirement to

be able to apply homomorphism 𝜔-compactness. In the proof of

Corollary 4.1, this was not possible since we had to show that the

given model of 𝜓 is an abstract model of 𝜙 . Fortunately, the fact

that we can reduce satisfiability of Γℑ to that of the finite systems

Γ𝑑,𝑓 allowed us to dispense with this step and the requirement that

𝔇 is homomorphism 𝜔-compact.

For ALC(𝔇) TBoxes T we can strengthen Corollary 4.1 by

introducing a TBox T𝔇
that takes on the role of Ψ𝔇

in the FOL(𝔇)
setting. First, we introduce fresh concept names 𝑃 𝑓

and Def 𝑓 for

every feature name 𝑓 and unary predicate 𝑃 of𝔇 that occur in a

concrete domain restriction of T . We denote with T FOL
the ALC

TBox fromT obtained by replacing∃𝑓 .𝑃 (𝑥)with 𝑃𝑓 ,∃𝑟 𝑓 .𝑃 (𝑥)with
∃𝑟 .𝑃𝑓 , ∀𝑓 .𝑃 (𝑥) with ¬Def 𝑓 ⊔ 𝑃 𝑓

and ∀𝑟 𝑓 .𝑃 (𝑥) with ∀𝑟 .(¬Def 𝑓 ⊔
𝑃 𝑓 ). The ALC TBox T𝔇

consists of the following CIs:

• 𝑃 𝑓 ⊑ Def 𝑓 and ¬𝑃 𝑓 ⊑ 𝑃
𝑓
𝑐 ⊔ ¬Def 𝑓 for every feature name

𝑓 and unary relation 𝑃 over𝔇 occurring in T ,

• .
Γ ⊑ ⊥ for every feature name 𝑓 and every finite set Γ of

concept names 𝑃 𝑓
s.t. the constraint system {𝑃 (𝑥) | 𝑃 𝑓 ∈ Γ}

is unsatisfiable in𝔇.

Then, T ′
:= T FOL ∪ T𝔇

acts as the sentence 𝜓 did in the proof

of Corollary 4.1.

Corollary 4.2. Let𝔇 be a unary concrete domain that is closed
under negation. Then, everyALC(𝔇) TBox has an abstract projective
definition in ALC.
Decidability results. Note that, in the setting introduced in this

subsection, the FOL(𝔇) sentence Ψ𝔇
belongs both to the guarded

and the two-variable fragment with counting of first-order logic,

which are known to be decidable [2, 15, 22, 23]. Therefore, if the

sentence 𝜙 falls into one of these fragments, defined analogously to

their first-order counterparts, it follows that the abstract projective

definition𝜓 of 𝜙 used in Corollary 4.1 also falls into this fragment.

To ensure that satisfiability of FOL(𝔇) sentences falling into one of

these fragments is decidable, it is necessary to guarantee that Ψ𝔇

can effectively be computed. This is the case if checking satisfiability

of a finite constraint system for𝔇 is decidable.

Corollary 4.3. Let𝔇 be a unary concrete domain that is closed
under negation. If constraint satisfiability for 𝔇 is decidable, then
satisfiability of sentences in the guarded or the two-variable fragment
with counting of FOL(𝔇) is decidable.

The first-order translations of many DLs considered in the liter-

ature actually belong to the guarded or the two-variable fragment

with counting. Since, in the unary case, the translations of concrete

domain restrictions into FOL(𝔇) given in (2) also belong to these

fragments, the above corollary yields decidability results for a great

number of DLs extended with unary and decidable concrete do-

mains. Note, however, that this does not cover the decidability result

for SHOQ extended with unary concrete domains in [16] since

the transitivity of roles specifiable in that DL cannot be expressed

in the guarded or the two-variable fragment with counting.
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4.2 In(equality) causes non-definability
We have seen above that the restriction to a unary concrete do-

main 𝔇 ensures that every FOL(𝔇) sentence has an abstract pro-

jective definition in FOL. This also implies that FOL(𝔇) satisfies
the upward Löwenheim-Skolem property. Without the restriction

to predicates of arity 1, this need no longer be the case. In fact,

Example 2.4 demonstrates that there exists a concrete domain𝔇

and an ALC(𝔇) TBox T such that T does not have an abstract

projective definition in FOL. In addition, the proof of Corollary 3.2

shows that, for the concrete domain𝔔=, the logic FOL(𝔔=) does
not satisfy the upward Löwenheim-Skolem property. In the follow-

ing, we extend these negative results from single examples to a

large class of concrete domains.

Analyzing the two concrete examples, we see that they crucially

depend on the fact that (in)equality can be expressed in the con-

crete domain under consideration. Following [10], we say that𝔇

is jointly diagonal (JD) if equality between elements of 𝐷 can be

expressed using a quantifier-free formula 𝜓= (𝑥,𝑦) over the pred-
icates contained in the signature of 𝔇.

