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Abstract

Over the last two decades the interest for Abstract Argumentation steadily raised in the field of
Artificial Intelligence. The concept of Dung’s Argumentation Frameworks (AFs), where argu-
ments and their relations are represented in a directed graph-structure, is a well-known, simple,
and powerful concept. This framework is used to find acceptable sets of arguments, which have
specific properties (e.g. being conflict free), defined by several semantics.

Recently Abstract Dialectical Frameworks (ADFs) were introduced, a generalization of
Dung’s approach, to overcome the limitation of attack-relations being the only type of native
relations. To reach this goal, in addition to the relations, total functions are used to decide the
acceptance of an argument. These functions are so called acceptance conditions. Due to the
high expressiveness of this newly proposed theory, some semantics were only generalized for
the restricted bipolar ADFs yet.

This work will give an exhaustive overview on ADFs. The restriction to bipolar ADFs for
some of the semantics is not desired, so we try to develop a solution to gain the generalized
stable model semantics. This semantics is particularly important because the other semantics
which are restricted to bipolar ADFs, depend on stable models. To gain such a generalization,
we will try to connect the foundations of ADFs to other fields of computer science. So we may
relate subclasses of these fields to the bipolar ADF to overcome this obstacle. This connection
also makes ADFs more accessible to other fields of computer science.

We will concentrate mainly on the introduction of the alternative representation of propo-
sitional-formula ADFs (pForm-ADFs), but we will also show that ADFs can be represented as
hyper-graphs. Based on the new representation a transformation from ADFs to pForm-ADFs,
together with a generalization of the stable model semantics will be presented. In addition
some properties between semantics will be investigated and an overview of complexity results,
enriched with new ones is given.

Currently there is no software system available to compute semantics for ADFs. So in addi-
tion to the formal results we also present an Answer Set Programming (ASP) based implemen-
tation to solve these highly complex computations. We will also present preliminary empirical
experiments.
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Kurzfassung

Abstract Argumentation konnte im Laufe der letzten zwei Dekaden stetig immer mehr Interesse
im Forschungsbereich der Künstlichen Intelligenz gewinnen. Eines der wichtigsten Konzepte ist
dabei Dung’s Argumentation Framework. Hierbei handelt es sich um einen einfachen, jedoch
mächtigen und gut entwickelten Ansatz zum Darstellen von Argumenten und deren Beziehun-
gen. Diese Informationen sind hierbei in Form eines gerichteten Graphen kodiert, wo jede Kante
einen Angriff auf ein anderes Argument symbolisiert. Mittels dieses Frameworks ist es ebenfalls
möglich, durch Semantiken Mengen von Argumenten auszuwählen und zu prüfen ob sie gewisse
Eigenschaften besitzen (z.B. ob die Menge konfliktfrei ist).

Vor kurzem wurde in Form von Abstract Dialectical Frameworks (ADFs) eine Verallgemei-
nerung dieses Konzepts vorgestellt. Dabei werden die Beziehungen mittels einer vollständigen
Funktion definiert, wodurch sie nicht mehr nur auf Angriffe beschränkt sind. Durch diese Funk-
tion, welche Akzeptanzbedingung genannt wird, ist es nun möglich sehr komplexe Beziehungen
zu beschreiben. Aufgrund dieser Ausdrucksstärke gibt es nun jedoch Probleme gewisse Seman-
tiken für ADFs zu definieren. Daher ist die Unterklasse der bipolaren ADFs eingeführt worden.

Im Rahmen dieser Arbeit wird das Konzept der ADFs nochmals genau vorgestellt. Da die
Einschränkung auf bipolare ADFs nur eine vorübergehende Lösung darstellt, wird versucht eine
allgemeine Form der stabilen Modell-Semantik zu finden. Da dies die grundlegende Semantik
für alle anderen ist, welche auf bipolare ADFs beschränkt sind, wird hierfür ein generalisierter
Ansatz am meisten benötigt. Um dies zu erreichen werden Konzepte von anderen Bereichen der
theoretischen Informatik genutzt um deren Ergebnisse für die Probleme mit bipolaren ADFs zu
nutzen. Dadurch können ADFs ebenfalls leichter in jenen Gebieten eingesetzt werden.

Hauptsächlich werden die aussagenlogischen ADFs behandelt werden, da es mit deren Hilfe
möglich ist ADFs relativ natürlich in bipolare umzuwandeln. Darauf aufbauend wird dann die
Entwicklung einer allgemeinen stabilen Modell-Semantik gezeigt. Zusätzlich werden noch ei-
nige Eigenschaften zwischen einzelnen Semantiken diskutiert. Eine Zusammenfassung bereits
vorhandener komplexitätsanalytischer Resultate wird ebenfalls präsentiert um danach neue Er-
gebnisse zeigen zu können.

Da es derzeit kein adäquates Software-System zum Berechnen von Modellen für Semantiken
auf ADFs gibt, wird zusätzlich zu den formalen Ergebnissen noch eine neue ASP (Answer Set
Programming) basierte Implementierung präsentiert. Um ein Gefühl für die Effizienz des Sys-
tems zu bekommen werden außerdem noch empirische Experimente zur Laufzeit diskutiert.
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CHAPTER 1
Introduction

The theory of Argumentation is situated at the intersection of Philosophy [Barth and Krabbe,
1982, Toulmin, 2003, Walton, 1996], Artificial Intelligence (AI) [Caminada and Amgoud, 2007],
and several application domains, like law interpretation [Bench-Capon, 2002, Bench-Capon and
Dunne, 2005, Bench-Capon et al., 2009]. Within AI several subfields are particularly relevant
and benefit from studies of argumentation. In particular Knowledge Representation [Amgoud
and Cayrol, 2002, Besnard and Hunter, 2005, Prakken and Sartor, 1997], Non-Monotonic Rea-
soning [Bondarenko et al., 1997, Chesñevar et al., 2000, Prakken and Vreeswijk, 2002], Decision
Making [Dimopoulos et al., 2009], and Multi-Agent Systems [Amgoud et al., 2005, Kakas and
Moraitis, 2006]. For an overview on the steady rise of interest in this field of AI over the last
two decades see the survey article by Bench-Capon and Dunne [2007] or the books by Besnard
and Hunter [2008] or Rahwan and Simari [2009].

The basic idea of Argumentation is to provide a concept to draw conclusions based on knowl-
edge. This knowledge can consist of complex rules of requirements, relations, and inferences.
Typically in argumentation this knowledge is represented in an abstract way as a set of argu-
ments which may be accepted or not. These arguments stand in relations to each other to picture
only the needed information from the knowledge base. Based on these relations conclusions on
the acceptability of the arguments can be inferred. Together with the knowledge of the proce-
dure of the instantiation of these arguments, the inferred acceptability of the arguments leads to
conclusions for a given knowledge base.

The field of abstract argumentation is concerned with the representation of arguments and
its conclusions only. This area typically utilizes argumentation frameworks as their formal mod-
eling language. A particular well-known and widely studied representation is Dung’s Argu-
mentation Framework (AF) [Dung, 1995]. There arguments are related with each other via
attack-relations. With this model it is possible to represent whether some arguments are in con-
flict with other arguments or not. Based on these conflicts acceptable (conflict-free) viewpoints
are desired. These viewpoints are sets of acceptable arguments which have to fulfill different
properties. They can be seen as a conflict-resolution and are introduced as semantics for the
framework. In particular the sets of accepted arguments are known as extensions. This concept
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Chapter 1 Introduction

has proved to be simple but yet powerful in expressiveness, so it evolved to one of the most used
basic concepts in abstract argumentation.

Alas, the simplicity of Dung’s AF has some disadvantages in more complex relations be-
tween arguments. It is not possible to represent natively concepts like support between argu-
ments, distributed attacks, or other more complex dependencies than direct attacking relations
between arguments. Indeed it is possible to evaluate these concepts with specific structures be-
tween the arguments, but these use artificial arguments which have no meaning for conclusions
and are only means to an end.

