
DATABASE THEORY

Lecture 7: Tree-Like Conjunctive Queries

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 29 April 2025

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2025)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en


Review

Conjunctive queries (CQs) are simpler than FO-queries:

• NP combined and query complexity (instead of PSpace)

• data complexity remains in AC0

CQs become even simpler if they are tree-shaped:

• GYO algorithm defines acyclic hypergraphs

• acyclic hypergraphs have join trees

• join trees can be evaluated in P with Yannakakis’ Algorithm

This time:

• Find more general conditions that make CQs tractable
{ “tree-like” queries that are not really trees

• Play some games

Markus Krötzsch, 29 April 2025 Database Theory slide 2 of 17



Is Yannakakis’ Algorithm Optimal?

We saw that tree queries can be evaluated in polynomial time,
but we know that there are much simpler complexity classes:

NC0
⊂ AC0

⊂ NC1
⊆ L ⊆ NL ⊆ AC1

⊆ . . . ⊆ NC ⊆ P

Indeed, tighter bounds have been shown:

Theorem 7.1 (Gottlob, Leone, Scarcello: J. ACM 2001): Answering tree BCQs
is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word problem of a
context-free language:

NC0
⊂ AC0

⊂ NC1
⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1

⊆ . . . ⊆ NC ⊆ P

{ highly parallelisable

Markus Krötzsch, 29 April 2025 Database Theory slide 3 of 17



Generalising Tree Queries

In practice, many queries are tree queries,
but even more queries are “almost” tree queries, but not quite . . .

How can we formalise this idea?

Several attempts to define “tree-like” queries:

• Treewidth: a way to measure tree-likeness of graphs

• Query width: towards tree-like query graphs

• Hypertree width: adoption of treewidth to hypergraphs

Markus Krötzsch, 29 April 2025 Database Theory slide 4 of 17



How to recognise trees . . .

. . . from quite a long way away:

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 29 April 2025 Database Theory slide 5 of 17



Tree Decompositions

Idea: if we can group the edges of a graph into bigger pieces, these pieces might form a
tree structure

Definition 7.2: Consider a graph G = ⟨V, E⟩. A tree decomposition of G is a tree
structure T where each node of T is a subset of V, such that:

• The union of all nodes of T is V.

• For each edge (v1 → v2) ∈ E, there is a node N in T such that v1, v2 ∈ N.

• For every vertex v ∈ V, the set of nodes of T that contain v form a subtree of
T; equivalently: if two nodes contain v, then all nodes on the path between
them also contain v (connectedness condition).

Nodes of a tree decomposition are often called bags
(not related to the common use of “bag” as a synonym for “multiset”)

Markus Krötzsch, 29 April 2025 Database Theory slide 6 of 17



Tree Decompositions: Example

F

GD

E

D

FC

B

I

H

K

NM

L

C

B

A

F

G

H
F

L

Markus Krötzsch, 29 April 2025 Database Theory slide 7 of 17



Treewidth

The treewidth of a graph defines how “tree-like” it is:

Definition 7.3: The width of a tree decomposition is the size of its largest bag
minus one.
The treewidth of a graph G, denoted tw(G), is the smallest width of any of its tree
decompositions.

Simple observations:

• If G is a tree, then we can decompose it into bags that contain only one edge
{ trees have treewidth 1

• Every graph has at least one tree decomposition where all vertices are in one bag
{ maximal treewidth = number of vertices −1

Markus Krötzsch, 29 April 2025 Database Theory slide 8 of 17



Treewidth: Example

I

H

K

NM

L

F

GD

C

B

A

F

G

H

FC

B

F

L

E

GD

D

FC

{ tree decomposition of width 2 = treewidth of the example graph

Markus Krötzsch, 29 April 2025 Database Theory slide 9 of 17



More Examples

What is the treewidth of the following graphs?

Markus Krötzsch, 29 April 2025 Database Theory slide 10 of 17



Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs
{ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:

1

2

4

3

7

5

6

1

2

4

3

7

5

6

{ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!

Markus Krötzsch, 29 April 2025 Database Theory slide 11 of 17



Exploiting Treewidth in CQ Answering

Queries of low treewidth can be answered efficiently:

Theorem 7.4 (Dechter/Chekuri+Rajamaran ’97/Kolaitis+Vardi ’98/Gottlob & al. ’98):
Answering BCQs of treewidth k is possible in time O(nk log n), and thus in polyno-
mial time if k is fixed.
The problem is also complete for LOGCFL.

Checking for low treewidths can also be done efficiently:

Theorem 7.5 (Bodlaender ’96): Given a graph G and a fixed number k, one can
check in linear time if tw(G) ≤ k, and the corresponding tree decomposition can
also be found in linear time.

Warning: neither CQ answering nor tree decomposition might be practically feasible if k
is big

Markus Krötzsch, 29 April 2025 Database Theory slide 12 of 17



Treewidth via Games
Seymour and Thomas [1993] gave
an alternative characterisation of treewidth:

The Cops-and-Robber Game
• The game is played on a graph G
• There are k cops and one robber that may be positioned at vertices
• In the first turn, the robber places herself at an arbitrary vertex of the graph; the

cops are all in a “helicopter” (i.e., not yet placed on any vertex)
• In each turn:

– one of the cops can decide to “fly” to an arbitrary vertex in the graph
– if the moving cop is already in the game, he is lifted from his vertex
– before “landing” (i.e. positioning the cop at his new vertex), the target vertex is

announced to the robber (the robber sees the helicopter approaching)
– the robber can run along the edges of the graph, as far as she likes, as long

as she does not use any vertex currently occupied by a cop
– the moving cop arrives at his destination vertex

• The cops’ goal is to catch the robber; the robber’s goal is never to be caught
Markus Krötzsch, 29 April 2025 Database Theory slide 13 of 17



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A

F

G

I

H

K

NM

L

D

E

C

B

A
Caught!

Markus Krötzsch, 29 April 2025 Database Theory slide 14 of 17



Cops & Robbers and Treewidth

Theorem 7.6 (Seymour and Thomas): A graph G is of treewidth ≤ k − 1 if and
only if k cops have a winning strategy in the cops & robber game on G.

Intuition: the cops together can block even the widest branch and still move in on the
robber

Markus Krötzsch, 29 April 2025 Database Theory slide 15 of 17



Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of treewidth

Bounded treewidth CQs correspond to certain FO-queries:

• We allow FO-queries with ∃ and ∧ as only operators

• But operators can be nested in arbitrary ways (unlike in CQs)

• Theorem: A query can be expressed with a CQ of treewidth k if and only if it can be
expressed in this logic using a query with at most k + 1 distinct variables

Intuition: variables can be reused by binding them in more than one ∃
{ Apply a kind of “inverted prenex-normal-form transformation”
{ Variables that occur in the same atom or in a “tightly connected”

atom must use different names
{ minimum number of variables⇔ treewidth (+1)

Markus Krötzsch, 29 April 2025 Database Theory slide 16 of 17



Summary and Outlook

Treewidth has Pros and Cons:

Advantages:

• Bounded treewidth is easy to check

• Bounded treewidth CQs are easy to answer

Disadvantages:

• Even families of acyclic graphs may have unbounded treewidth

• Loss of information when using primal graph
(cliques might be single hyperedges – linear! –
or complex query patterns – exponential!)

Open questions:

• Are there better ways to capture “tree-like” queries?

Markus Krötzsch, 29 April 2025 Database Theory slide 17 of 17


