

DATABASE THEORY

Lecture 7: Tree-Like Conjunctive Queries

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 29 April 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review

Conjunctive queries (CQs) are simpler than FO-queries:

- NP combined and query complexity (instead of PSpace)
- data complexity remains in AC^0

CQs become even simpler if they are tree-shaped:

- GYO algorithm defines acyclic hypergraphs
- acyclic hypergraphs have join trees
- join trees can be evaluated in P with Yannakakis' Algorithm

This time:

- Find more general conditions that make CQs tractable
 ~ “tree-like” queries that are not really trees
- Play some games

Is Yannakakis' Algorithm Optimal?

We saw that tree queries can be evaluated in polynomial time, but we know that there are much simpler complexity classes:

$$\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{AC}^1 \subseteq \dots \subseteq \text{NC} \subseteq \text{P}$$

Indeed, tighter bounds have been shown:

Theorem 7.1 (Gottlob, Leone, Scarcello: J. ACM 2001): Answering tree BCQs is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word problem of a context-free language:

$$\text{NC}^0 \subset \text{AC}^0 \subset \text{NC}^1 \subseteq \text{L} \subseteq \text{NL} \subseteq \text{LOGCFL} \subseteq \text{AC}^1 \subseteq \dots \subseteq \text{NC} \subseteq \text{P}$$

~ highly parallelisable

Generalising Tree Queries

In practice, many queries are tree queries,
but even more queries are “almost” tree queries, but not quite . . .

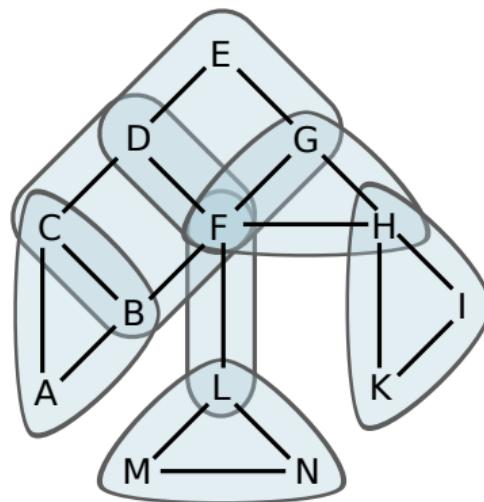
How can we formalise this idea?

Several attempts to define “tree-like” queries:

- Treewidth: a way to measure tree-likeness of graphs
- Query width: towards tree-like query graphs
- Hypertree width: adoption of treewidth to hypergraphs

How to recognise trees . . .

...from quite a long way away:



Tree Decompositions

Idea: if we can group the edges of a graph into bigger pieces, these pieces might form a tree structure

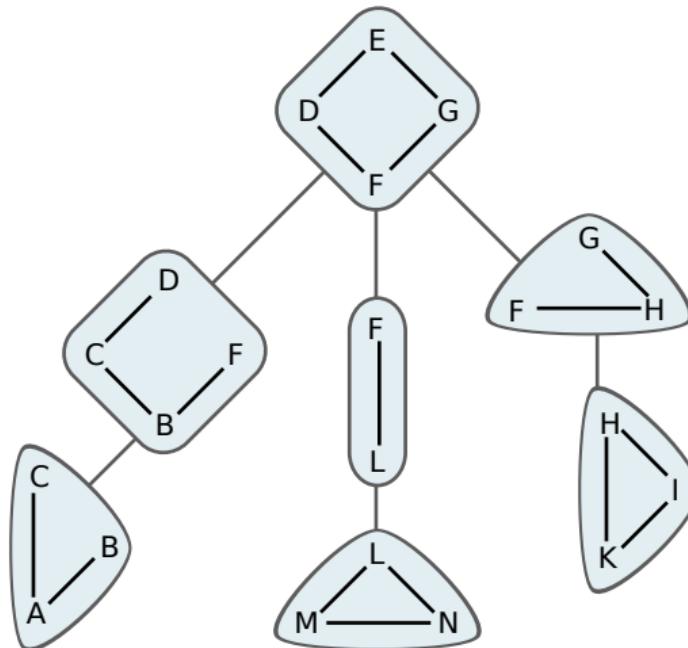
Definition 7.2: Consider a graph $G = \langle V, E \rangle$. A **tree decomposition** of G is a tree structure T where each node of T is a subset of V , such that:

- The union of all nodes of T is V .
- For each edge $(v_1 \rightarrow v_2) \in E$, there is a node N in T such that $v_1, v_2 \in N$.
- For every vertex $v \in V$, the set of nodes of T that contain v form a subtree of T ; equivalently: if two nodes contain v , then all nodes on the path between them also contain v (**connectedness condition**).

