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Abstract
We demonstrate the inter-translatability of proofs between the most prominent sequent-based
formalisms for Gödel-Löb provability logic. In particular, we consider Sambin and Valentini’s sequent
system GLseq, Shamkanov’s non-wellfounded and cyclic sequent systems GL∞ and GLcirc, Poggiolesi’s
tree-hypersequent system CSGL, and Negri’s labeled sequent system G3GL. Shamkanov provided
proof-theoretic correspondences between GLseq, GL∞, and GLcirc, and Goré and Ramanayake showed
how to transform proofs between CSGL and G3GL, however, the exact nature of proof transformations
between the former three systems and the latter two systems has remained an open problem. We
solve this open problem by showing how to restructure tree-hypersequent proofs into an end-active
form and introduce a novel linearization technique that transforms such proofs into linear nested
sequent proofs. As a result, we obtain a new proof-theoretic tool for extracting linear nested sequent
systems from tree-hypersequent systems, which yields the first cut-free linear nested sequent calculus
LNGL for Gödel-Löb provability logic. We show how to transform proofs in LNGL into a certain
normal form, where proofs repeat in stages of modal and local rule applications, and which are
translatable into GLseq and G3GL proofs. These new syntactic transformations, together with those
mentioned above, establish full proof-theoretic correspondences between GLseq, GL∞, GLcirc, CSGL,
G3GL, and LNGL while also giving (to the best of the author’s knowledge) the first constructive proof
mappings between structural (viz. labeled, tree-hypersequent, and linear nested sequent) systems
and a cyclic sequent system.
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1 Introduction

Provability logics are a class of modal logics where the □ operator is read as ‘it is provable that’
in some arithmetical theory. One of the most prominent provability logics is Gödel-Löb logic
(GL), which arose out of the work of Löb, who formulated a set of conditions on the provability
predicate of Peano Arithmetic (PA). The logic GL can be axiomatized as an extension of
the basic modal logic K by the single axiom □(□φ → φ) → □φ, called Löb’s axiom. It
is well-known that the axioms of GL are sound and complete relative to transitive and
conversely-wellfounded relational models [38]. In a landmark result, Solovay [41] remarkably
showed that GL is complete for PA’s provability logic, i.e., GL proves everything that PA can
prove about its own provability predicate.

The logic GL enjoys a rich structural proof theory, possessing a number of cut-free
sequent-style systems. Sequent systems in the style of Gentzen were originally provided by
Sambin and Valentini in the early 1980s [36, 37]; see also Avron [2]. (NB. In this work, we
take a Gentzen system to be a proof system whose rules operate over Gentzen sequents, i.e.,
expressions of the form φ1, . . . , φn ⊢ ψ1, . . . , ψk such that φi and ψj are logical formulae.)
Since then, a handful of alternative systems have been introduced, each of which either
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42:2 Unifying Sequent Systems for Gödel-Löb Provability Logic

generalizes the structure of sequents or generalizes the notion of proof. The labeled sequent
system G3GL was provided by Negri [31] and uses labeled sequents in proofs, which are binary
graphs whose nodes are Gentzen sequents. In a similar vein, the tree-hypersequent system
CSGL was provided by Poggiolesi [35] and uses tree-hypersequents in proofs, which are trees
whose nodes are Gentzen sequents. The use of (types of) graphs of Gentzen sequents in
proofs (as in G3GL and CSGL) allows for the systems to possess properties beyond those of
the original Gentzen systems [36, 37]. For example, both G3GL and CSGL enjoy invertibility
of all rules, rules are symmetric (i.e., for each logical connective, there is at least one rule
that introduces it in the antecedent and at least one rule that introduces it in the consequent
of the rule’s conclusion), and the close connection between the syntax of such sequents and
GL’s relational semantics makes such systems suitable for counter-model extraction.

Rather than generalizing the structure of sequents, Shamkanov [39] showed that one
could obtain alternative cut-free sequent systems for GL by generalizing the structure of
proofs. In particular, by taking the sequent calculus for the modal logic K4 and allowing for
non-wellfounded proofs, one obtains a non-wellfounded sequent system GL∞ for GL. Non-
wellfounded proofs were introduced to capture (co)inductive reasoning, and are potentially
infinite trees of sequents such that (1) every parent node is the conclusion of a rule with
its children the corresponding premises and (2) infinite branches satisfy a certain progress
condition, which ensures soundness (cf. [5, 11, 32, 39]). For GL, non-wellfounded proofs
correspond to regular trees (i.e., only contain finitely many distinct sub-trees), which means
such proofs can be ‘folded’ into finite trees of sequents such that leaves are ‘linked’ to internal
nodes of the tree, giving rise to cyclic proofs (cf. [1, 3, 4, 10]). Shamkanov [39] additionally
showed that one could obtain a cut-free cyclic sequent system GLcirc for GL by allowing cyclic
proofs in K4’s sequent calculus, which was then used to provide the first syntactic proof of
the Lyndon interpolation property for GL.

Due to the diversity in GL’s proof theory, it is natural to wonder about the relationships
between the various systems that have been introduced. Typically, proof systems are related
by means of proof transformations, which are functions that map proofs from one calculus
into another, are sensitive to the structure of the input proof, and operate syntactically by
permuting rules, replacing rules, or adding/deleting sequent structure in the input proof
to yield the output proof. Studying proof transformations between sequent systems is a
beneficial enterprise as it lets one transfer results from one system to another, thus alleviating
the need of independent proofs in each system (e.g., [9, 15]). Moreover, one can measure the
relative sizes or certain characteristics of proofs, giving insight into which systems are better
suited for specific (automated) reasoning tasks, and letting one ‘toogle’ between differing
formalisms when one is better suited for a task than another (e.g., [24, 23]).

Indeed, the question of the relationship between G3GL and CSGL was asked by Poggi-
olesi [35] and answered in full by Goré and Ramanayake [15], who provided constructive
mappings of proofs between the two systems. Similarly, Shamkanov [39] provided syntactic
mappings of proofs between the systems GL∞ and GLcirc, and the Gentzen system GLseq (an
equivalent reformulation of Sambin and Valentini’s systems [36, 37]). Nevertheless, the inter-
translatability of proofs between the former two structural sequent systems (G3GL and CSGL)
and the latter three sequent systems (GLseq, GL∞, and GLcirc) has yet to be identified, and
presents a non-trivial open problem that we solve in this paper. Thus, our first contribution
in this paper is to ‘complete the picture’ and establish complete correspondences between
the above five mentioned sequent systems by means of syntactic proof transformations.

There is an inherent difficulty in transforming proofs that use structural sequents (e.g.,
labeled sequents or tree-hypersequents) into proofs that use Gentzen sequents. This is due to
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the fact that structural sequents are (types of) graphs of Gentzen sequents, and thus, possess a
more complicated structure that must be properly ‘shed’ during proof transformations [23, 26].
To overcome this difficulty and define proof transformations from G3GL and CSGL to GLseq,
we rely on three techniques: first, we show how to restructure proofs in CSGL so that they
are end-active (cf. [21]), meaning rules only affect data at leaves or parents of leaves in
tree-hypersequents. Second, we introduce a novel linearization technique, whereby we show
how to shed the tree structure of tree-hypersequents in end-active proofs, yielding a proof
consisting solely of linear nested sequents [21], i.e., lines whose nodes are Gentzen sequents.
Linear nested sequents were introduced as an alternative (albeit equivalent) formalism to
2-sequents [29, 30] that allows for sequent systems with complexity-optimal proof-search
that also retain fundamental admissibility and invertibility properties [21]. The presented
linearization technique is new and shows how to extract linear nested sequent systems from
tree-hypersequent systems, serving as the second contribution of this paper. We conjecture
that this method can be generalized and applied in other settings to provide new linear
nested sequent systems for modal and related logics. The technique also yields the first
(cut-free) linear nested sequent calculus for GL, which we dub LNGL, and which is the third
contribution of this paper. Last, we show that proofs in LNGL can be put into a specific
normal form that repeats in stages of modal and local rules. Such proofs are translatable
into GLseq proofs, which are translatable into G3GL proofs, thus establishing purely syntactic
proof transformations between the most prominent sequent systems for GL. These proof
transformations and systemic correspondences are summarized in Figure 1 below.