To overcome the shortcomings of Dung’s AF many different frameworks, semantics, and
improvements emerged (e.g. the concept of Meta-Argumentation [Boella et al., 2009], Attack se-
mantics for Dung’s AF [Villata et al., 2011], and Constraint Argumentation Frameworks [Coste-
Marquis et al., 2006]). Recently a generalization of Dung’s AF, so called Abstract Dialectical
Frameworks (ADFs) [Brewka and Woltran, 2010], was proposed. There the relations between
now called statements are generalized in such way that a boolean function decides whether a
statement should be accepted or not. With this generalized approach it is now possible to na-
tively represent the above mentioned complex relations between statements. Due to the high
grade of freedom in the definition of the acceptance via these boolean functions, it is compli-
cated to define some of the semantics in a generalized form of Dung’s extensions. Intuitively
the complications come from the possibility to define relations which change their behavior in
such way that they are sometimes attacking and sometimes supporting, based on the acceptance
of other arguments. To present a consistent picture the subclass of bipolar Abstract Dialectical
Frameworks (BADFs) has been introduced. There each relation between two arguments is intu-
itively either attacking or supporting. So the complicated relations are not allowed to occur in
BADFs.

Although the introduction of BADFs was useful to define complex semantics of ADFs they
are actually a restriction of the whole formalism. Despite that all Dung’s AF are in the class of
BADFs it is desirable to gain a generalization of the definitions for these restricted semantics,
to remove this artificial restriction of ADFs. The aim of this work is to analyze the properties
of ADFs and their semantics to find a generalization of the stable extension, which is one of
the restricted semantics. As all other restricted semantics are based on this one, a generalized
result for the stable extension is the most needed. In addition an implementation for further
benchmarks and comparisons will be engineered. This is particularly important as there are
currently no software systems available to work with ADFs, which makes empiric comparisons
and benchmarks with other problem instances in the field of argumentation impossible. For
efficient representations in the implementation boolean functions are too space expensive, so in
addition alternative representations need to be found. Such alternative representations will also
make the field of ADFs more accessible to other fields of computer science. This connection
to other fields allows the usage of already known results of these disciplines to solve existing
problems for ADFs.
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Based on the introduced problems and the presented aim of the work, we want to summarize
the main contributions of this thesis:

• alternative representations for ADFs

• a generalization of the stable extension

• an implementation of a system to find accepted sets with respect to different semantics

To achieve these aims, many parts of the work use formal methods to analyze and prove facts
about the properties and the complexity of the ADFs. The computation of most of the semantics
has a high computational effort (they reside at least in the first level of the polynomial hierarchy).
To solve these hard problems, the highly sophisticated paradigm of Answer Set Programming
(ASP) is used for the implementation of the system (for an ASP-overview see [Brewka et al.,
2011c]). The already existing, competition-winning [Calimeri et al., 2011, Denecker et al.,
2009, Gebser et al., 2007b] solver clasp1 [Gebser et al., 2007a] is the underlying layer to solve
the ASP problems. The system description of the implementation2 [Ellmauthaler and Wallner,
2012] has been accepted as a demonstration for the International Conference on Computational
Models of Argument (COMMA 2012), which covers the latest research results related to the
computational aspects of argumentation.

The structure of the work will be as follows. In Chapter 2, the basic preliminaries and the
background for the further thesis is presented. Here a more detailed introduction to Argumen-
tation, Abstract Argumentation, Dung’s AF, and ADFs will be pictured. In additional classical
propositional logic together with a quick overview of the basics of complexity theory will be
given. Afterwards Chapter 3 will propose two different representations for ADFs. One with the
aim to connect ADFs to propositional formulae as pForm-ADFs and the other to show that the
generalization of Dung’s AFs can also be represented entirely by graph-theory as Hyper-graphs.
Then the properties and the complexity of ADFs will be analyzed in Chapter 4. Here some
transformations to subclasses are presented and our transformation from ADFs to BADFs will
be proposed. This transformation is needed for the generalization of the stable extension which
is also shown in this chapter. Then we will analyze some of the relations between extensions of
ADFs and compare them to already known relations for their equivalents on Dung’s AF. Finally
some already known complexity results will be presented and then new results are provided. The
last main contribution is presented in Chapter 5. Here the encodings for the software systems
and benchmarks are presented in detail. Then Chapter 6 will discuss the related work and in
Chapter 7 some concluding words together with an outlook to future work will be given.

1part of the Potsdam Answer Set Solving Collection (Potassco), may be downloaded at
http://potassco.sourceforge.net

2see http://www.dbai.tuwien.ac.at/research/project/argumentation/adfsys/ for the sources of the running system
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CHAPTER 2
Background

In this chapter we will give an overview on the field of formal argumentation. In particular we
will review the widely used Abstract Argumentation Framework, proposed by Dung [1995], and
a generalized framework, called an Abstract Dialectical Framework, introduced by Brewka and
Woltran [2010]. The basics for propositional logic and complexity theory will also be reviewed
in this chapter, as we will need them in further chapters.

2.1 Argumentation Formalism

Formal argumentation is based on the idea to construct and evaluate arguments to model the
concept of (nonmonotonic) reasoning. In this context these arguments are defeasible, which
means that their conclusion may change because of the existence of other arguments. This
concept stands in a direct contrast to a proof theoretic approach, because a proven fact remains
proven even in the light of additional information.

The argumentation formalism can be represented as a three-step process [Caminada and
Wu, 2011]. Argumentation can be used for many different fields of application, therefore the
input and the type of the output can vary, but the concept behind the steps will not change.
We will use the nonmonotonic entailment problem as one application to explain how the three
steps work (see also Figure 2.1). Intuitively an entailment problem is the task to find the sets of
consequences which can be deduced from a given, possibly inconsistent, knowledge-base. For
the deduction some form of logical reasoning is needed, which will be a nonmonotonic logic
in our case. At first we have a knowledge-base which is the input for the entailment problem.
Based on the elements of the knowledge base we can construct a set of arguments and relate
them among themselves. This construction is the first step, the instantiation. The resulting set
of arguments and their relations are represented as a framework for argumentation. Based on
this framework sets of accepted arguments can be identified. How the identification of arguments
(second step) is done is in general given by semantics for the framework. These selected sets are
referred to as extensions of arguments. The third, and last, step is the identification of accepted
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Chapter 2 Background

conclusions. There the extensions of the arguments are further analyzed and on their basis
accepted conclusions are identified, which are represented as extensions of conclusions. These
extensions yield the conclusion for the entailment problem and therefore the problem was solved
via the argumentation formalism.

knowledge
base

framework for
argumentation

extensions of
arguments

extensions of
conclusionsinstantiation

Step 1:

identification
of arguments

Step 2:

identification
of conclusions

Step 3:

Figure 2.1: Three-step-process of argumentation

In this work we will not deal with the instantiation or the identification of conclusions. So
the aim is on the framework itself and the identification of accepted arguments and we are talking
only about the arguments and their relations and we do not care about the reason of their relation.
This aim and point of view places this work in the field of Abstract Argumentation. For further
details on the formal argumentation process see the work of Caminada and Amgoud [2007] as
well as Caminada and Wu [2011].

2.2 Dung’s Abstract Argumentation Frameworks

To model the process of abstract argumentation Dung introduced an Abstract Argumentation
Framework (Argumentation Framework - AF). In this framework it is possible to model the
arguments and their relations. These relations are modeled via binary attacks among two argu-
ments. So we can represent that an individual argument is attacking another one or is attacked
by it.

Definition 2.2.1 (Argumentation Framework [Dung, 1995]). An Argumentation Framework is a
pair

AF = (AR,AT )

where AR is a set of arguments, and AT is a binary relation on AR, i.e. AT ⊆ AR×AR

The meaning of (A,B) ∈ AT for two arguments A,B ∈ AR, is that (A,B) represents an
attack of A against B. As the definition of the framework is syntactically the same as for a di-
rected graph, frameworks can be directly represented as such, where the nodes are the arguments
and the attacks are the directed edges.