2
In [10], JD is part of the

definition of 𝜔-admissibility, and thus all 𝜔-admissible concrete

domains exhibited there satisfy this property.

Theorem 4.4. Let 𝔇 be a jointly diagonal, at most countable
concrete domain. Then, FOL(𝔇) does not have the upward Löwenheim-
Skolem property.

Proof. Assume that𝜓= (𝑥,𝑦) is the quantifier-free formula that

expresses equality between elements of 𝐷 . Let 𝜓
𝑓
= (𝑥,𝑦) be the

FOL(𝔇) formula obtained by replacing every atom 𝑃 (𝑥1, . . . , 𝑥𝑛)
in𝜓= with 𝑃 (𝑓 , . . . , 𝑓 ) (𝑥1, . . . , 𝑥𝑛). Similarly to the proof of Corol-

lary 3.2, we define the FOL(𝔇) sentence

𝜙up := ∀𝑥,𝑦.Def (𝑓 ) (𝑥) ∧ (𝑥 ≠ 𝑦 → ¬𝜓 𝑓
= (𝑥,𝑦)),

which enforces that the interpretation of 𝑓 is a total and injective

function from the domain of any abstract model of 𝜙up into𝐷 . Thus,

no abstract model of 𝜙up can have an uncountable domain. □

In Corollary 3.3 we use closure under disjoint union of mod-

els of ALC(𝔇) TBoxes to show that ALC(𝔇) has the upward
Löwenheim-Skolem property. However, the fact that such a TBox

then always has an uncountable model is not sufficient to apply

the argument used in Example 2.4 to show that there exists an

ALC(𝔇) TBoxes that have no abstract projective first-order defi-

nition. In fact, such an uncountable model could be the uncountable

disjoint union of countable models, and injectivity of the feature

name 𝑓 can possible only be enforced on the countable sub-models.

This is why we needed the formula 𝜏 in the proof given in that

example, which states that any two distinct elements of the in-

terpretation domain are linked by the role 𝑟 . To adapt the idea

underlying this proof to our more general setting, we make an

additional assumption on the formula𝜓= (𝑥,𝑦) defining equality.

Theorem 4.5. Let 𝔇 be an at most countable concrete domain
that is closed under negation and is JD, and assume that there is a

2
Note that the equality predicate cannot be employed in such a formula unless it is

explicitly contained in the signature of𝔇.

quantifier-free definition of equality over𝔇 that uses only binary rela-
tions. Then, there is anALC(𝔇) TBox that has no abstract projective
definition in first-order logic.

Proof. Let 𝜓= (𝑥,𝑦) be a quantifier-free definition of equality

over𝔇 that uses only binary relations. Let 𝑃 be a binary relation

that occurs in𝜓= (𝑥,𝑦) and 𝑃𝑐 its complement, whose existence is

guaranteed by the assumption of closure under negation. We can

force a feature name 𝑓 to act as a total function (in the spirit of

the CI ⊤ ⊑ ∃𝑓 , 𝑓 .=(𝑥1, 𝑥2) used in Example 2.4) with theALC(𝔇)
TBox

Ttot := {⊤ ⊑ (∃𝑓 , 𝑓 .𝑃 (𝑥1, 𝑥2)) ⊔ (∃𝑓 , 𝑓 .𝑃𝑐 (𝑥1, 𝑥2))}.

Equivalence to requiring totality of 𝑓 follows from the fact that,

for every 𝑑 ∈ 𝐷 , the concrete domain𝔇 satisfies either 𝑃 (𝑑, 𝑑) or
𝑃𝑐 (𝑑, 𝑑).

We combine our assumptions about𝜓= (𝑥,𝑦) and closure under

negation to obtain a quantifier-free and positive formula𝜓≠ (𝑥,𝑦)
that defines inequality over 𝔇 and uses only binary relations of

𝔇. To ensure that 𝜓≠ (𝑥,𝑦) does not contain negated predicates,

we take the negation-normal form of ¬𝜓= (𝑥,𝑦) and replace every

negated occurrence of 𝑃 with its complement 𝑃𝑐 . We introduce for

every binary relation 𝑃 that occurs in 𝜓≠ (𝑥,𝑦) a fresh role name

𝑟𝑃 and a CI ⊤ ⊑ ∀𝑓 , 𝑟𝑃 𝑓 .𝑃 (𝑥1, 𝑥2) and call T≠ the resulting TBox.