Outline of Paper. In Section 2, we recall the language, semantics, and axioms of
Gödel-Löb logic. In Section 3, we discuss Negri’s labeled system G3GL [31], Poggiolesi’s
tree-hypersequent system CSGL [35], and Goré and Ramanayake correspondence result for
the two systems [15]. In Section 4, we show how to put proofs in CSGL into an end-active
form (Theorem 16) and specify our novel linearization method (Theorem 17), which yields the
new linear nested sequent system LNGL for GL. In Section 5, we recall the sequent calculus
GLseq due to Sambin and Valentini [36, 37], Shamkanov’s non-wellfounded system GL∞ and
cyclic system GLcirc, as well as Shamkanov’s correspondence result for the aforementioned
three systems [39]. We then show how to transform proofs in LNGL into proofs in GLseq
(Theorem 22) and how to transform proofs in GLseq into proofs in G3GL (Theorem 23). This
establishes a six-way correspondence between the systems G3GL, CSGL, GLseq, GL∞, GLcirc,
and LNGL. Last, in Section 6, we conclude and discuss future work.

G3GL oo
[15] // CSGL Thm. 17 // LNGL

Thm. 22

zz
GL∞ oo

[39] // GLseq

Thm. 23

dd

GLcirc//[39]oo

Name Type of System
G3GL Labeled Sequent System
CSGL Tree-Hypersequent System
LNGL Linear Nested Sequent System
GLseq Gentzen System
GL∞ Non-Wellfounded Sequent System
GLcirc Cyclic Sequent System

Figure 1 Proof transformations and correspondences between sequent systems for GL.

2 Gödel-Löb Provability Logic

We let Prop := {p, q, r, . . .} be a countable set of propositional atoms and define the language
L to be the set of all formulae generated via the following grammar in BNF:

φ ::= p | ¬φ | φ ∨ φ | □φ

CSL 2025



42:4 Unifying Sequent Systems for Gödel-Löb Provability Logic

where p ranges over Prop. We use φ, ψ, χ, . . . to denote formulae in L and define φ ∧ ψ :=
¬(¬φ ∨ ¬ψ) and φ → ψ := ¬φ ∨ ψ as usual.

▶ Definition 1 (Model). We define a model to be a tuple M = (W,R, V ) such that
W is a non-empty set of worlds w, u, v, . . . (occasionally annotated);
R ⊆ W ×W is transitive and conversely-wellfounded;1
V : Prop 7→ 2W is a valuation function.

▶ Definition 2 (Semantic Clauses). We define the satisfaction of a formula φ in a model M
at world w, written M,w |= φ, recursively as follows:

M,w |= p iff w ∈ V (p);
M,w |= ¬φ iff M,w ̸|= φ;
M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ;
M,w |= □φ iff ∀u ∈ W , if (w, u) ∈ R, then M,u |= φ;
M |= φ iff ∀w ∈ W , M,w |= φ.

We write |= φ and say that φ is valid iff for all models M , M |= φ. Gödel-Löb logic (GL) is
defined to be the set GL ⊂ L of all valid formulae.

As shown by Segerberg [38], the logic GL can be axiomatized by extending the axioms of
the modal logic K with Löb’s axiom □(□φ → φ) → □φ.

3 Labeled and Tree Sequent Systems

In this section, we review the labeled sequent calculus G3GL by Negri [31] and its corres-
pondence (proven by Goré and Ramanayake [15]) with a notational variant of Poggiolesi’s
tree-hypersequent system for GL [35]. Labeled sequents are binary graphs of traditional
Gentzen sequents, which encode the relational semantics of a logic directly in the syntax of
sequents. The formalism of labeled sequents has been extensively studied with the inception
of the formalism dating back to the work of Kanger [18] and achieving its modern form in the
work of Simpson [40]. It has been shown that labeled sequent systems can capture sizable
and diverse classes of logics in a cut-free manner while exhibiting fundamental properties
such as the admissibility of various structural rules and the invertibility of rules [40, 43, 31].

By contrast, tree-hypersequents, which are more traditionally known as nested sequents,
are trees of Gentzen sequents. The formalism was introduced independently by Kashima [19]
and Bull [7] with further influential works provided by Brünnler [6] and Poggiolesi [34, 35].
Such systems arose out of a call for cut-free sequent-style systems for logics not known
to possess a cut-free Gentzen system, such as the tense logic Kt and the modal logic S5.
Like labeled sequents, tree-hypersequent systems exhibit fundamental admissibility and
invertibility properties, having been defined for large classes of various logics such as tense
logics [14], intuitionistic modal logics [42, 25], and first-order non-classical logics [13, 27].

As observed by Goré and Ramanayake [15], restricting labeled sequents to be trees, rather
than more general, binary graphs (which may be disconnected or include cycles), yields
labeled tree sequents (cf. [17]), which are a notational variant of tree-hypersequents/nested
sequents. Via this observation, the authors established bi-directional proof transformations
between Negri’s labeled sequent calculus and Poggiolesi’s tree-hypersequent calculus for GL.
Proof theoretic correspondences between labeled and nested systems for various other logics
have been established in recent years as well; e.g., for tense logics [9], first-order intuitionistic

1 We note that R is conversely-wellfounded iff it does not contain any infinite ascending R-chains.
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id1R,Γ, x : p ⊢ x : p,∆ id2R,Γ, x : □φ ⊢ x : □φ,∆ irR, xRx,Γ ⊢ ∆

R, xRy, yRz, xRz,Γ ⊢ ∆
trR, xRy, yRz,Γ ⊢ ∆

R,Γ, x : φ ⊢ ∆ R,Γ, x : ψ ⊢ ∆
∨LR,Γ, x : φ ∨ ψ ⊢ ∆

R,Γ ⊢ x : φ,∆
¬LR,Γ, x : ¬φ ⊢ ∆

R,Γ, x : φ ⊢ ∆
¬RR,Γ ⊢ x : ¬φ,∆

R,Γ ⊢ x : φ, x : ψ,∆
∨RR,Γ ⊢ x : φ ∨ ψ,∆

R, xRy,Γ, x : □φ, y : φ ⊢ ∆
□LR, xRy,Γ, x : □φ ⊢ ∆

R, xRy,Γ, y : □φ ⊢ y : φ,∆
□R†

R,Γ ⊢ x : □φ,∆

Figure 2 Labeled Sequent Calculus G3GL for GL. The □R rule is subject to a side condition †,
namely, the rule is applicable only if the label y is fresh.

logics [23, 22], and intuitionistic modal logics [25]. Recently, it was proven in a general setting
that correspondences between labeled and nested systems are a product of two underlying
proof transformation techniques, structural rule elimination and introduction, and that
(Horn) labeled and nested systems tend to come in pairs, being dual to one another [28].

Reducing Negri’s labeled sequent system to one that uses trees, as opposed to binary
graphs, is the first step in establishing syntactic correspondences between the various sequent
systems for GL. As shown in the sequel, we will systematically reduce the structure of
sequents in proofs: first, going from binary graphs of Gentzen sequents to trees of Gentzen
sequents (this section), then from trees of Gentzen sequents to lines of Gentzen sequents
(Section 4), and last from lines of Gentzen sequents to Gentzen sequents themselves, which
are easily embedded in labeled sequent proofs, completing the circuit of correspondences
(Section 5). This yields correspondences between the most widely regarded sequent systems
for GL, as depicted in Figure 1.

3.1 Labeled Sequents

We let Lab = {x, y, z, . . .} be a countably infinite set of labels, define a relational atom to
be an expression of the form xRy with x, y ∈ Lab, and define a labeled formula to be an
expression of the form x : φ such that x ∈ Lab and φ ∈ L. We use upper-case Greek
letters Γ,∆,Σ, . . . to denote finite multisets of labeled formulae. For a set R of relational
atoms and multiset Γ of labeled formulae, we let Lab(R), Lab(Γ), and Lab(R,Γ) be the
sets of all labels occurring therein. For a multiset Γ of labeled formulae, we define the
multiset Γ(x) := {φ | x : φ ∈ Γ}, for a multiset of formulae Γ := φ1, . . . , φn, we define
x : Γ := x : φ1, . . . , x : φn, and for multisets Γ and ∆ of labeled formulae, we let Γ,∆ denote
the multiset union of the two. We define a labeled sequent to be an expression of the form
R,Γ ⊢ ∆ with R a set of relational atoms and Γ,∆ a multiset of labeled formulae. Given a
labeled sequent R,Γ ⊢ ∆, we refer to R,Γ as the antecedent and ∆ as the consequent. Below,
we clarify the interpretation of labeled sequents by explaining their evaluation over models.