Nodes of a tree decomposition are often called **bags**

(not related to the common use of “bag” as a synonym for “multiset”)

Tree Decompositions: Example



Treewidth

The treewidth of a graph defines how “tree-like” it is:

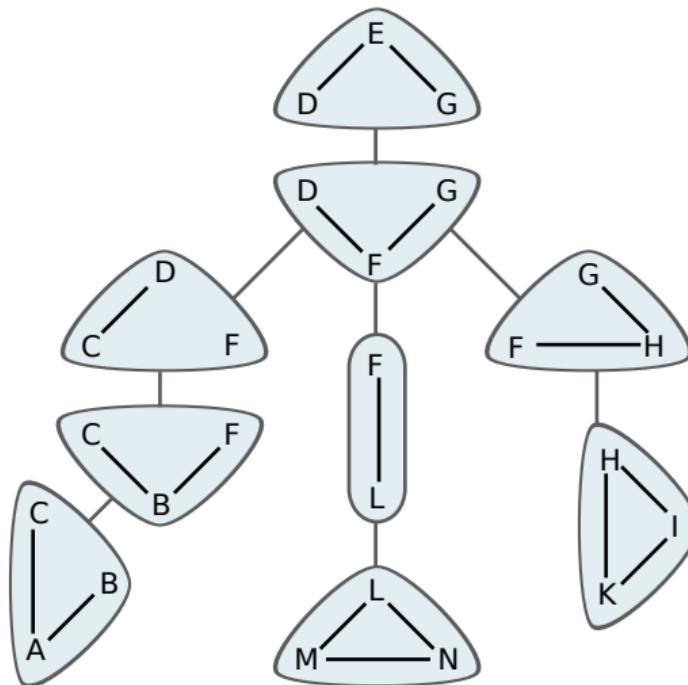
Definition 7.3: The **width** of a tree decomposition is the size of its largest bag minus one.

The **treewidth** of a graph G , denoted $\text{tw}(G)$, is the smallest width of any of its tree decompositions.

Simple observations:

- If G is a tree, then we can decompose it into bags that contain only one edge
 \leadsto trees have treewidth 1
- Every graph has at least one tree decomposition where all vertices are in one bag
 \leadsto maximal treewidth = number of vertices – 1

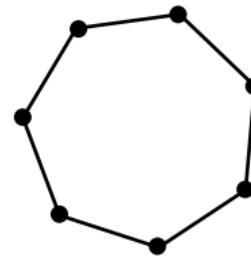
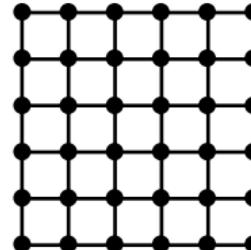
Treewidth: Example



~ tree decomposition of width 2 = treewidth of the example graph

More Examples

What is the treewidth of the following graphs?

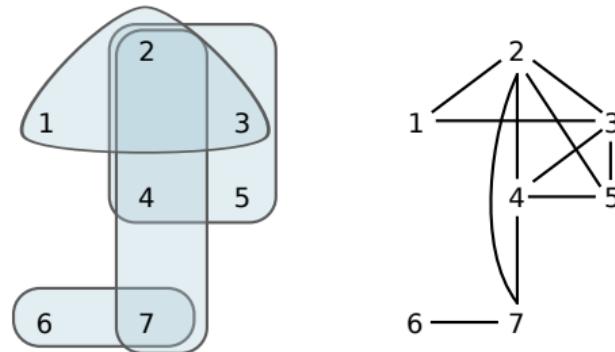


Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs

~ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:



~ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!

Exploiting Treewidth in CQ Answering

Queries of low treewidth can be answered efficiently:

Theorem 7.4 (Dechter/Chekuri+Rajamaran '97/Kolaitis+Vardi '98/Gottlob & al. '98):

Answering BCQs of treewidth k is possible in time $O(n^k \log n)$, and thus in polynomial time if k is fixed.