Example 2.2.2.
The AF1 = ({A,B,C,D,E},{(A,B), (C,B), (C,D), (D,C), (D,E), (E,E)}) can also be
represented by the following graph:

A B C D E

6



2.2 Dung’s Abstract Argumentation Frameworks

In this example we can see that argument A is not attacked by anyone, while argument C and
D have a mutual attack relation between them. Argument E is not only attacked by D, but also
attacks itself.
This argumentation framework can model different situations. Maybe the 5 arguments stand for
different employees in a company and they have to form a team. The attacks can stand for the
preferences such that one employee does not want to work with another one for some distinct
reasons. Based on the given AF, everyone will be fine with A in the team and maybe E does not
want to be in the team (as he attacks himself).

Based on the AF we want to get a selection of arguments which is based on the relations
between the different arguments. This selection shall model the reasoning process to determine
consistent or reasonable sets which lead to a conclusion. Which arguments are selected is deter-
mined by the semantics, which are defined for the framework.

The most intuitive property is the conflict-free set (Definition 2.2.3), where no arguments
are inside the set, which are attacking each other. Therefore there cannot be any direct conflicts
among the selected arguments.

Definition 2.2.3 (Conflict-free set [Dung, 1995]). Let AF = (AR,AT ) be an argumentation
framework. A set S ⊆ AR of arguments is said to be conflict-free in AF if there are no
arguments A and B in S such that A attacks B. The set cf (AF ) is the set of all conflict-free
sets for the argumentation framework AF .

Example 2.2.4 (Conflict-free set, based on Example 2.2.2).

cf (AF1) = {∅, {A}, {B}, {C}, {D}, {A,C}, {A,D}, {B,D}}

The notion of a conflict-free set is only avoiding attacks between any pair of selected argu-
ments. As it does not care about attacks from the unselected arguments one can state that the
constructed set can be attacked, and therefore invalidated easily. Based on the example (Exam-
ple 2.2.2 and 2.2.4), {∅} and {A} would be the only two conflict-free sets, where the selected
arguments are not attacked from unselected ones. To ensure that the selected arguments are still
prepared against attacks from unselected arguments we can “defend” them by an attack from
one selected argument against the unselected one. If an argument inside the conflict-free set
M ∈ cf (AF ) is “defended”, we say that it is acceptable w.r.t. M . The set M1 ⊆ AR is said to
attack the set M2 ⊆ AR if a relation (a, b) ∈ AT exists, such that a ∈M1 and b ∈M2.

Definition 2.2.5 (Acceptable argument [Dung, 1995]). Let AF = (AR,AT ) be an argumenta-
tion framework. An argument A ∈ AR is acceptable in AF with respect to a set S ⊆ AR of
arguments iff for each argument B ∈ AR: if B attacks A then B is attacked by S.

Definition 2.2.6 (Admissible set [Dung, 1995]). Let AF = (AR,AT ) be an argumentation
framework. A conflict-free set of arguments S ⊆ AR is admissible in AF iff each argument in
S is acceptable with respect to S. The set of admissible sets of the framework AF is denoted by
adm(AF ).

7



Chapter 2 Background

Example 2.2.7 (Admissible set, based on Example 2.2.2).

adm(AF1) = {∅, {A}, {C}, {D}, {A,C}, {A,D}}

We can see that in Example 2.2.7 some admissible sets of arguments are included in another
one. To define the (credulous) semantics for the AF we need to represent the maximal admissible
set, which is called the preferred extension.

Definition 2.2.8 (Preferred extension [Dung, 1995]). A preferred extension of an argumentation
framework AF is a maximal (with respect to set inclusion) admissible set of AF .

Example 2.2.9 (Preferred extension, based on Example 2.2.2). Our example has two preferred
extension E1

AF1
= {A,C} and E2

AF1
= {A,D}.

Another, even more restricted semantics is the stable extension.

Definition 2.2.10 (Stable extension [Dung, 1995]). Let AF = (AR,AT ) be an argumentation
framework. A conflict-free set of arguments S ⊆ AR is called a stable extension in AF iff S
attacks each argument which does not belong to S.

Example 2.2.11 (Stable extension, based on Example 2.2.2).
Here the stable extension is SEAF1 = {A,D}.

It is obvious to see that the stable extension is also a preferred extension in the examples.
Indeed one of the results by Dung states that every stable extension is a preferred extension, but
not vice versa. [Dung, 1995].
In contrast to the credulous semantics another approach is used to introduce the skeptical seman-
tics. This one is the grounded extension (Definition 2.2.13), which is based on a characteristic
fix-point function.

Definition 2.2.12 (Characteristic function [Dung, 1995]). The characteristic function FAF :
2AR → 2AR of an argumentation framework AF = (AR,AT ) is defined as follows:
FAF (S) = {A|A is acceptable with respect to S}.

Definition 2.2.13 (Grounded extension [Dung, 1995]). The grounded extension GEAF of an
argumentation framework AF is the unique least fixed point of FAF .

Additionally there is another semantics defined, which relates the preferred extensions and
the grounded extensions (i.e. relating credulous and skeptical semantics). This is achieved with
the complete extension.

Definition 2.2.14 (Complete extension). An admissible set S ⊆ AR of arguments is called a
complete extension of an argumentation framework AF = (AR,AT ) iff each argument, which
is acceptable with respect to S, belongs to S.

Example 2.2.15 (Grounded and complete extensions, based on Example 2.2.2). In our example
the grounded extension would be GEAF1 = {A} and the complete extensions are CEAF1 =
{{A}, {A,C}, {A,D}}.

8



2.2 Dung’s Abstract Argumentation Frameworks

The mentioned relation between the extensions is summarized in Theorem 2.2.16.

Theorem 2.2.16 ([Dung, 1995]).

(I) Each preferred extension is a complete extension, but not vice versa.

(II) The grounded extension is the least (with respect to set inclusion) complete extension.

(III) The complete extensions form a complete semilattice1 with respect to set inclusion.

It is obvious that the AF is only capable of modeling binary attacks directly among two ar-
guments. More sophisticated relations are represented via distinct structures which are specially
tailored for a prior chosen semantics. In the following we will describe a few approaches for
such semantic structures which are primary based on the stable extension.

Example 2.2.17 (Semantic structure for a support relation).

A supp B

The above AF models a support between the node A and the node B under the stable extension.
We might not be interested in the support-argument “supp” and remove it from the set of argu-
ments in the final conclusion.
The above structure has the following stable extension: SE = {A,B}

Example 2.2.18 (Semantic structure for a distributed attack). Here we want to give an example
for a distributed attack (i.e. two arguments A and B attack together one argument C, but only if
both are accepted) under the stable extension.

A B

C

An Bn

Ah Bh

H

1A partial order (S,≤) is a complete semilattice iff each nonempty subset of S has a greatest lower bound and
each increasing sequence of S has a lower upper bound.
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Here we have the following stable extensions (the interesting nodes are underlined):

SE1 = {A,B,H}
SE2 = {C,An, Bn, Ah, Bh}
SE3 = {B,C,An, Ah}
SE4 = {A,C,Bn, Bh}

Example 2.2.17 shows that we can define a support with the help of another helper argument,
which forces the stable extension to select B if we have selected A. Example 2.2.18 tries to
define a structure which pictures a distributed attack. Here both attacking arguments, A and B,
need to be selected by the semantics to have an applicable attack against the third argument C.
These examples shall only motivate that it is possible to represent more relations between the
arguments than only an attack. We still have to keep in mind that we need special structures
which are bound to a specific semantics. For further observations and discussions about relation
of the semantics of Dung’s AF, see [Baroni et al., 2011a].

2.3 Abstract Dialectical Frameworks

One of the most criticized aspects of Dung’s AF is that it is only possible to represent direct
attacks among two arguments. We have already seen that it is possible to relate two argu-
ments in a more complex manner, but this is highly dependent from the used semantics. To
achieve more expressive power on the side of the framework, Brewka and Woltran proposed
another, more general framework for argumentation, namely the Abstract Dialectical Frame-
work - ADF [Brewka and Woltran, 2010]. This framework is based on the same basic ideas
as Dung’s AF, which are the utilization of arguments and the representation of relations with a
binary relation. In addition to these basics, acceptance conditions are added to the framework.
These abstract conditions cover any function to describe the relation between an argument and
all its parents (i.e. all arguments it is dependent upon). Additionally Brewka and Woltran also
have shown that every AF can be represented as an ADF. The semantics for ADFs are also
generalizations of the semantics defined by Dung.