▶ Definition 3 (Labeled Sequent Semantics). Let M = (W,R, V ) be a model. We define an
M -assignment to be a function µ : Lab → W . A labeled sequent R,Γ ⊢ ∆ is satisfied on M

with M -assignment µ iff if for all xRy ∈ R and x : φ ∈ Γ, (µ(x), µ(y)) ∈ R and M,µ(x) |= φ,
then there exists a y : ψ ∈ ∆ such that M,µ(y) |= ψ. A labeled sequent is defined to be valid
iff it is satisfied on all models M with all M -assignments; a labeled sequent is defined to be
invalid otherwise.

CSL 2025



42:6 Unifying Sequent Systems for Gödel-Löb Provability Logic

R,Γ ⊢ ∆ (x/y)
R(x/y),Γ(x/y) ⊢ ∆(x/y)

R,Γ ⊢ ∆ w
R,R′,Γ,Γ′ ⊢ ∆,∆′

R,Γ, x : φ, x : φ ⊢ ∆
cLR,Γ, x : φ ⊢ ∆

R,Γ ⊢ x : φ, x : φ,∆
cRR,Γ ⊢ x : φ,∆

R,Γ ⊢ x : φ,∆ R,Γ, x : φ ⊢ ∆
cutR,Γ ⊢ ∆

Figure 3 Admissible rules.

Negri’s labeled sequent calculus G3GL (adapted to our signature) is shown in Figure 2.
The labeled calculus consists of three initial rules id1, id2, and ir. We refer to the conclusion
of an initial rule as a initial sequent. The tr rule is a structural rule that bottom-up adds
transitive edges to labeled sequents, and the remaining rules form pairs of left and right
logical rules, introducing complex logical formulae into either the antecedent or consequent
of the rule’s conclusion. We note that the □R rule is subject to a side condition, namely, the
label y must be fresh in any application of the rule, i.e., the label y is forbidden to occur in
the conclusion. We refer to the distinguished formulae in the conclusion (premises) of a rule
as the principal formulae (auxiliary formulae, respectively). For example, x : □φ is principal
in □R and xRy, x : □φ, y : φ are auxiliary.
▶ Remark 4. Negri’s original labeled system G3GL includes the following □L′ rule rather
than the □L rule. However, the left premise of the □L′ rule is provable in G3GL using □L,
□R, and tr [31]. We therefore opt to use the simpler □L rule in G3GL rather than the □L′

rule to simplify our work.
R, xRy,Γ, x : □φ ⊢ y : □φ,∆ R, xRy,Γ, x : □φ, y : φ ⊢ ∆

□L′
R, xRy,Γ, x : □φ ⊢ ∆

A derivation of a labeled sequent R,Γ ⊢ ∆ is defined to be a (potentially infinite) tree
whose nodes are labeled with labeled sequents such that (1) R,Γ ⊢ ∆ is the root of the
tree and (2) each parent node is the conclusion of a rule with its children the corresponding
premises. A proof is a finite derivation such that every leaf is an instance of an initial sequent.
We use π (potentially annotated) to denote derivations and proofs throughout the remainder
of the paper, and use this notation to denote derivations and proofs in other systems as well
with the context determining the usage. The height of a proof is defined as usual to be equal
to the length of a maximal path from the root of the proof to an initial sequent.
▶ Remark 5. We assume w.l.o.g. that every fresh variable used in a proof is globally fresh,
meaning there is a one-to-one correspondence between □R applications and their fresh
variables. This assumption is helpful, yet benign (cf. [31]).

As shown by Negri [31], the various rules displayed in Figure 3 are admissible in G3GL.
Note that the (x/y) rule applies a label substitution to the premise which replaces every
occurrence of the label y in a relational atom or labeled formula by x. We define a rule to be
admissible (height-preserving admissible) iff if the premises of the rule have proofs (of height
h1, . . . , hn), then the conclusion of the rule has a proof (of height h ≤ max{h1, . . . , hn}). We
refer to a height-preserving admissible rule as hp-admissible. Moreover, the non-initial rules
of G3GL are height-preserving invertible. If we let r−1

i be the i-inverse of the rule r whose
conclusion is the ith premise of the n-ary rule r and premise is the conclusion of r, then we
say that r is (height-preserving) invertible iff r−1

i is (height-preserving) admissible for each
1 ≤ i ≤ n. We refer to height-preserving invertible rules as hp-invertible. The following
theorem is due to Negri [31].

▶ Theorem 6 (G3GL Properties [31]). The labeled sequent calculus G3GL satisfies the following:
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(1) Each labeled sequent of the form R,Γ, x : φ ⊢ x : φ,∆ is provable in G3GL;
(2) All non-initial rules are hp-invertible in G3GL;
(3) The (x/y), w, cL, and cR rules are hp-admissible in G3GL;
(4) The cut rule is admissible in G3GL;
(5) φ is valid iff ⊢ x : φ is provable in G3GL.

3.2 Labeled Tree Sequents
A set T of relational atoms is a tree iff the graph G(T ) = (V,E) forms a tree, where V =
{x | x ∈ Lab(T )} and E = {(x, y) | xRy ∈ T }. A tree sequent is defined to be an expression
of the form T ,Γ ⊢ ∆ such that (1) T is a tree, (2) if T ̸= ∅, then Lab(Γ,∆) ⊆ Lab(T ), and
(3) if T = ∅, then |Lab(Γ,∆)| = 1, i.e. all labeled formulae in Γ,∆ share the same label. We
note that conditions (1)–(3) ensure that each tree sequent forms a connected graph that is
indeed of a tree shape. We use T and annotated versions thereof to denote tree sequents.
We define a flat sequent to be a tree sequent of the form Γ ⊢ ∆, that is, a flat sequent is
a sequent Γ ⊢ ∆ without relational atoms and where every labeled formula in Γ,∆ shares
the same label. The root of a tree sequent T ,Γ ⊢ ∆ is the label x such that there exists a
unique directed path of relational atoms in T from x to every other label y ∈ Lab(T ,Γ,∆);
if T = ∅, then the root is the single label x shared by all formulae in Γ,∆.

Every tree sequent encodes a tree whose vertices are flat sequents. In other words, each
tree sequent T = T , xRy1, . . . , xRyn,Γ ⊢ ∆ such that x is the root and y1, . . . , yn are all
children of x can be graphically depicted as a tree trx(T ) of the form shown below:

x

x : Γ(x) ⊢ x : ∆(x)

uu ))
try1 (T ,Γ ⊢ ∆) . . . tryn (T ,Γ ⊢ ∆)

▶ Definition 7 (Tree Sequent Calculus CSGL). We define CSGL := (G3GL \ {ir, tr}) ∪ {4L},
where the 4L is shown below and the rules of the calculus only operate over tree sequents.

T , xRy,Γ, x : □φ, y : □φ ⊢ ∆
4LT , xRy,Γ, x : □φ ⊢ ∆

The system CSGL is a notational variant of Poggiolesi’s eponymous tree-hypersequent
system [35], and thus, we identify the two systems with one another. The main difference
between the two systems is notational: the system defined above uses tree sequents, which
are tree-hypersequents ‘dressed’ as labeled sequents [15]. We also note that Poggiolesi’s
original tree-hypersequent system CSGL uses a notational variant of the binary rule □L′

discussed in Remark 4. However, as with the labeled system G3GL, the left premise of this
rule is provable in CSGL. We have therefore opted to use the unary □L rule in CSGL to
simplify our work and note that this change is benign.
▶ Remark 8. Derivations, proofs, the height of a proof, (hp-)admissibility, the i-inverse of a
rule, and (hp-)invertibility are defined for CSGL analogous to how such notions are defined
for G3GL. We will apply these terms and concepts in the expected way to other sequent
systems as well to avoid repeating similar definitions.

The system CSGL differs from G3GL in that CSGL only allows for tree sequents in proofs,
lacks the structural rules ir and tr, and includes the 4L rule. We refer to 4L and □L
as propagation rules (cf. [12, 8]) since the rules bottom-up propagate data forward along
relational atoms, and we refer to ¬L, ¬R, ∨L, and ∨R as local rules since they only affect

CSL 2025



42:8 Unifying Sequent Systems for Gödel-Löb Provability Logic

formulae locally at a single label. For any rule, we call the label x labeling the principal
formula in the conclusion the principal label, for the 4L, □L, and □R rules, we refer to the
label y labeling the auxiliary formula(e) in the premise(s) as the auxiliary label, and for local
rules, the auxiliary label is taken to be the same as the principal label since they are identical.
Note that we define a label x in a tree sequent T ,Γ ⊢ ∆ to be a leaf iff x is a leaf in T , and
we define a label x to be a pre-leaf iff for all y ∈ Lab(T ), if xRy ∈ T , then y is a leaf.