Let T := Ttot ∪ T≠ and assume, by contradiction, that T is

abstractly projectively equivalent to a first-order sentence 𝜙 . The

interpretation ℑ with countable domain 𝐼 := 𝐷 and 𝑟ℑ
𝑃

:= 𝑃𝐷 is

an abstract model of T , where we interpret the feature name 𝑓

using the identity over 𝐷 . Then, ℑ can be extended to a model ℑ′

of 𝜙 . Using the upward Löwenheim-Skolem property of first-order

logic, we find an uncountable interpretation 𝔍 that is elementary

equivalent to ℑ′
in first-order logic (apply the property to the

first-order theory of ℑ′
, which is trivially satisfied by ℑ′

). This

implies that 𝔍 satisfies 𝜙 and thus, by assumption, we can find an

interpretation 𝑓𝔉 of 𝑓 such that (𝔍,𝔉) is a model of T .

Let 𝑑 , 𝑒 be two distinct elements of 𝐽 . Assuming that𝜓𝑟
≠ (𝑥,𝑦) is

the formula obtained by replacing every occurrence of 𝑃 (𝑥,𝑦) in
𝜓≠ (𝑥,𝑦) with 𝑟𝑃 (𝑥,𝑦), we observe that both ℑ and ℑ′

satisfy the

first-order sentence

∀𝑥,𝑦.(𝑥 ≠ 𝑦) ↔ 𝜓𝑟
≠ (𝑥,𝑦) .

Since 𝔍 is elementary equivalent to ℑ′
, it also satisfies the above

sentence and thus (𝑑, 𝑒) ∈ (𝜓𝑟
≠)𝔍.

Since (𝔍,𝔉) is a model of Ttot, both 𝑓𝔉 (𝑑) and 𝑓𝔉 (𝑒) must

be defined. The fact that (𝔍,𝔉) is a model of T≠ ensures that

(𝑑, 𝑒) ∈ (𝑟𝑃 )𝔍 implies (𝑓𝔉 (𝑑), 𝑓𝔉 (𝑒)) ∈ 𝑃𝐷 for every predicate

𝑃 occurring in𝜓≠ (𝑥,𝑦). Therefore, (𝑓𝔉 (𝑑), 𝑓𝔉 (𝑒)) ∈ 𝜓𝐷
≠ holds, and

consequently 𝑓𝔉 (𝑑) ≠ 𝑓𝔉 (𝑒), which implies that 𝑓𝔉 is an injec-

tive function. This leads to a contradiction since we know that

the domain 𝐷 of𝔇 is at most countable, but the domain 𝐽 of 𝔍 is

uncountable, and 𝑓𝔉 is supposed to be an injective function from 𝐽

to 𝐷 . We conclude that T is not abstractly projectively equivalent

to any first-order sentence. □

To conclude this section, let us point out that the assumptions

made in this theorem are not very restrictive. As already men-

tioned above, JD is part of the definition of 𝜔-admissibility in [10].
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Whereas [10] does not assume closure under negation of the set of

concrete domain predicates, it requires that 𝜔-admissible concrete

domains are jointly exhaustive and pairwise disjoint (JEPD). It is
easy to see that JEPD can replace closure under negation in the

proof of the above theorem since the complement of any relation

of𝔇 can then be expressed as the union of the other relations. Fi-

nally, note that the original work introducing 𝜔-admissibility [20]

assumed that all relations are binary, and many of the 𝜔-admissible

concrete domains exhibited in [10] also satisfy this restriction.

5 CONCLUSION
We have introduced the notion of abstract expressive power of a

logic (FOL or a DL) with concrete domain, which is determined

by which classes of abstract models (where one abstracts away

the interpretation of feature names) can be defined by sentences

of this logic. Our first main result is that such classes of abstract

models share compactness and the downward Löwenheim-Skolem

property with the ones definable by FOL if the employed concrete

domain satisfies some reasonable model-theoretic assumptions. Un-

der an additional computability assumption, the construction used

to show these results also provides us with an effective procedure

for enumerating all unsatisfiable sentences of the logic with con-

crete domain. An interesting topic for future research is to check

which other properties of FOL (e.g., Craig interpolation [21] or the

0-1 law [13]) hold for (fragments of) FOL(𝔇), depending on cer-

tain properties satisfied by 𝔇. It is well-known that ALC is the

fragment of FOL that is closed under bisimulation [11]. It would be

interesting to see whether a similar result holds for ALC(𝔇) and
FOL(𝔇), based on an appropriate notion of bisimulation.

Our second main result is that, although sharing interesting

properties with FOL, sentences of logics with concrete domain are

often not (projectively) definable in FOL. An exception are logics

with unary concrete domains, where we obtain FOL definability

under weak additional assumptions. Given a logic with concrete

domain, inexpressibility in FOL does not mean that none of its

sentences are definable in FOL. Thus, one can ask if the existence

of a (projective) definition in FOL for a given sentence is decidable.
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