The problem is also complete for LOGCFL.

Checking for low treewidths can also be done efficiently:

Theorem 7.5 (Bodlaender '96): Given a graph G and a fixed number k , one can check in linear time if $\text{tw}(G) \leq k$, and the corresponding tree decomposition can also be found in linear time.

Warning: neither CQ answering nor tree decomposition might be practically feasible if k is big

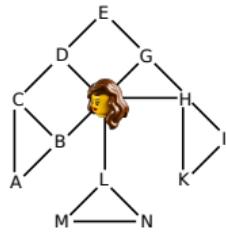
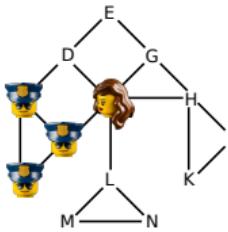
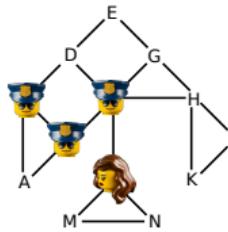
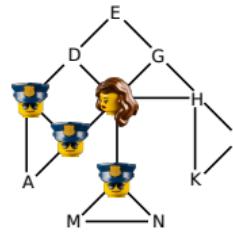
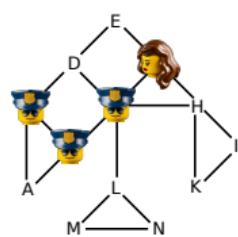
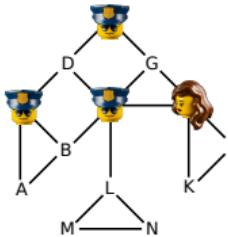
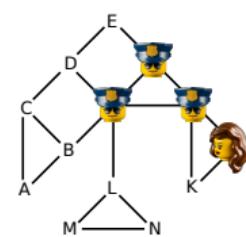
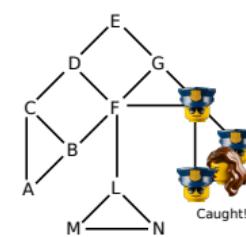
Treewidth via Games

Seymour and Thomas [1993] gave an alternative characterisation of treewidth:

The Cops-and-Robber Game

- The game is played on a graph G
- There are k cops and one robber that may be positioned at vertices
- In the first turn, the robber places herself at an arbitrary vertex of the graph; the cops are all in a “helicopter” (i.e., not yet placed on any vertex)
- In each turn:
 - one of the cops can decide to “fly” to an arbitrary vertex in the graph
 - if the moving cop is already in the game, he is lifted from his vertex
 - before “landing” (i.e. positioning the cop at his new vertex), the target vertex is announced to the robber (the robber sees the helicopter approaching)
 - the robber can run along the edges of the graph, as far as she likes, as long as she does not use any vertex currently occupied by a cop
 - the moving cop arrives at his destination vertex
- The cops’ goal is to catch the robber; the robber’s goal is never to be caught

Cops and Robbers: Example



Cops & Robbers and Treewidth

Theorem 7.6 (Seymour and Thomas): A graph G is of treewidth $\leq k - 1$ if and only if k cops have a winning strategy in the cops & robber game on G .

Intuition: the cops together can block even the widest branch and still move in on the robber

Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of treewidth

Bounded treewidth CQs correspond to certain FO-queries:

- We allow FO-queries with \exists and \wedge as only operators
- But operators can be nested in arbitrary ways (unlike in CQs)
- Theorem: A query can be expressed with a CQ of treewidth k if and only if it can be expressed in this logic using a query with at most $k + 1$ distinct variables

Intuition: variables can be reused by binding them in more than one \exists

- ~ Apply a kind of “inverted prenex-normal-form transformation”
- ~ Variables that occur in the same atom or in a “tightly connected” atom must use different names
- ~ minimum number of variables \Leftrightarrow treewidth (+1)

Summary and Outlook

Treewidth has Pros and Cons:

Advantages:

- Bounded treewidth is easy to check
- Bounded treewidth CQs are easy to answer

Disadvantages:

- Even families of acyclic graphs may have unbounded treewidth
- Loss of information when using primal graph
(cliques might be single hyperedges – linear! –
or complex query patterns – exponential!!)

Open questions:

- Are there better ways to capture “tree-like” queries?