Since the tree sequent calculus CSGL is isomorphic to Poggiolesi’s tree-hypersequent
system, the two systems share the same properties. We note that in the setting of tree
sequents the (x/y) and w rules are less general than for labeled sequents. In particular, such
rules are assumed to preserve the ‘tree shape’ of tree sequents when applied. Nevertheless,
the restricted forms of these rules are still hp-admissible in CSGL.

▶ Theorem 9 (CSGL Properties [35]). The tree sequent calculus CSGL satisfies the following:
(1) Each tree sequent of the form T ,Γ, x : φ ⊢ x : φ,∆ is provable in CSGL;
(2) All non-initial rules are hp-invertible in CSGL;
(3) The (x/y), w, cL, and cR rules are hp-admissible in CSGL;
(4) The cut rule is admissible in CSGL;
(5) φ is valid iff ⊢ x : φ is provable in CSGL.

Proofs in G3GL and CSGL are inter-translatable with one another. This correspondence
was established by Goré and Ramanayake [15] and is based on a couple observations. First,
the ir rule does not occur in G3GL proofs where the end sequent is a tree sequent. It is not
difficult to see why this is the case: if one takes a proof of a tree sequent, then bottom-up
applications of rules from G3GL will not allow for directed cycles to enter a sequent in a
proof. This follows from the fact that the conclusion of the proof is a tree sequent, which is
free of directed cycles, and each rule of G3GL either preserves relational atoms bottom-up,
adds a single relational atom from a label x to a fresh label y in the case of the □R rule, or
adds an undirected cycle in the case of tr. Since the conclusion of ir contains a directed cycle
xRx, such a sequent will never occur in such a proof.

▶ Observation 1 ([15]). The ir rule does not occur in any G3GL proof of a tree sequent.

Second, Goré and Ramanayake [15] show that instances of tr can be eliminated from
G3GL proofs not containing ir and replaced by instances of 4L. This elimination procedure
can be used to map G3GL proofs such that the end sequent is a tree sequent to CSGL proofs.
Conversely, if we let arbitrary labeled sequent appear in CSGL proofs, it can be shown that
4L can be eliminated from CSGL proofs and replaced by instances of tr. These elimination
results are proven syntactically, showing that proof transformations exist between CSGL and
G3GL for proofs of tree sequents as summarized in the theorem below. We refer to the reader
to [15] for the details.

▶ Theorem 10 ([15]). A tree sequent T is provable in G3GL iff it is provable in CSGL.

4 Linearizing Tree Sequents in Proofs

We now show how to extract a linear nested sequent calculus from CSGL, dubbed LNGL (see
Figure 4). To the best of the author’s knowledge, this is the first linear nested sequent calculus
for Gödel-Löb provability logic. Linear nested sequents were introduced by Lellmann [21]
and are a finite representation of Masini’s 2-sequents [29]. Such systems operate over lines
of Gentzen sequents and have been used to provide cut-free systems for intermediate and
modal logics [20, 21, 29, 30].
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id1G � Γ, p ⊢ p,∆
id2G � Γ,□φ ⊢ □φ,∆

G � Γ, φ ⊢ ∆ G � Γ, ψ ⊢ ∆
∨LG � Γ, φ ∨ ψ ⊢ ∆

G � Γ ⊢ φ,ψ,∆
∨RG � Γ ⊢ φ ∨ ψ,∆

G � Γ ⊢ φ,∆
¬LG � Γ,¬φ ⊢ ∆

G � Γ, φ ⊢ ∆
¬RG � Γ ⊢ ¬φ,∆

G � Γ,□φ ⊢ ∆ � Σ,□φ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ,□φ ⊢ ∆ � Σ, φ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ ⊢ ∆ �□φ ⊢ φ
□RG � Γ ⊢ □φ,∆

Figure 4 Linear Nested Sequent Calculus LNGL for GL.

The extraction of linear nested sequent proofs from tree sequent proofs takes place in
three phases. In the first phase, we show how to transform any CSGL proof into an end-active
proof, i.e., a proof such that principal and auxiliary formulae only occur at (pre-)leaves in
tree sequents (cf. [21]). In the second phase, we define our novel linearization technique,
where we identify specific paths in tree sequents and ‘prune’ sub-trees, yielding a linear
nested sequent proof as the result. This technique is an additional contribution of this
paper, and we conjecture that this technique can be used in other settings to extract linear
nested sequent systems from tree sequent/nested sequent systems. In the third phase, we
show how to ‘reshuffle’ a linear nested sequent proof so that the proof proceeds in repetitive
stages of local rules, propagation rules, and □R rules, which we refer to as a proof in normal
form. This transformation is motivated by one provided in [33] for so-called basic nested
systems, which transforms proofs in a similar manner to extract Gentzen sequent proofs. Our
transformation is distinct however as it works within the context of linear nested sequents.
The simpler data structure used in linear nested sequents and the ‘end-active’ shape of the
rules in LNGL simplifies the process of reshuffling proofs into normal form.

A linear nested sequent is an expression of the form G := Γ1 ⊢ ∆1 � · · · � Γn ⊢ ∆n such
that Γi and ∆i are multisets of formulae from L for 1 ≤ i ≤ n. We use G, H, . . . to denote
linear nested sequents and note that such sequents admit a formula interpretation:

f(Γ ⊢ ∆) :=
∧

Γ →
∨

∆ f(Γ ⊢ ∆ � G) :=
∧

Γ → (
∨

∆ ∨□f(G))

We define a linear nested sequent G to be (in)valid iff f(G) is (in)valid. The linear nested
sequent calculus LNGL consists of the rules shown in Figure 4. We take the ¬L, ¬R, ∨L,
and ∨R rules to be local rules and the 4L and □L rules to be propagation rules in LNGL.
For 1 ≤ i ≤ n, we refer to Γi ⊢ ∆i as the i-component (or, as a component more generally)
of the linear nested sequent G = Γ1 ⊢ ∆1 � · · · � Γn ⊢ ∆n, we refer to Γn ⊢ ∆n as the end
component, and we define the length of G to be ||G|| := n, i.e., the length of a linear nested
sequent is equal to the number of its components. Comparing LNGL to CSGL, one can see
that LNGL is the calculus CSGL restricted to lines of Gentzen sequents and where rules only
operate in the last two components. Making use of the formula translation, it is a basic
exercise to show that if the conclusion of any rule is invalid, then at least one premise is
invalid, i.e., LNGL is sound.

▶ Theorem 11. If G is provable in LNGL, then G is valid.

When transforming CSGL proofs into LNGL proofs later on, it will be helpful to use the
weakening rule w shown in the lemma below. Observe that any application of w to id1 or id2
yields an initial sequent, and w permutes above every other rule of LNGL. As an immediate
consequence, we have that w is hp-admissible in LNGL.

CSL 2025
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▶ Lemma 12. The following weakening rule w is hp-admissible in LNGL.

G � Γ ⊢ ∆ � H w
G � Γ,Σ ⊢ Π,∆ � H

Furthermore, we have that the 4L and □L rules are hp-invertible in LNGL since the
premises of each rule may be obtained from the conclusion by w.

▶ Lemma 13. The 4L and □L rules are hp-invertble in LNGL.

From Tree Sequents to Linear Nested Sequents

To extract LNGL from CSGL, we first establish a set of rule permutation results, i.e., we show
that rules of a certain form in CSGL can always be permuted below other rules of a specific
form. We note that a rule r permutes below a rule r′ whenever an application of r followed by
r′ in a proof can be replaced by an application of r′ (potentially preceded by an application of
an i-inverse of r) followed by an application of r to derive the same conclusion. To make this
definition more concrete, we show (1) the permutation of a unary rule r below a binary rule
r′ below top-left, (2) the permutation of a binary rule r below a unary rule r′ below top-right,
(3) the permutation of a unary rule r below a unary rule r′ below bottom-left, and (4) the
permutation of a binary rule r below a binary rule r′ below bottom-right. In (1) and (4), we
note that the case where r is applied to the right premise of r′ is symmetric. Furthermore,
recall that r−1

1 and r−1
2 are the 1- and 2-inverses of r, respectively. (NB. For the definition of

the i-inverse of a rule, see Section 3.1.) We use (annotated versions of) the symbol S below
to indicate not only tree sequents, but linear nested sequents since we consider permutations
of rules in LNGL later on as well.