Characterization of Abstract Dialectical Frameworks

Now we will give a formal characterization of the ADFs. Again we use a graph-like structure, but
now we have a set of statements instead of the set of arguments. With the change of the naming
it shall be emphasized that we have positions, instead of arguments, which can be accepted or
not. To describe the dependency for the acceptance, the statements are connected via links. How
the status of a given statement looks like is determined by the dependencies among the statement
and all direct parents in the graph.

To denote the set of parents for a statement s, par(s) is used. In addition to the links every
node s has an acceptance condition Cs, which is associated to the node and depends on the
links. This condition distinguishes whether a statement shall be accepted or not. Cs is a function
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which maps each subset of par(s) to either in or out. Intuitively we can say that if R ⊆ par(s)
are accepted, par(s) \ R are not accepted and Cs(R) = in (or Cs(R) = out) then s shall (not)
be accepted.

Definition 2.3.1 (Abstract Dialectical Framework [Brewka and Woltran, 2010]). An abstract
dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes)

• L ⊆ S × S is a set of links

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {in, out}, one for each statement
s. Cs is called acceptance condition of s.

Previously we claimed that the ADFs are a generalization of Dung’s AFs. So we want to
show how Dung’s AFs can be captured via ADFs. As both frameworks use a set of arguments of
respectively statements, these can be taken over as they are. Dung’s AF(AF = (AR,AT )) only
knows one type of relation between two arguments, so we can also use the attack relations as
the links. For the acceptance conditions we need to generate the following conditions: For each
s ∈ AR : Cs(R) = in iff for each r ∈ R : (r, s) 6∈ AT,Cs(R) = out otherwise.

Definition 2.3.2 (Dung Style ADF). Let AF = (AR,AT ) be a Dung’s AF. An ADF D =
(S,L,C) is a Dung Style ADF iff it is constructed by the following rules:

(I) S = AR

(II) L = AT

(III) Use for all statements s ∈ AR, Cs(∅) = in if no statement r ∈ AR exists, such that
(s, r) ∈ AT . Otherwise Cs(R) = out for all ∅ ⊂ R ⊆ par(s).

Example 2.3.3 (ADF based on Example 2.2.2). We will now show how the ADF D1 will look
like, based on the AF AF1:
D1 = (S1, L1, C1), where
S1 = {A,B,C,D,E},
L1 = {(A,B), (C,B), (C,D), (D,C), (D,E), (E,E)}, and
C1 = {CA, CB, CC , CD, CE}.
The functions in C1 have the following mapping:
CA(∅) = in CB(∅) = in CC(∅) = in CE(∅) = in

CB({A}) = out CC({D}) = out CE({D}) = out
CB({C}) = out CD(∅) = in CE({E}) = out
CB({A,C}) = out CD({C}) = out CE({D,E}) = out

11
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Bipolar Abstract Dialectical Frameworks

In the section about ADFs we have shown that we are able to model attacks between two state-
ments. Indeed it is also possible to model supports, such that the acceptance of one statement
will approve the acceptance of another one. In addition a third case can occur: The link is neither
attacking nor supporting and is called dependent. How such an ADF with all three types of links
can look like is demonstrated in Example 2.3.4

Example 2.3.4 (Link types). We use the ADF D2 = (S2, L2, C2) to show how the three link
types can look like:
D2 = {A,B,C,D}
L2 = {(A,B), (A,C), (B,D), (C,D)}
C2 = {CA, CB, CC , CD}
CA(∅) = in CB(∅) = in CC({A}) = in CD(∅) = out

CB({A}) = out CC(∅) = out CD({B}) = in
CD({C}) = in
CD({C,B}) = out

AB C

D

att sup

dep dep

The graphic shows which links are attacking (att), supporting (sup), and dependent (dep). Intu-
itively we have the attacking link between A and B, because the acceptance of A will switch the
value of the acceptance condition of B from in to out. For the supporting link it is the same, but
here the acceptance of A will switch the acceptance condition of C to be in. It can be a little bit
irritating why the links to D are neither attacking nor supporting. We can see that D is not ac-
cepted if neither B nor C is accepted. If one of them is selected we will have to accept D, which
is obviously a support. So lets suppose we had nothing accepted and now we are accepting B.
Therefore we will accept D and so we have a supporting nature. If we accept now C, we will
have to reconsider the acceptance of D and remove it. There we have an attacking nature of C
against D. Now we change the order of acceptance, such that C is accepted before B. In this
situation the attacking and supporting nature of the links will be interchanged between them.
So the nature of the two links is neither attacking nor supporting, but it is dependent on other
parents of the statement.

As we already know that Dung’s AF can be seen as a subclass of ADFs where only attacking
links are allowed, we can also construct a subclass where only supports are allowed. These
ADFs are called monotonic ADFs [Brewka and Woltran, 2010]. In Definition 2.3.5 a formal
definition for attacking and supporting links is presented. Links which are not attacking and
not supporting are supposed to be dependent. It was already mentioned in the example that
this name comes from the point that the nature is changing, dependent from other parents of the
linked node. These dependent links make some semantics difficult to be defined. So the subclass
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of ADFs where every link has to be attacking or supporting was introduced. These ADFs are
called Bipolar Abstract Dialectical Frameworks (BADF).

Definition 2.3.5 ([Brewka and Woltran, 2010]). LetD = (S,L,C) be an ADF. A link (r, s) ∈ L
is

(I) supporting iff for no R ⊆ par(s) we have that Cs(R) = in and Cs(R ∪ {r}) = out,

(II) attacking iff for no R ⊆ par(s) we have that Cs(R) = out and Cs(R ∪ {r}) = in.

Definition 2.3.6 (Bipolar Abstract Dialectical Framework [Brewka and Woltran, 2010]). Let
D = (S,L,C) be an ADF. If for all links (r, s) ∈ L, (r, s) is either supporting or attacking, the
ADF D is called a Bipolar Abstract Dialectical Framework.

Semantics

As we have defined ADFs and the subclass of BADFs we will now explain how the different
semantics work and how they are related to the semantics from Dung’s AF. We will discuss the
specific semantics in an altered order (w.r.t. Section 2.2 - AF) as the stable (Definition 2.3.10)
and preferred model (Definition 2.3.15) are only defined for BADFs. In addition we have to
keep in mind that the ADFs are more expressive, so more properties have to be considered for
the semantics.

Definition 2.3.7 (Conflict-free set [Brewka and Woltran, 2010]). LetD = (S,L,C) be an ADF.
A set M ⊆ S is conflict free if ∀s ∈ M we have Cs(M ∩ par(s)) = in. The set cf ADF (D) is
the set of all conflict-free sets for the ADF D.

The first semantics we are introducing will correspond to the stable extension if we only
use ADFs which are direct representations of Dung’s AFs. This will be done by the notion of a
model, which is intuitively a set of statements which are satisfying the acceptance conditions for
each node. Additionally it will also ensure that each satisfied node is in the set.

Definition 2.3.8 (Model [Brewka and Woltran, 2010]). Let D = (S,L,C) be an ADF. M ⊆ S
is a model of D if M ∈ cf ADF (D) and for each s ∈ S,Cs(M ∩ par(s)) = in implies s ∈ M .
modelADF (D) is the set of models for the ADF D.

Example 2.3.9 (Model for different ADFs (based on Example 2.3.3 and 2.3.4)). The unique
model M1 for the ADF D1 and the unique model M2 for the ADF D2 are M1 = {A,D} and
M2 = {A,C,D}. Another interesting example is the ADF D3 = (S3, L3, C3):

A B C

sup

sup

att
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S3 = {A,B,C}, L3 = {(A,B), (B,A), (B,C)}, and C3 = {CA(∅) = CB(∅) = out,
CA({B}) = CB({A}) = in, CC(∅) = in, CC({B}) = out}.
Here we have two models M1

3 = {A,B} and M2
3 = {C}. It is hard to argue that M1

3 is a
model ofD3, becauseA is only in the set becauseB is inside the set and vice versa. This may be
unintuitive when we reduce the circle to one element. Then expressions like “I am right because
I postulate it” would be selected by the model as a valid extension.

