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Review

Conjunctive queries (CQs) are simpler than FO-queries:

• NP combined and query complexity (instead of PSpace)

• data complexity remains in AC0

CQs become even simpler if they are tree-shaped:

• GYO algorithm defines acyclic hypergraphs

• acyclic hypergraphs have join trees

• join trees can be evaluated in P with Yannakakis’ Algorithm

This time:

• Find more general conditions that make CQs tractable
{ “tree-like” queries that are not really trees

• Play some games
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Is Yannakakis’ Algorithm Optimal?

We saw that tree queries can be evaluated in polynomial time,
but we know that there are much simpler complexity classes:

NC0
⊂ AC0

⊂ NC1
⊆ L ⊆ NL ⊆ AC1

⊆ . . . ⊆ NC ⊆ P

Indeed, tighter bounds have been shown:

Theorem 7.1 (Gottlob, Leone, Scarcello: J. ACM 2001): Answering tree BCQs
is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word problem of a
context-free language:

NC0
⊂ AC0

⊂ NC1
⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1

⊆ . . . ⊆ NC ⊆ P

{ highly parallelisable
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Generalising Tree Queries

In practice, many queries are tree queries,
but even more queries are “almost” tree queries, but not quite . . .

How can we formalise this idea?

Several attempts to define “tree-like” queries:

• Treewidth: a way to measure tree-likeness of graphs

• Query width: towards tree-like query graphs

• Hypertree width: adoption of treewidth to hypergraphs
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How to recognise trees . . .

. . . from quite a long way away:
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Tree Decompositions

Idea: if we can group the edges of a graph into bigger pieces, these pieces might form a
tree structure

Definition 7.2: Consider a graph G = ⟨V, E⟩. A tree decomposition of G is a tree
structure T where each node of T is a subset of V, such that:

• The union of all nodes of T is V.

• For each edge (v1 → v2) ∈ E, there is a node N in T such that v1, v2 ∈ N.

• For every vertex v ∈ V, the set of nodes of T that contain v form a subtree of
T; equivalently: if two nodes contain v, then all nodes on the path between
them also contain v (connectedness condition).

Nodes of a tree decomposition are often called bags
(not related to the common use of “bag” as a synonym for “multiset”)
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Tree Decompositions: Example

F

GD

E

D

FC

B

I

H

K

NM

L

C

B

A

F

G

H
F

L

Markus Krötzsch, 29 April 2025 Database Theory slide 7 of 17



Treewidth

The treewidth of a graph defines how “tree-like” it is:

Definition 7.3: The width of a tree decomposition is the size of its largest bag
minus one.
The treewidth of a graph G, denoted tw(G), is the smallest width of any of its tree
decompositions.

Simple observations:

• If G is a tree, then we can decompose it into bags that contain only one edge
{ trees have treewidth 1

• Every graph has at least one tree decomposition where all vertices are in one bag
{ maximal treewidth = number of vertices −1
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Treewidth: Example
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{ tree decomposition of width 2 = treewidth of the example graph
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More Examples

What is the treewidth of the following graphs?
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Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs
{ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:
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{ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!
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Exploiting Treewidth in CQ Answering

Queries of low treewidth can be answered efficiently:

Theorem 7.4 (Dechter/Chekuri+Rajamaran ’97/Kolaitis+Vardi ’98/Gottlob & al. ’98):
Answering BCQs of treewidth k is possible in time O(nk log n), and thus in polyno-
mial time if k is fixed.
The problem is also complete for LOGCFL.

Checking for low treewidths can also be done efficiently:

Theorem 7.5 (Bodlaender ’96): Given a graph G and a fixed number k, one can
check in linear time if tw(G) ≤ k, and the corresponding tree decomposition can
also be found in linear time.

Warning: neither CQ answering nor tree decomposition might be practically feasible if k
is big
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Treewidth via Games
Seymour and Thomas [1993] gave
an alternative characterisation of treewidth:

The Cops-and-Robber Game
• The game is played on a graph G
• There are k cops and one robber that may be positioned at vertices
• In the first turn, the robber places herself at an arbitrary vertex of the graph; the

cops are all in a “helicopter” (i.e., not yet placed on any vertex)
• In each turn:

– one of the cops can decide to “fly” to an arbitrary vertex in the graph
– if the moving cop is already in the game, he is lifted from his vertex
– before “landing” (i.e. positioning the cop at his new vertex), the target vertex is

announced to the robber (the robber sees the helicopter approaching)
– the robber can run along the edges of the graph, as far as she likes, as long

as she does not use any vertex currently occupied by a cop
– the moving cop arrives at his destination vertex

• The cops’ goal is to catch the robber; the robber’s goal is never to be caught
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Cops and Robbers: Example
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Caught!
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Cops & Robbers and Treewidth

Theorem 7.6 (Seymour and Thomas): A graph G is of treewidth ≤ k − 1 if and
only if k cops have a winning strategy in the cops & robber game on G.

Intuition: the cops together can block even the widest branch and still move in on the
robber
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Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of treewidth

Bounded treewidth CQs correspond to certain FO-queries:

• We allow FO-queries with ∃ and ∧ as only operators

• But operators can be nested in arbitrary ways (unlike in CQs)

• Theorem: A query can be expressed with a CQ of treewidth k if and only if it can be
expressed in this logic using a query with at most k + 1 distinct variables

Intuition: variables can be reused by binding them in more than one ∃
{ Apply a kind of “inverted prenex-normal-form transformation”
{ Variables that occur in the same atom or in a “tightly connected”

atom must use different names
{ minimum number of variables⇔ treewidth (+1)
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Summary and Outlook

Treewidth has Pros and Cons:

Advantages:

• Bounded treewidth is easy to check

• Bounded treewidth CQs are easy to answer

Disadvantages:

• Even families of acyclic graphs may have unbounded treewidth

• Loss of information when using primal graph
(cliques might be single hyperedges – linear! –
or complex query patterns – exponential!)

Open questions:

• Are there better ways to capture “tree-like” queries?
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