S0 r
S2 S1 r′

S3

⇝ S0

S1 r−1
S′

r′
S r
S3

S0 S1 r
S2 r′
S3

⇝
S0 r′
S

S1 r′
S′

r
S3

S0 r
S1 r′
S2

⇝
S0 r′
S r
S2

S0 S1 r
S2 S3 r′

S4

⇝
S0

S3 r−1
1S

r′
S′

S1

S3 r−1
2S′′

r′
S′′′

r
S4

The various admissible rule permutations we describe are based on the notion of end-activity,
which is a property of rule applications where principal and auxiliary formulae only occur at
(pre-)leaves in sequents. End-activity was first discussed by Lellmann [21] in the context of
mapping Gentzen sequent proofs into linear nested sequent proofs for non-classical logics.

▶ Definition 14 (End Active). A CSGL proof is end-active iff the following hold:
(1) The principal label in every instance of id1 and id2 is a leaf;
(2) The principal label of each local rule is a leaf;
(3) The principal and auxiliary label of a propagation rule is a pre-leaf and leaf, respectively.
A rule r is end-active iff it satisfies its respective condition above; otherwise, the rule is
non-end-active. We note that we always take the □R rule to be end-active.

As stated in the following lemma, the end-activity of sequential rule applications de-
termines a set of permutation relationships between the rules of CSGL. The lemma is
straightforward to prove, though tedious due to the number of cases; its proof can be found
in the appendix.

▶ Lemma 15. The following permutations hold in CSGL:
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(1) If r is a non-end-active local rule and r′ is non-initial and end-active, then r permutes
below r′ and r′ remains end-active after this permutation;

(2) if r is a non-end-active propagation rule and r′ is non-initial and end-active, then r
permutes below r′ and r′ remains end-active after this permutation.

Using the above lemma, every proof π in CSGL of a sequent of the form ⊢ x : φ can be
transformed into an end-active proof as follows: first, observe that the last inference in π must
be end-active since the proof ends with ⊢ x : φ. By successively considering bottom-most
instances of non-end-active local and propagation rules r in π, we can repeatedly apply
Lemma 15 to permute r lower in the proof because all rules below r are guaranteed to be
end-active. By inspecting the rules of CSGL, we know that the trees within the tree sequents
in π will never ‘grow’ but will ‘shrink’ as they get closer to the conclusion of the proof,
meaning, each non-end-active rule r will eventually become end-active through successive
downward permutations.2 This process will eventually terminate and yield a proof where all
non-initial rules are end-active for the following two reasons: (1) As stated in the lemma
above, permuting a non-end-active local or propagation rule r′ below an end-active rule r
preserves the end-activity of the rule r. (2) Although downward permutations may require
the i-inverse of a rule to be applied above the permuted inferences, the hp-invertibility of all
non-initial rules in CSGL (see Theorem 9) ensures that the height of the proof does not grow
after a downward rule permutation.

After all such downward permutations have been performed, the resulting proof is almost
end-active with the exception that initial rules may not be end-active. For example, as shown
below left, it may be the case that id1 is non-end-active and followed by a rule r. Since r is
guaranteed to be end-active at this stage, we know that the auxiliary label of r is distinct
from y, meaning, the conclusion will be an instance of id1 as shown below right.

id1T ,Γ, y : p ⊢ y : p,∆ (T ′,Γ′, y : p ⊢ y : p,∆′)
r

T ′′,Γ′′, y : p ⊢ y : p,∆′′
id1T ′′,Γ′′, y : p ⊢ y : p,∆′′

By replacing such rule applications r by id1 (or id2) instances, effectively ‘pushing’ initial rules
down in the proof, we will eventually obtain initial rules such that the label y is auxiliary in
the subsequent rule application, which will then be a leaf since all non-initial rules of the
proof are end-active. Thus, every proof in CSGL of a sequent of the form ⊢ x : φ can be
transformed into an end-active proof.

▶ Theorem 16. Each proof in CSGL of a sequent of the form ⊢ x : φ can be transformed
into an end-active proof.

▶ Theorem 17. Each end-active proof in CSGL can be transformed into a proof in LNGL.

Proof. We prove that if there exists an end-active proof in CSGL of a tree sequent T ,Γ ⊢ ∆,
then there exists a path x1, . . . , xn of labels from the root x1 to a leaf xn in T ,Γ ⊢ ∆ such
that Γ(x1) ⊢ ∆(x1) � · · · � Γ(xn) ⊢ ∆(xn) is provable in LNGL. We argue this by induction
on the height of the end-active proof π in CSGL.

Base case. Suppose π consists of a single application of id1 or id2, as shown below:
id1T ,Γ, x : p ⊢ x : p,∆ id2T ,Γ, x : □φ ⊢ x : □φ,∆

2 Observe that ¬L, ¬R, ∨L, ∨R, □L, and 4L only affect the formulae associated with the label of a tree
sequent, whereas □R top-down removes a relational atom from a tree sequent. Therefore, the number
of relational atoms in tree sequents will decrease as we move down paths in CSGL proofs from initial
sequents to the conclusion.
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We know that each initial sequent is end-active, i.e., the label x is a leaf in both tree sequents.
Therefore, since each sequent is a tree sequent, there exists a path y1, . . . , yn = x of labels
from the root y1 to the leaf x. By using this path, we obtain respective instances of id1 and
id2 as shown below:

id1Γ(y1) ⊢ ∆(y1) � · · · � Γ(x), p ⊢ p,∆(x)
id2Γ(y1) ⊢ ∆(y1) � · · · � Γ(x),□φ ⊢ □φ,∆(x)

Inductive step. For the inductive hypothesis (IH), we assume that the claim holds for every
end-active proof in CSGL of height h′ ≤ h, and aim to show that the claim holds for proofs
of height h+ 1. We let π be of height h+ 1 and argue the cases where π ends with □L or □R
as the remaining cases are shown similarly. Some additional cases are given in the appendix.

□L. Let us suppose that π ends with an instance of □L as shown below.

T , xRy,Γ, x : □φ, y : φ ⊢ ∆
□LT , xRy,Γ, x : □φ ⊢ ∆

By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of □L such that G = Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. Since
□L is end-active, we have three cases to consider: (1) neither x nor y occur along the path
in the premise, (2) only x occurs along the path in the premise, or (3) both x and y occur
along the path in the premise. In cases (1) and (2), we translate the entire □L inference as
the linear nested sequent G. In case (3), G has the form of the premise shown below with
Γ(yn−1) = Σ1,□φ and Γ(yn) = Σ2, φ. A single application of □L gives the desired result.

Γ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2, φ ⊢ ∆(yn)
□LΓ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2 ⊢ ∆(yn)

□R. Let us suppose that π ends with an instance of □R as shown below.

T , xRy,Γ, y : □φ ⊢ y : φ,∆
□RT ,Γ ⊢ x : □φ,∆

By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of □R such that Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. We have
three cases to consider: either (1) neither x nor y occur along the path, (2) only x occurs
along the path, or (3) both x and y occur along the path. In case (1), we translate the entire
□R instance as the single linear nested sequent G. In case (2), we know that x = yi for some
1 ≤ i ≤ n. To obtain the desired conclusion, we apply the hp-admissible w rule as shown
below. Observe that the conclusion of the w application below corresponds to the linear
nested sequent obtained from the path y1, . . . , yn in the conclusion of the □R instance above.

Γ(y1) ⊢ ∆(y1) � · · · � Γ(yi) ⊢ ∆(yi) � · · · � Γ(yn) ⊢ ∆(yn) w
Γ(y1) ⊢ ∆(y1) � · · · � Γ(yi) ⊢ □φ,∆(yi) � · · · � Γ(yn) ⊢ ∆(yn)

Last, in case (3), we know that x = yn−1 and y = yn due to the freshness condition imposed
on the □R rule. In this case, G has the form of the premise shown below, meaning, a single
application of the □R rule gives the linear nested sequent corresponding to the path y1, . . . , yn

in the conclusion of the □R instance above.
Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn−1) ⊢ ∆(yn−1) �□φ ⊢ φ

□RΓ(y1) ⊢ ∆(y1) � · · · � Γ(yn−1) ⊢ □φ,∆(yn−1)
◀

The following is an immediate consequence of Theorems 11, 16, and 17.
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▶ Corollary 18 (LNGL Soundness and Completeness). φ is valid iff ⊢ φ is provable in LNGL.

Last, we show that every LNGL proof can be put into a normal form (see Definition 19 and
Theorem 16 below) such that (reading the proof bottom-up) □R instances are preceded by
4L instances, which are preceded by □L instances, which are preceded by local rule instances
(or, initial rules). We will utilize this normal form in the next section to show that every
LNGL proof can be transformed into a Gentzen sequent proof (Theorem 22). We let B be
a set of LNGL rules and define a block to be a derivation that only uses rules from B. We
use the following notation to denote blocks, showing that the set B of rules derives G from
G1, . . . ,Gn, and refer to G1, . . . ,Gn as the premises of the block B.