The examples illustrates the equality between the stable extension of Dung’s AF with a
corresponding ADF. We can also see that there are some problems with self-supporting cycles
as the existence of such constructs is enough to qualify the members of the cycle to be in a model.
To get rid of the cycles we will need to check whether the elements of the model are accepted as
a result of the cycles or not. Brewka and Woltran [2010] utilized the idea of a reduction from the
Gelfond-Lifschitz-Reduct [Gelfond and Lifschitz, 1988]. For the reduction they use the property
of the existence of a unique least model for a monotonic ADF. This model can be constructed
via an operator ThD, which has a least fixed-point. ThD is a function ThD : 2S → 2S which is
defined as

ThD(M) = {s ∈ S | Cs(M) = in}.

Intuitively the function collects in each step all statements which can be accepted and the accep-
tance is only based on already accepted statements. We will start this operation with an empty
set, so there always has to be a general accepted statement on which the acceptance has to build
up. Therefore a self-supporting cycle would not be selected if there is no additional statement
which is a supporting member of the cycle. With this definition of the function for the least
model of a monotonic ADF we can define the whole transformation for the stable model:

Definition 2.3.10 (Stable model [Brewka and Woltran, 2010]). LetDB = (S,L,C) be a bipolar
ADF. A model M of DB is a stable model if M is the least model of the reduced ADF DM

B

obtained from DB by

(I) eliminating all nodes not contained in M together with all links in which any of these
nodes appear,

(II) eliminating all attacking links,

(III) restricting the acceptance conditions CS for each remaining node s to the remaining
parents of s.

smodelADF (D) will be used to refer to the set of all stable models of the ADF D.

The elimination of nodes and links in the first and second reduction step is obtained by
removing them from the set S respectively L. In addition the restriction in the last reduction
step is done by deleting all acceptance condition mappings which contain removed nodes or
links. Note that the other conditions are not altered.

Now it should be easy to see why the stable model is only defined for BADFs. During the
elimination process all attacking links are removed. As we have a BADF we know that only
supporting links remain. So we do know that the reduced ADF is monotonic and has a unique
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least model. This would not be possible if there are also dependent links in the reduction as we
do not have a monotonic ADF. The intuition behind the stable model is to check for the model of
an ADF if the accepted statements where accepted because of a “traceable” reason or a support
cycle.

Proposition 2.3.11. For every Dung Style ADF D modelADF (D) = smodelADF (D) holds.

Proof. (i) Let M ⊆ S be an arbitrary model of the ADF D = (S,L,C), where the ADF
is based on a Dung’s AF. We know that M ∈ cf ADF (D) which implies that the acceptance
condition Cm(M) of all statements m ∈M is mapping to in. L has only attacking links, so for
no CS(R) = in a mapping CS(R′) = out, where R′ ⊂ R holds, can exist. The reduced ADF
DM = (SM , LM , CM ) has no links becauseD only has attacking links, as it is based on Dung’s
AF. Therefore all remaining acceptance conditions in CM have the mapping CS(∅) = in for all
s ∈ SM and so all arguments in SM are selected by ThD(SM ). (ii) Every stable model is a
model by definition.

Example 2.3.12 (Stable models for ADFs, continuation of Example 2.3.9). D2 is no BADF, so
the definition does not apply here. Let us have a look at D1: The reduced ADF DM

1 will be:
SM1 = {A,D}, LM1 = {}, CM1 = {CA(∅) = in, CD(∅) = in}, and the least model of DM

1 is
{A,D}. This is the indicator that the stable model of D1 is {A,D}.
Now we will take a look on the ADF D3, which has the self supporting cycle. There we have two
models, so we have to build two reductions. We first check the model M1

3 = {A,B}. Here we
have the reduced ADF DM

3 = {{A,B}, {(A,B), (B,A)}, {CA(∅) = CB(∅) = out, CA(B) =
CB(A) = in}}. The least model of this ADF is {}, so M1

3 is not a stable model of D3. Now
we have to check the second model M2

3 = {C}. The reduced ADF DM
3 = {{C}, {}, {CC(∅) =

in}} has as the least model {C} and therefore this one is a stable model. So the only stable
model for D3, as expected, is {C}.

To define the preferred model (Definition 2.3.15) we will use a characterization based the
relations between the admissible set, the stable extension and the preferred extension of Dung’s
AF:

Proposition 2.3.13 ([Brewka and Woltran, 2010]). Let AF = (AR,AT ) be an argumentation
framework. E ⊆ AR is admissible in AF iff there is some R ⊆ (AR \ E) such that

(I) no element in R attacks an element in E, and

(II) E is a stable extension of the reduced argumentation framework

AF −R = (AR \R, {(a, b) ∈ AT | a, b ∈ AR \R}).

We can generalize the admissible property for Dung’s AF, so we will get the definition for
the admissible property for ADFs.

Definition 2.3.14 (Admissible set for BADFs [Brewka and Woltran, 2010]). Let D = (S,L,C)
be a BADF. M ⊆ S is admissible in D iff there is R ⊆ S such that
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(I) no element in R attacks an element in M , and

(II) M is a stable model of D −R. D −R is obtained by:

(i) deleting all statements s ∈ R from D,

(ii) removing all links (a, b) ∈ L, where a ∈ R or b ∈ R, and

(iii) restricting the acceptance conditions to the remaining parents.

Now it is trivial to tailor the definition for the preferred model, based on the definition for
the preferred extension. But we still have to keep in mind that this only works for BADFs.

Definition 2.3.15 (Preferred model [Brewka and Woltran, 2010]). M is a preferred model of D
iff M is (inclusion) maximal among the sets admissible in D.

Compared with the section on semantics for Dung’s AF we are only missing the grounded
extension and the complete extension. The latter extension was not generalized and will not
be discussed. The generalization of the grounded extension will work for all ADFs and is not
restricted to the subclass of BADFs. The basic idea of the grounded extension is to find the
least fix point of a function which collects all arguments which can be accepted with respect
to the current selection. We have generalized Dung’s AF with the possibility to support other
statements, so we will generalize the grounded extension in the same manner. Intuitively we
want a function which collects all acceptable statements with respect to the currently selected
statements (i.e. their acceptance condition says in) and rejects all statements which are definitely
out. So the number of “undecided” elements, which are neither accepted nor rejected is reduced
with each application of the function. In case there are no undecided statements left or the
number of undecided statements cannot be reduced further, the fix point of the function and the
desired result is reached. We will call this extension the well-founded model.

Definition 2.3.16 (Well-founded model [Brewka and Woltran, 2010]). Let D = (S,L,C) be an
ADF. Consider the operator

ΓD(A,R) = (acc(A,R), reb(A,R))

where acc(A,R) =

{r ∈ S|A ⊆ S′ ⊆ (S \R)⇒ Cr(S
′ ∩ par(r)) = in}

and reb(A,R) =

{r ∈ S|A ⊆ S′ ⊆ (S \R)⇒ Cr(S
′ ∩ par(r) = out}

ΓD is monotonic in both arguments and thus has a least fixed-point. E is the well founded model
of D iff for some E′ ⊆ S, (E,E′) is the least fixed-point of ΓD.

The following example will picture the admissible set, the preferred model and the well-
founded model.
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Example 2.3.17 (Admissible set, preferred model and well-founded model for ADFs, continua-
tion of Example 2.3.9). D2 is no BADF, so we will present only solutions for D1 and D3 under
the admissible set and the preferred model.
The admissible sets for D1 are {a}, {c}, {d}, {a, c}, and {a, d}. The two sets {a, c} and {a, d}
are the maximal sets w.r.t. the subsets, so they are the two preferred models. The well-founded
model is {a}, as the fixed-point of ΓD1 is ({a}, {b}).
For D2 the well-founded model is {a, c, d} with the fixed-point result of ({a, c, d}, {b}).
D3 has one admissible set, namely {c}, which is also the preferred one. Its well-founded model
is the empty set, as ΓD3 is (∅, ∅)

2.4 Propositional Logic

In the following we will introduce the widely used and common classical propositional logic
and some of its most important properties. For an exhaustive introduction to classical logic from
the mathematical point of view see [Church, 1996, Rothmaler, 2000].

The classical logic is a binary logic. This means any variable can only have one of two values
(i.e. a variable can be either true or false). We can combine different variables and constants to
some sort of logical sentence, which is a logical proposition. As in natural languages there are
some rules how such a sentence has to look like. Here a valid sentence is called a well-formed
formula.
To decide whether a formula is a well-formed propositional formula or not, we define its syntax
which declares the allowed symbols and how they are connected. Note that the syntax only
distinguishes between sequences of symbols which are allowed and those which are not allowed.

Definition 2.4.1 (Basic syntax of the propositional logic).
Given a signature Σ := (Σc,Σpv,Σcon), where Σc = {>,⊥} is a set of constant symbols, Σpv

is a set of propositional variables, and Σcon = {∨,∧,¬} is a set of connectives.

Inductive definition of a well-formed propositional formula:

(i) Every p ∈ Σpv is a formula.

(ii) Every c ∈ Σc is a formula.

(iii) If φ is a formula, then (φ) is a formula too.

(iv) If φ is a formula, then ¬φ is one too.

(v) If φ and ψ are formulae and ◦ ∈ {∨,∧}, then φ ◦ ψ is one too.

The formulae defined by (i) and (ii) are called atomic formulae. Non-atomic formulae are com-
pound formulae. The formulae used to build a compound formula are sub-formulae of the com-
pound formula. To have a notation for all atoms in a formula ψ, we use the set atoms(ψ).
Atoms and negated atoms together are called literals. We will write Σψ

pv to denote the proposi-
tional variables in the signature of the propositional formula ψ.
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We do want to give the above defined well-formed formula some sort of meaning. For this
purpose we have to define the semantics of propositional logic. The goal of the semantics-
definition is to resolve the truth-value of a formula, based on a mapping of the atoms which
are occurring in the formula to a truth-value. We will use the values 0 and 1 to represent the
truth-values false and true. This mapping is covered by the interpretation of a formula. Note
that a formula has countable many interpretations.

Definition 2.4.2 (Interpretations of a formula).
An interpretation I is a set of propositional variables such that I ⊆ Σpv. A partial interpretation
Ip is a pair of sets (T, F ) such that T ⊆ Σpv and F ⊆ (Σpv \ T ).

The intended meaning for the interpretation is to have a set of all the variables which have
been assigned the truth-value “true”. The partial interpretation uses two sets to describe which
variables are mapped to “true” and which are “false”. Note that there can be some variables
where no distinct mapping exists.

An (partial) interpretation can also be represented as a function, which maps the values true
and false to the (sub-)set of propositional variables (i.e. I : Σpv 7→ {0, 1} and Ip : PV 7→
{0, 1}, PV ⊆ Σpv). The latter way is the more common way, but we prefer the set approach of
Definition 2.4.2 as it is more related to the set notation from the ADFs. To get the meaning of a
compound formula under a specific interpretation we will need a method to calculate the value
based on the truth assignments for the atoms. At first we will give a common definition, then we
will characterize the calculation function in a more set theoretic manner.

Definition 2.4.3 (Semantics for propositional logic). The truth-value, based on an interpretation
I is computed via the evaluation function VI for the arbitrary formulae φ and ψ:

(i) VI(p) = I(p), p ∈ Σpv

(ii) VI(>) = 1 and VI(⊥) = 0

(iii) VI(¬φ) = 1− VI(φ)

(iv) VI(φ ∧ ψ) = min(VI(φ), VI(ψ))

(v) VI(φ ∨ ψ) = max(VI(φ), VI(ψ))

As already said, it is more convenient for us to stick closer to set-theoretic definitions, so we
will define the truth value under a given interpretation for sets too:

Definition 2.4.4 (Semantics for propositional logic with sets). The truth-value VI with respect
to the interpretation I for the arbitrary formulae ψ and φ, where a denotes atomic formulae, is:

(i) VI(a) is true iff a ∈ I .

(ii) VI(>) is always true and VI(⊥) is always false.

(iii) VI(¬φ) is true iff φ is not true.
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(iv) VI(φ ∧ ψ) is true iff φ and ψ are both true.

(v) VI(φ ∨ ψ) is true iff at least one of them is true.

Any value which is not true has to be false as an interpretations captures all propositional
variables.

With the semantics definition for the symbols ¬,∨, and ∧ it can be seen that these symbols
are representing the negation, disjunction and conjunction. In fact we would only need the nega-
tion and one additional connective to simulate the third connective (e.g. (φ ∧ ψ) can be written
as ¬(¬φ ∨ ¬ψ)). This simulation can be done with the knowledge about the meaning of the
different symbols. For more convenience we will use additional connectives, which should be
seen as syntactic shortcuts for the semantically identical formulae. We will use the symbol ≡ to
represent the semantic equivalence. Two formulae are semantically equivalent if both formulae
have the same set of models.

Definition 2.4.5 (Semantically identical syntactic shortcuts). Let φ and ψ be arbitrary formulae,
then

• φ→ ψ ≡ ¬φ ∨ ψ

• φ Y ψ ≡ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

• φ ∧̄ ψ ≡ ¬φ ∨ ¬ψ

• φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

The above definitions allow us to identify which truth-value is represented by a formula with
respect to a given interpretation. To reduce the count of parentheses we will define the strength
of binding for the used connectives: ¬,∧,∨,→,↔,Y, ∧̄. This means without parentheses the
conjunction binds stronger than the disjunction. If the value VI(φ) of the formula φ with the
interpretation I is “true”, we say that the interpretation is a propositional model (I ∈ modp(φ)).
In addition we will say that a formula is satisfiable (SAT) if it has at least one model and it is
valid (VALIDITY) if every interpretation is a model.

Till now we have only dealt with the interpretation and the value of formulae, based on the
interpretation. With the introduction of the SAT and VALIDITY problem we can also have a
look on the value of formulae with respect to partial interpretations. With a partial interpretation
it may happen that there are not enough truth-values assigned to the variables to get a result from
the evaluation process. Indeed it can happen that there is a result (e.g. if it is known that one
component of a disjunction is true, it does not matter what value the other component has).

Definition 2.4.6 (Evaluation value for partial assignments). Let ψ be an arbitrary formula and
Ip = (T, F ) a partial interpretation for this formula. To determine the truth value, replace each
t ∈ T which occurs in ψ with> and each f ∈ F with⊥. If the resulting formula is VALID, then
VIp(ψ) is true. If it is not SAT, then VIp(ψ) is false. In case it is whether true or false, it can not
be decided with the current mapped variables.
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It is obvious that the computation of the truth-value under a given partial interpretation is
more complex than the computation of it under an interpretation. For the interpretation it is only
needed to check the value of the compound formulae, based on the given truth-value assignment.
In contrast to that it is required to check against each possible interpretation of the not assigned
values for the partial interpretation. Therefore the partial interpretation can only result in yes or
no if the model-check for every interpretation with respect to the partial assignment results in
the same answer.

For propositional logic there exist some more properties which are interesting for us. A
formula is in a negated normal form - NNF if all negations only occur directly in front of atoms.
In general some sort of syntactical rewriting, based on semantic equivalences is used to construct
a negated normal form (see Algorithm 2.4.9).

Definition 2.4.7 (DeMorgan’s Laws). Let ψ and φ be arbitrary propositional formulae. Then
the following truth-value equivalences hold:

• ¬(ψ ∧ φ) ≡ (¬ψ ∨ ¬φ)

• ¬(ψ ∨ φ) ≡ (¬ψ ∧ ¬φ)

Definition 2.4.8 (Double Negation). Let ψ be an arbitrary propositional formula. Then the
following truth-value equivalence holds:

¬¬ψ ≡ ψ

Algorithm 2.4.9 (NNF-Transformation). Let ψ be an arbitrary propositional formula. To gain
a negated normal form NNF(ψ), the following steps need to be done:

(I) Apply De Morgan’s Laws till all negations only appear directly in front of atoms, then

(II) use the Double Negation as long as it is applicable.