G1, . . . ,Gn
BG

▶ Definition 19 (Normal Form). A proof in LNGL is in normal form iff each bottom-up □R
application is derived from a block B of 4L rules, whose premise is derived from a block B′ of
□L rules, whose premise is derived from a block B′′ of local rules, as indicated below.

G � Γ ⊢ ∆ � Σ1 ⊢ Π1 . . . G � Γ ⊢ ∆ � Σn ⊢ Πn
B′′

G � Γ ⊢ ∆ � Γ′,Γ′′,□φ ⊢ φ
B′

G � Γ ⊢ ∆ � Γ′,□φ ⊢ φ
B

G � Γ ⊢ ∆ �□φ ⊢ φ
□RG � Γ ⊢ □φ,∆

We refer to block of rules of the above form as a complete block, and refer to the portion of
a complete block consisting of only □R, B, and B′ as a modal block.

As proven in the next section (Theorem 22), every normal form proof in LNGL can be
transformed into a proof in Sambin and Valentini’s Gentzen calculus GLseq. Therefore, we
need to show that every proof in LNGL can be put into normal form. We prove this by making
an observation about the structure of proofs in LNGL. Observe that local and propagation
rules in LNGL only affect the end component of linear nested sequents and preserve the
length of such sequents, whereas the □R rule increases the length of a linear nested sequent
by 1 when applied bottom-up. This implies that any LNGL proof π bottom-up proceeds in
repetitive stages, as we now describe. Let π be a proof in LNGL with conclusion G such that
||G|| = n. The conclusion G is derived with a block B of local and propagation rules that
only affect the n-component in inferences with the premises of the block B being initial rules
or derived by applications of □R rules. These applications of □R rules will have premises
of length n+ 1 and will be preceded by blocks Bi of local and propagation rules that only
affect the (n+ 1)-component in inferences. The premises of the Bi blocks will then either be
initial rules or derived by applications of □R rules that have premises of length n+ 2, which
are preceded by blocks of local and propagation rules that only affect the (n+ 2)-component
in inferences, and so on. Every proof in LNGL will have this repetitive structure.

Let □R be applied in an LNGL proof π with premise G � Γ ⊢ ∆ �□φ ⊢ φ of length n. We
say that an instance of a local or propagation rule r in π is length-consistent with □R iff the
length of the conclusion of r is equal to n. Based on the discussion above, we can see that
for any □R application in a proof π, all length-consistent local and propagation rules will
occur in a block B above the □R application with B free of other □R rules. It is not difficult
to show that B can be transformed into a complete block by (1) successively permuting 4L
rules down into a block above □R, and (2) successively permuting □L rules down above the
4L block. After the permutations from (1) and (2) have been carried out, the premise of the
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idΓ, φ ⊢ φ,∆
Γ ⊢ φ,∆

¬LΓ,¬φ ⊢ ∆
Γ, φ ⊢ ∆

¬RΓ ⊢ ¬φ,∆
Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆

∨LΓ, φ ∨ ψ ⊢ ∆

Γ ⊢ φ,ψ,∆
∨RΓ ⊢ φ ∨ ψ,∆

□Γ,Γ,□φ ⊢ φ
□GLΣ,□Γ ⊢ □φ,∆

□Γ,Γ ⊢ φ
□4Σ,□Γ ⊢ □φ,∆

Figure 5 Sequent calculus rules.

□L block will be derived by length-consistent local rule applications, showing that □R is
preceded by a complete block. As these permutations can be performed for every □R rule in
a proof, every proof can be put into normal form.

▶ Theorem 20. Every proof in LNGL can be transformed into a proof in normal form.

5 Sequent Systems and Correspondences

5.1 Gentzen, Cyclic, and Non-Wellfounded Systems
We use Γ, ∆, Σ, . . . to denote finite multisets of formulae within the context of sequent
systems. For a multiset Γ := φ1, . . . , φn, we define □Γ := □φ1, . . . ,□φn. A sequent is
defined to be an expression of the form Γ ⊢ ∆. The sequent calculus GLseq for GL consists
of the rules id, ¬L, ¬R, ∨L, ∨R, and □GL shown in Figure 5 and is an equivalent variant of
the Gentzen calculi GLSC and GLS introduced by Sambin and Valentini for GL [36, 37].3
The system GLseq is sound and complete for GL, admits syntactic cut-elimination, and the
weakening and contraction rules w, cL, and cR (shown below) are admissible (cf. [16, 39]).

Γ ⊢ ∆ w
Γ,Σ ⊢ Π,∆

Γ, φ, φ ⊢ ∆
cLΓ, φ ⊢ ∆

Γ ⊢ φ,φ,∆
cRΓ ⊢ φ,∆

Γ ⊢ φ,∆ Γ, φ ⊢ ∆
cutΓ ⊢ ∆

Shamkanov [39] showed that equivalent non-wellfounded and cyclic sequent systems could
be obtained for GL by taking the sequent calculus for the modal logic K4 and generalizing the
notion of proof. The sequent calculus K4seq is obtained by replacing the □GL rule in GLseq
with the □4 rule shown in Figure 5. Let us now recall Shamkanov’s non-wellfounded sequent
calculus GL∞ and cyclic sequent calculus GLcirc for GL. We present Shamkanov’s systems in
a two-sided format, i.e., using two-sided sequents Γ ⊢ ∆ rather than one-sided sequents of
the form Γ. This makes the correspondence between Shamkanov’s systems and GLseq clearer
as well as saves us from having to introduce a new language for GL since one-sided sequents
use formulae in negation normal form. Translating proofs with two-sided sequents to proofs
with one-sided sequents and vice-versa can be easily obtained by standard techniques, and
so, this minor modification causes no problems.

A derivation of a sequent Γ ⊢ ∆ is defined to be a (potentially infinite) tree whose nodes
are labeled with sequents such that (1) Γ ⊢ ∆ is the root of the tree, and (2) each parent
node is taken to be the conclusion of a rule in K4seq with its children the corresponding
premises. A non-wellfounded proof is a derivation such that all leaves are initial sequents.
GL∞ is the non-wellfounded sequent system obtained by letting the set of provable sequents
be determined by non-wellfounded proofs.

3 GLseq differs from Sambin and Valentini’s original systems in that multisets are used instead of sets,
rules for superfluous logical connectives (e.g., conjunction ∧ and implication →) have been omitted as
these are definable in terms of other rules, and the weakening rules have been absorbed into id and □GL.
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A cyclic derivation is a pair π = (κ, c) such that κ is a finite derivation in K4seq and c is
a function with the following properties: (1) c is defined on a subset of the leaves of κ, (2)
the image c(x) lies on the path from the root of κ to x and does not coincide with x, and
(3) both x and c(x) are labeled by the same sequent. If the function c is defined at a leaf
x, then we say that a back-link exists from x to c(x). A cyclic proof is a cyclic derivation
π = (κ, c) such that every leaf x is labeled by an instance of id or there exists a back-link
from x to the node c(x). GLcirc is the cyclic sequent system obtained by letting the set of
provable sequents be determined by cyclic proofs.

Shamkanov established a three-way correspondence between GLseq, GL∞, and GLcirc,
providing syntactic transformations mapping proofs between the three systems.4

▶ Theorem 21 ([39]). Γ ⊢ ∆ is provable in GLseq iff Γ ⊢ ∆ is provable in GL∞ iff Γ ⊢ ∆ is
provable in GLcirc.

5.2 Completing the Correspondences
▶ Theorem 22. If π is a normal form proof of ⊢ φ in LNGL, then π can be transformed into
a proof of ⊢ φ in GLseq.

Proof. We show how to transform the normal form proof π of ⊢ φ in LNGL into a proof π′

of ⊢ φ in GLseq in a bottom-up manner. For the conclusion ⊢ φ of the proof π, we take ⊢ φ

to be the conclusion of π′. We now make a case distinction on bottom-up applications of
rules applied in π. For each rule ¬L, ¬R, ∨L, or ∨R, we translate each premise of the rule as
its end component. For example, the ∨L rule will be translated as shown below.

G � Γ, φ ⊢ ∆ G � Γ, ψ ⊢ ∆
∨LG � Γ, φ ∨ ψ ⊢ ∆

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆
∨LΓ, φ ∨ ψ ⊢ ∆

Suppose now that we encounter a □R rule while bottom-up translating the proof π into a
proof in GLseq. Since π is in normal form, we know that □R is preceded by a modal block
(see Definition 19), that is, □R is (bottom-up) preceded by a block B4L of 4L rules, which is
preceded by a block B□L of □L rules, i.e., the modal block has the shape shown below. We
suppose that □Σ1 are the principal formulae of the 4L applications, □Σ2 are those formulae
principal in both 4L and □L applications, and □Σ3 are those formulae principal only in □L
applications.

G � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□Σ1,□Σ2,Σ2,Σ3,□φ ⊢ φ
B□LG � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□Σ1,□Σ2,□φ ⊢ φ

B4LG � Γ,□Σ1,□Σ2,□Σ3 ⊢ ∆ �□φ ⊢ φ
□RG � Γ,□Σ1,□Σ2,□Σ3 ⊢ □φ,∆

We bottom-up translate the entire block as shown below, where the conclusion is obtained
from the end component of the modal block’s conclusion. Note that we may apply the w
rule because it is admissible in GLseq.

□Σ1,□Σ2,Σ2,Σ3,□φ ⊢ φ w
□Σ1,□Σ2,□Σ3,Σ1,Σ2,Σ3,□φ ⊢ φ

□GLΓ,□Σ1,□Σ2,□Σ3 ⊢ □φ,∆
Last, suppose an instance of id1 or id2 is reached in the translation as shown below left.

4 We note that Shamkanov’s proof transformation from GLseq to GL∞ relies on the admissibility of the
cut rule in GLseq. This is not problematic however since GLseq admits syntactic cut-elimination.
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id1G � Γ, p ⊢ p,∆
id2G � Γ,□φ ⊢ □φ,∆ idΓ, p ⊢ p,∆ idΓ,□φ ⊢ □φ,∆

In each case, we translate the linear nested sequent as its end component, yielding the
respective Gentzen sequents shown above right, both of which are instances of id. ◀

Last, the following theorem completes the circuit of proof transformations and establishes
syntactic correspondences between G3GL, CSGL, LNGL, GLseq, GL∞ and GLcirc.

▶ Theorem 23. If Γ ⊢ ∆ is provable in GLseq, then x : Γ ⊢ x : ∆ is provable in G3GL.

Proof. By induction on the height of the proof π in GLseq. The base case immediately follows
from Theorem 6-(1), and the ¬L, ¬R, ∨L, and ∨R cases of the inductive step straightforwardly
follow by applying IH and then the corresponding rule in G3GL. Therefore, we need only
show the case where π ends with an application of □GL, as shown below left.

□Γ,Γ,□φ ⊢ φ
□GLΣ,□Γ ⊢ □φ,∆

x : □Γ, x : Γ, x : □φ ⊢ x : φ w
yRx, y : □Γ, x : □Γ, x : Γ, x : □φ ⊢ x : φ

□L
yRx, y : □Γ, x : □Γ, x : □φ ⊢ x : φ

4L
yRx, y : □Γ, x : □φ ⊢ x : φ

□R
y : □Γ ⊢ y : □φ (x/y)
x : □Γ ⊢ x : □φ w

x : Σ, x : □Γ ⊢ x : □φ, x : ∆

To obtain the desired proof, we first apply the hp-admissible w rule (Theorem 6), followed
by applications of the □L rule and admissible 4L rule (cf. [15]). Applying the □R rule,
followed by applications of the hp-admissible (x/y) and w rules (Theorem 6), gives the
desired conclusion. ◀

6 Concluding Remarks

There are various avenues for future research: first, it would be interesting to look into the
properties of the new linear nested sequent calculus LNGL, investigating additional admissible
structural rules, how the system can be amended to allow for the hp-invertibility of all
rules, and also looking into syntactic cut-elimination. Second, by employing a methodology
for extracting nested sequent systems from relational semantics [28], we can integrate this
approach with the linearization technique to develop a general method for extracting (cut-free)
linear nested systems from the semantics of various modal, intuitionistic, and related logics.
Third, it seems worthwhile to see if the proof transformation techniques discussed in this
paper can be applied to structural cyclic systems (e.g., cyclic labeled sequent systems for
classical and intuitionistic Gödel-Löb logic [11]) to remove extraneous structure and extract
simpler (cyclic) Gentzen systems.
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A Proofs for Section 4

▶ Lemma 15. The following permutations hold in CSGL:
(1) If r is a non-end-active local rule and r′ is non-initial and end-active, then r permutes

below r′ and r′ remains end-active after this permutation;
(2) if r is a non-end-active propagation rule and r′ is non-initial and end-active, then r

permutes below r′ and r′ remains end-active after this permutation.

Proof. Follows from Lemmas 24 and 25 below. ◀

▶ Lemma 24. If r is a non-end-active local rule and r′ is non-initial and end-active, then r
permutes below r′ and r′ remains end-active after this permutation.

Proof. We let r be an instance of ¬R as the cases where r is either ¬L, ∨L, or ∨R are shown
similarly. We show that r can be permuted down r′ and consider a representative number of
cases when r′ is either ∨R, 4L, or □R as the remaining cases are similar.

∨R. By our assumption that ¬R is non-end-active and ∨R is end-active, we know that the
labels x and y are distinct. Hence, we can permute the ¬R instance below the ∨R instance.
Observe that ∨R remains end-active after the permutation.

T ,Γ, x : φ ⊢ y : ψ, y : χ,∆
¬RT ,Γ ⊢ x : ¬φ, y : ψ, y : χ,∆
∨RT ,Γ ⊢ x : ¬φ, y : ψ ∨ χ,∆

T ,Γ, x : φ ⊢ y : ψ, y : χ,∆
∨RT ,Γ, x : φ ⊢ y : ψ ∨ χ,∆
¬RT ,Γ ⊢ x : ¬φ, y : ψ ∨ χ,∆

4L. By our assumption, we know that z is distinct from y in the inferences shown below
left, meaning, we can permute ¬R below 4L as shown below right. Observe that 4L remains
end-active after the permutation.

T , xRy,Γ, x : □ψ, y : □ψ, z : φ ⊢ ∆
¬RT , xRy,Γ, x : □ψ, y : □ψ ⊢ z : ¬φ,∆
4LT , xRy,Γ, x : □ψ ⊢ z : ¬φ,∆

T , xRy,Γ, x : □ψ, y : □ψ, z : φ ⊢ ∆
4LT , xRy,Γ, x : □ψ, z : φ ⊢ ∆

¬RT , xRy,Γ, x : □ψ ⊢ z : ¬φ,∆

□R. By our assumption, we know that z is distinct from y in the inferences shown below
left, meaning, we can permute ¬R below □R as shown below right. Trivially, the □R rule
remains end-active after the permutation.

T , xRy,Γ, y : □ψ, z : φ ⊢ y : ψ,∆
¬RT , xRy,Γ, y : □ψ ⊢ y : ψ, z : ¬φ,∆
□RT ,Γ ⊢ x : □ψ, z : ¬φ,∆

T , xRy,Γ, y : □ψ, z : φ ⊢ y : ψ,∆
□RT ,Γ, z : φ ⊢ x : □ψ,∆

¬RT ,Γ ⊢ x : □ψ, z : ¬φ,∆
◀

▶ Lemma 25. If r is a non-end-active propagation rule and r′ is non-initial and end-active,
then r permutes below r′ and r′ remains end-active after this permutation.
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Proof. We consider the case where r is an instance of □L as the 4L case is similar. We show
that r can be permuted down r′ and consider a representative number of cases when r′ is
either ¬L, 4L, or □R as the remaining cases are similar.

¬L. By our assumption, we know that z is distinct from y in the inferences below left. We
can therefore permute □L below ¬L as shown below right and we observe that ¬L remains
end-active.

T , xRy,Γ, x : □φ, y : φ ⊢ z : ψ,∆
□LT , xRy,Γ, x : □φ ⊢ z : ψ,∆

¬LT , xRy,Γ, x : □φ, z : ¬ψ ⊢ ∆

T , xRy,Γ, x : □φ, y : φ ⊢ z : ψ,∆
¬LT , xRy,Γ, x : □φ, y : φ, z : ¬ψ ⊢ ∆
□LT , xRy,Γ, x : □φ, z : ¬ψ ⊢ ∆

4L. Let us suppose we have a □L instance followed by a 4L instance. There are two cases to
consider: either the principal formula of □L is the same as for 4L, or the principal formulae
are distinct. We show the first case as the second case is similar. Then, our inferences are
of the form shown below left, where y and z are distinct due to our assumption. We may
permute □L below 4L as shown below right and we observe that 4L remains end-active.