In addition we are interested in two other normal forms, namely the conjunctive normal form
- CNF and the disjunctive normal form - DNF. The CNF is a negated normal form, where the
literals are pooled together in groups (clauses). The clauses are connected via conjunctions and
the literals inside the clauses are disjunctively connected. For the DNF the role of disjunction
and conjunction is switched. The advantage of the two normal forms is the flat structure of the
formula as there are not many nested connectives. The disadvantage is the potential exponential
growth of the length of the formula during the transformation. Note that every formula can be
transformed into a semantically equivalent formula in DNF (resp. CNF or NNF).

Definition 2.4.10. Let ψ, φ, and ρ be arbitrary propositional formulae. Then the following
truth-value equivalences hold:

• ψ ∧ (φ ∨ ρ) ≡ (ψ ∧ φ) ∨ (ψ ∧ ρ)

• ψ ∨ (φ ∧ ρ) ≡ (ψ ∨ φ) ∧ (ψ ∨ ρ)
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2.4 Propositional Logic

Algorithm 2.4.11 (CNF-Transformation). Let ψ be an arbitrary propositional formula in NNF .
Apply the distributive law such that the disjunctions move towards the atoms and the conjunc-
tions connect these disjunctions.

Example 2.4.12 (CNF). Suppose φ = a Y b and ψ = (a ∧ b) ↔ (a → (b ∨ c)). The formulae
have the following CNF:

(a ∨ b) ∧ (¬a ∨ ¬b)

(¬a ∨ ¬b ∨ ¬a ∨ b ∨ c) ∧ (a ∨ a ∨ ¬a ∨ ¬b ∨ ¬c) ∧ (b ∨ a ∨ ¬b ∨ ¬c)

Due to the specified structure of a formula in CNF the formula can be represented in a more
compact way, namely as a set of sets. This representation is the clause form (for a more exhaus-
tive introduction and discussion of its properties see [Leitsch, 1997]). We will write CF(ψ) to
represent the clause form of the formula ψ. Here the literals of one clause are represented as a
set of literals and all clauses of the formula are represented as a set of clauses. One advantage of
this representation is the easy readability, the elimination of multiple occurrences of a literal in
one clause, and the elimination of multiple occurrences of the same clause.

The CNF has also some interesting properties, which are not present for arbitrary formulae.
A formula in CNF is unsatisfiable if in any clause a contradiction exists. In addition we know
that if a formula in CNF has an interpretation I which is a model of this formula, then I has to
be a model for every clause too. In general an empty set of literals is seen to be false under every
interpretation and an empty set of clauses is a tautology.

For propositional logic it is possible to resolve the truth-value of a formula with a truth-
table. A truth-table has for each sub-formula of the formula in question a column. Each row
is one interpretation for the propositional variables. So the truth-table shows all interpretations
for the formula. In the fields the truth value to the corresponding formula with respect to the
interpretation is listed.

Example 2.4.13 (Truth-table). Suppose we have the formula (¬a ∨ b) ∧ (¬b ∨ a) (which is se-
mantically equivalent to a Y b). The truth-table would be:

a b ¬a ¬b ¬a ∨ b ¬b ∨ a (¬a ∨ b) ∧ (¬b ∨ a)

0 0 1 1 1 1 1

0 1 1 0 1 0 0

1 0 0 1 0 1 0

1 1 0 0 1 1 1

Propositional logic has such a strong expressiveness that it is possible to find for each set of
models an appropriate formula. In other words, every kind of sequence for the last column of a
truth-table can be enforced by a formula.

Another representation for propositional formulae, which has the aim to show the structure
of the sub-formulae, is the formula-tree. There the connectives are the inner nodes and the leaves
are the atomic formulae.
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Example 2.4.14 (Formula-tree). For the formula ¬((¬a ∨ b) ∧ c ∨ (a ∧ b)) the corresponding
tree is:

¬

∧

∨

¬

a

b

∨

c ∧

a b

Proposition 2.4.15. Let ψ be a propositional formula, NNF (ψ) be the transformed NNF of ψ,
and α be an arbitrary atom in ψ. α is a negated literal in nnf (ψ) iff an odd number of negations
occurs in the path from α to the root of the formula tree of ψ.

Proof. To gain a negated normal form the negations need to move towards the atoms. The
generally used DeMorgan rules preserve the number of negations in the path from the atom to
the root. When all negations are directly above the atoms the double-negation rule will eliminate
all pairs of negations. Therefore only one or no negation will be kept. As always two negations
are deleted the parity of the number of negations does not change.

Definition 2.4.16. Let NNF (ψ) be an arbitrary negated normal form of the formula ψ. A literal
α in a propositional formula ψ is said to have a positive polarity iff the literal is positive in the
corresponding NNF (ψ).
A literal α in a propositional formula ψ is said to have a negative polarity iff the literal is negated
in the corresponding NNF (ψ).

Note that the above proposition and definition also hold for the CNF and DNF.

2.5 Complexity Theory

In this section we give an overview on complexity theory and the common complexity classes,
which will be interesting for ADFs. A brief overview is given by Johnson [1992] and for an
in-depth insight in complexity theory we refer to the book by Papadimitriou [1994].

In complexity theory we want to understand and show how complex the process to find a
solution for a problem is. These problems are defined by an input description and a question to
be answered. We will deal mostly with decision problems. There the question is formulated to
get a “yes or no” answer. The complexity of such a problem is given by a function which is only
dependent on the input and the method to solve the problem. The different types of functions
are pooled together in so-called complexity classes.

One of the most important complexity class is P. It is defined on a deterministic universal
turing machine and is a class for decision problems.
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2.5 Complexity Theory

Definition 2.5.1 (Complexity class P). A problem P is in P if it can be solved by a deterministic
universal turing machine in polynomial many working steps, with respect to the length of the
input string.

In other words a problem in P needs only polynomially longer to be computed than the
length of the input string was. One example for a problem in P is the decision problem whether
an interpretation I for a formula φ is a propositional model I ∈ modp(φ) or not.

Definition 2.5.2 (Complexity class NP). A problem P is in NP if it can be solved by a non-
deterministic universal turing machine in polynomial many working steps, with respect to the
length of the input string.

For NP we have another underlying working mode, namely the non-deterministic universal
turing machine. Intuitively this means if we would try to solve the problem with deterministic
turing machines, we would have to clone the machine at each step where a decision is done. For
each decision path another turing machine is working and the problem is solved when one of
the machines can answer the question in polynomial time. An example for a problem in the NP
class is the SAT problem for propositional formulae (i.e. is a given formula φ satisfiable or not).
Note that it is unknown if there exists an efficient way to compute problems which are in NP,
but current solutions to solve NP problems with deterministic methods take exponential time.

We will say a problem is NP-complete if we know that the problem has a membership in
this class and that the problem is NP-hard.

Definition 2.5.3 (Membership and hardness). A problem P has a membership in a complexity
class C, if an algorithm exists, whose complexity function is in the class of C.
A problem P is said to be C-hard for a complexity-class C, if a program Π exists, which trans-
forms P ′ to P , where P ′ is known to be a C-hard problem, and the answer to P ′ equals the
answer to P . Additionally the complexity of Π must not be greater than P.

One method to show the NP-membership is to use a “guess & check” algorithm. This
algorithm will guess a solution and afterwards checks whether the solution is correct or not. Note
that the algorithm only checks one guess. If this “guess & check” algorithm has a polynomial
runtime (i.e. has a P membership), then the problem is in NP.

For each non-deterministic problem class a complement class exists (e.g. coNP). There
all answers are the complement of the original problem. One example of two complement
problems is the SAT and the UNSAT problem. Note that the two complement problems can
have a different difficulty to solve: To answer the SAT question, it is only needed to test the
interpretations till one is a model, but to check for the UNSAT answer every interpretation must
be tested to show that no interpretation is a model.

On top of the classes P, NP, and coNP, we can now define one additional type of classes.
We will use so-called oracles. Let us assume we have an oracle which can solve a problem in
a complexity class with a constant computational effort of one unit of time. If we use such an
oracle in our program the overall complexity of the program without the oracle would be higher
than with the oracle. In case we have an program in P and an oracle which solves a problem
in NP, we would have the complexity class PNP. Based on this notation for algorithms with
oracles we can build the polynomial hierarchy.
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Definition 2.5.4 (Polynomial hierarchy).