T , xRy, xRz,Γ, x : □φ, y : φ, z : □φ ⊢ ∆
□LT , xRy, xRz,Γ, x : □φ, z : □φ ⊢ ∆

4LT , xRy, xRz,Γ, x : □φ ⊢ ∆

T , xRy, xRz,Γ, x : □φ, y : φ, z : □φ ⊢ ∆
4LT , xRy, xRz,Γ, x : □φ, y : φ ⊢ ∆

□LT , xRy, xRz,Γ, x : □φ ⊢ ∆

□R. Suppose we have an instance of □L followed by an application of □R as shown below.
T , xRy, zRu,Γ, x : □φ, y : φ, u : □ψ ⊢ u : ψ,∆

□LT , xRy, zRu,Γ, x : □φ, u : □ψ ⊢ u : ψ,∆
□RT , xRy,Γ, x : □φ ⊢ z : □ψ,∆

By our assumption, the labels y and u are distinct, meaning, we can permute □L below □R
as shown below. Trivially, □R remains end-active after the permutation is performed.

T , xRy, zRu,Γ, x : □φ, y : φ, u : □ψ ⊢ u : ψ,∆
□RT , xRy,Γ, x : □φ, y : φ ⊢ z : □ψ,∆

□LT , xRy,Γ, x : □φ ⊢ z : □ψ,∆
◀

▶ Theorem 17. Each end-active proof in CSGL can be transformed into a proof in LNGL.

Proof. We have included additional cases of the inductive step that are not included in the
main text.

4L. Let us suppose that π ends with an application of 4L as shown below.
T , xRy,Γ, x : □φ, y : □φ ⊢ ∆

4LT , xRy,Γ, x : □φ ⊢ ∆
By IH, we know there exists a path y1, . . . , yn of labels from the root y1 to the leaf yn in the
premise of 4L such that G = Γ(y1) ⊢ ∆(y1) � · · · � Γ(yn) ⊢ ∆(yn) is provable in LNGL. Since
4L is end-active, there are three cases to consider: either (1) neither x nor y occur along the
path, (2) only x occurs along the path, or (3) both x and y occur along the path. In each
case, the conclusion is obtained by taking the linear nested sequent corresponding to the
path y1, . . . , yn in the conclusion of the 4L instance above. In the first and second cases, we
translate the entire 4L instance as the single linear nested sequent G. In the third case, we
have that x = yn−1 and y = yn, meaning, the premise of the 4L instance shown below is
provable in LNGL by IH, where Γ(yn−1) = Σ1,□φ and Γ(yn) = Σ2,□φ. As shown below, a
single application of 4L yields the desired conclusion.
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Γ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2,□φ ⊢ ∆(yn)
4LΓ(y1) ⊢ ∆(y1) � · · · � Σ1,□φ ⊢ ∆(yn−1) � Σ2 ⊢ ∆(yn)

∨L. Let us suppose that π ends with an instance of ∨L as shown below.
T ,Γ, x : φ ⊢ ∆ T ,Γ, x : ψ ⊢ ∆

∨LT ,Γ, x : φ ∨ ψ ⊢ ∆
By IH, we know there exist paths v = y1, . . . , yn and v = z1, . . . , zk of labels from the root v
to the leaves yn and zk in the premises of ∨L such that G = Γ(v) ⊢ ∆(v)� · · ·�Γ(yn) ⊢ ∆(yn)
and H = Γ(v) ⊢ ∆(v) � · · · � Γ(zk) ⊢ ∆(zk) are provable in LNGL. There are two cases to
consider: either (1) x ̸= yn or x ̸= zk, or (2) x = yn = zk. In the first case, if x ̸= yn, then
we translate the entire ∨L inference as the single linear nested sequent G, and if x ≠ zk,
then we translate the entire ∨L inference as H. In the second case, we know that the left
premise G and right premise H of the ∨L inference below are provable with Γ(yn) = Σ, φ
and Γ(zk) = Σ, ψ, and so, a single application of ∨L gives the desired result.

Γ(y1) ⊢ ∆(y1) � · · · � Σ, φ ⊢ ∆(yn) Γ(y1) ⊢ ∆(y1) � · · · � Σ, ψ ⊢ ∆(yn)
∨LΓ(y1) ⊢ ∆(y1) � · · · � Σ, φ ∨ ψ ⊢ ∆(yn)

◀

▶ Theorem 20. Every proof in LNGL can be transformed into a proof in normal form.

Proof. Let π be a proof in LNGL. We consider an arbitrary instance of a □R rule in π and
first show that every length-consistent 4L rule above □R can be permuted down into a block
B of 4L rules above □R. Afterward, we will show that every length-consistent □L rule can
be permuted down into a block B′ of □L rules above B. As a result, all length-consistent
local rules will occurs in a block B′′ above the premise of the block B′, showing that □R
is preceded be a complete block. As these permutations can be performed for every □R
instance in π, we obtain a normal form proof as the result.

Let us choose an application of □R in π, as shown below, proceeded by a (potentially
empty) block R of 4L rules.

... R
G � Γ ⊢ ∆ �□φ ⊢ φ

□RG � Γ ⊢ □φ,∆
We now select a bottom-most, length-consistent application of a 4L rule above the chosen
□R application that does not occur within the block R of 4L rules. We show that 4L can be
permuted below every local rule and □L rule until it reaches and joins the R block. We show
that 4L can be permuted below ¬R, ∨L, and □L as the remaining cases are similar. Note
that we are guaranteed that no other □R applications occur below 4L and above R since
then 4L would not be length-consistent with the chosen □R application.

Suppose 4L occurs above a ¬R application as shown below left. The rules can be permuted
as shown below right.

G � Γ,□φ ⊢ ∆ � Σ, ψ,□φ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π

¬RG � Γ,□φ ⊢ ∆ � Σ ⊢ ¬ψ,Π

G � Γ,□φ ⊢ ∆ � Σ, ψ,□φ ⊢ Π
¬RG � Γ,□φ ⊢ ∆ � Σ,□φ ⊢ ¬ψ,Π
4LG � Γ,□φ ⊢ ∆ � Σ ⊢ ¬ψ,Π

Suppose that we have 4L followed by an application of the ∨L rule.
G � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ⊢ Π

4LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π
∨LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π
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Invoking the hp-invertibility of 4L (Lemma 13), we can permute 4L below ∨L as shown below.

G � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ⊢ Π
G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

4L−1
G � Γ,□φ ⊢ ∆ � Σ,□φ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ,□φ,ψ ∨ χ ⊢ Π
4LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

Last, we show (below left) one of the cases where 4L is applied above a □L rule. We can
permute the rules as shown below right.

G � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ,φ ⊢ Π
4LG � Γ,□ψ,□φ ⊢ ∆ � Σ, φ ⊢ Π
□LG � Γ,□ψ,□φ ⊢ ∆ � Σ ⊢ Π

G � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ,φ ⊢ Π
□LG � Γ,□ψ,□φ ⊢ ∆ � Σ,□ψ ⊢ Π

4LG � Γ,□ψ,□φ ⊢ ∆ � Σ ⊢ Π

We can repeat the above downward permutations of bottom-most, length-consistent 4L
rules, so that all length-consistent 4L rules occur in a block B above □R as shown below,
where we let R′ be a (potentially empty) block of □L rules above the B block of 4L rules.

...
R′

H B
G � Γ ⊢ ∆ �□φ ⊢ φ

□RG � Γ ⊢ □φ,∆
Next we show that every length-consistent □L rule occurring above the block R′ can be
permuted down to the block R′. Let □L occur above the block R′ be length-consistent with
the chosen □R rule. Notice that we need only consider downward permutations of □L rules
with local rules as all 4L rules have already been permuted downward and no other □R rule
can occur between □L and R′ because then □L would not be length-consistent. We show
how to permute the □L rule below a ∨L instance; the remaining cases are simple and similar.

G � Γ,□φ ⊢ ∆ � Σ, ψ, φ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ, ψ ⊢ Π G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π
By using the hp-invertibility of □L (Lemma 13), we can permute □L below the ∨L rule.

G � Γ,□φ ⊢ ∆ � Σ, φ, ψ ⊢ Π
G � Γ,□φ ⊢ ∆ � Σ, χ ⊢ Π

□L−1
G � Γ,□φ ⊢ ∆ � Σ, φ, χ ⊢ Π

∨LG � Γ,□φ ⊢ ∆ � Σ, φ, ψ ∨ χ ⊢ Π
□LG � Γ,□φ ⊢ ∆ � Σ, ψ ∨ χ ⊢ Π

By successively permuting all □L rules down into a block above B, we have that □R is
preceded by a complete block in the proof. As argued above, this implies that every proof in
LNGL can be put into normal form. ◀
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