∆0P = Σ0P = Π0P = P; and for all i ≥ 0 :

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

To get a better understanding on the hierarchy, Figure 2.2 is sketching the relations of the
different classes. In addition a less detailed notion for computational complexity exists for com-

P

N
P

coN
P

∆2P
Σ2P Π2P

∆3P

··
·

Figure 2.2: Relations of the classes in the polynomial hierarchy

putational problems. Here the problems are assigned to be tractable or intractable. In general
all problems in P are said to be tractable problems while all problems which are in a higher
complexity class are intractable computational problems.

Note that it is not known whether the polynomial hierarchy is a correct assumption or not.
Indeed the question whether P 6= NP holds or not is still not answered. Anyway, we use the
notion of the polynomial hierarchy as it is assumed in the scientific community that it holds till
something different is proven.
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CHAPTER 3
Alternative Representations of ADFs

This chapter will emphasize on alternative representations for ADFs. The first alternative is
based on the idea that the acceptance conditions for the statements are in fact binary functions
and therefore it is possible to represent them as propositional formulae, which was only a short,
not advocated side note in [Brewka and Woltran, 2010]. The idea was used to construct a trans-
formation [Brewka et al., 2011a], but it was never investigated further. We will rewrite all
important definitions and show that both representations are indeed equal. In addition we will
also discuss a representation for ADFs as a hypergraph structure to have a stronger connection
to the graph-like representation of Dung’s AFs.

3.1 ADFs with Propositional Formulae

We will try to characterize the already introduced ADFs (see Section 2.3) with another repre-
sentation for the acceptance condition. In the basic definition for ADFs we have used the links
between statements to define that they are in a relation. Based on the relation it is possible
to identify all parents of one statement and the acceptance condition defines for each subset
of parents whether the statement is in or out. These two values for the subsets determine which
combinations of accepted parents will lead to the acceptance or non-acceptance of the statement.
We will now redefine the notion of an acceptance condition as well as the ADF to adjust it for
propositional formulae.

Propositional formula ADF

Definition 3.1.1 (ADF with a propositional formula as acceptance condition).
An ADF with propositional formula acceptance conditions is a tuple D = (S,L,AC) where

• S is a set of statements

• L ⊆ S × S is a set of links
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• AC = {ACs}s∈S is the set of acceptance conditions.

Definition 3.1.2 (acceptance condition). LetD = (S,L,AC) be an ADF with propositional ac-
ceptance conditions, then ACs = ψ and ψ is a propositional formula, where (Σs

pv = par(s)) ⊆
S and ∀a∈par(s)a ∈ Σs

pv.

The new acceptance condition has only one propositional formula instead of the binary total
function, which has to be defined for 2par(s) different inputs. We will use the acceptance of the
parents for the interpretation. To relate both representations it is important to see the value in as
true and out as false. To be sure that every relation to the parents is represented we demand that
each parent occurs as an atom in the formula. In addition we want to be sure that only the parents
will take account to the truth-value of the formula, so we restrict the propositional variables to
the set of parents.

Definition 3.1.3. An ADF D = (S,L,C) is equivalent to an ADF with propositional formulas
as acceptance conditions D′ = (S′, L′, AC) iff S = S′, L = L′, and for every s ∈ S and every
M ⊆ par(s) : Cs(M) = in iff M ∈ modp(ACs) holds.

Proposition 3.1.4. For every ADFD = (S,L,C) a ADF with propositional formula acceptance
conditions D′ = (S′, L′, AC) can be constructed such that D and D′ are equivalent, and for
every ADF with propositional formula acceptance condition D′ = (S′, L′, AC) an ADF D =
(S,L,C) can be constructed such that D′ and D are equivalent.

Proof. Both are only equivalent if the statements and the links are the same, so only the total
functions and the propositional formulas have to be analyzed deeper. The input for the total
functions is determined by the acceptance of the parent statements and possible inputs are all
subsets of the set of parents. The interpretation of a propositional formula is defined as a subset
of all atoms in the formula. As only parent statements are allowed to occur as atoms all interpre-
tations of a propositional formula are the same sets as the possible inputs for the total function
and vice versa. The total function defines for each input value an output value. In fact it is the
same as a truth-table for the propositional logic. As a propositional formula can express every
possible set of truth-values in a truth-table the appropriate formula can express the same as the
function. In the other way each formula has a set of interpretations, where some of them are
a model. So the total function needs to set all sets which correspond to a model to in and the
others to out.

As the construction can be done in both ways the expressiveness of the two representations
has to be equal.

Example 3.1.5 (Some ADFs represented with propositional formula acceptance conditions).
We will use the ADFs D1, D2, and D3, we have already used before (see Examples 2.3.3, 2.3.4,
and 2.3.9):

D1 : A B C D E
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D2 : AB C

D

att sup

dep dep

D3 : A B C

sup

sup

att

These are the corresponding acceptance conditions:

D1 D2 D3

ACA = > ACA = > ACA = B
ACB = ¬A ∧ ¬C ACB = ¬A ACB = A
ACC = ¬D ACC = A ACC = ¬B
ACD = ¬C ACD = B Y C
ACE = ¬E ∧ ¬D

The example shows that we have to use the propositional constants⊥ and>, if the statement
has no parents. There we choose according to the basic definition whether it shall be always in or
out. In addition it is obvious that the propositional formulae are easier to read and more compact
than the total functions (to compare them see Examples 2.3.3, 2.3.4, 2.3.9, and 3.1.5).

With the representation utilizing the propositional formula acceptance conditions, the infor-
mation from the links becomes redundant. Every variable which occurs in the formula has to be
a parent of the associated statement. In addition the links do not support us with specific infor-
mation about the link type, as this has to be checked with the acceptance condition. Therefore
we can omit the links and define the propositional formula ADF (pForm-ADF).

Definition 3.1.6 (pForm-ADF). A pForm-ADF is a pair D = (S,AC), where

• S is a set of statements

• AC = {ACs}s∈S is the set of acceptance conditions, where each statement has exactly
one associated condition.

An acceptance condition ACs is a propositional formula ψ, where Σs
pv ⊆ S.

One advantage of pForm-ADFs is the possibility to rewrite sub-formulae into semantically
equivalent propositions. Some links may not have an impact to the decision whether a statement
is accepted or not (e.g. a ∨ ¬a, which is a tautology and has the same expressiveness as >).
These rewritings can reduce the complexity of formulae and be a method to analyze whether a
link is meaningful or not. This kind of simplified rewriting of formulae indeed removes some
kind of information, as a link may be removed by the removal of tautologies or absorptions.
Although informations are removed, these changes have no impact on the introduced semantics
as the relation between these two arguments is that they have no influence on each other.

Note that this is a simplification for the standard representation of ADFs. There are already
variants of ADFs existing, which are utilizing weights or other forms of additional information
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about the links. In these cases it is possible to add an additional structure for the extra informa-
tion to the pForm-ADF or to reuse the omitted notion of links. Another workaround could be to
remove the requirement that each variable in the signature occurs in the formula. So the signa-
ture would capture the information of the links and the formula itself contains the informations
about the relations.

Propositional Formula BADF

We already said that the pForm-ADF has the same expressiveness as the original representation.
We can use the definition for BADFs from the existing representation without changes, but we
need to revamp the definition for a link and how its type is decided. In addition we will present
a class of formulae where the decision can be done via a syntactic procedure.

Definition 3.1.7 (links and link types for pForm-ADFs). Let D = (S,AC) be a pForm-ADF,
where a, b ∈ S. A link (a, b) between a and b such that a is in a relation with b is present if
a ∈ Σb

pv.
The link (a, b) is attacking in D iff for no I ⊆ (Σb

pv \ {a}) the following holds:

I 6∈ modp(ACb)

I ∪ {a} ∈ modp(ACb)

The link (a, b) is supporting in D iff for no I ⊆ (Σb
pv \ {a}) the following holds:

I ∈ modp(ACb)

I ∪ {a} 6∈ modp(ACb)

We say a is attacking (resp. supporting) in D w.r.t. b. att(ACb) (resp. sup(ACb)) denotes the
set of all attacking (resp. supporting) links in D w.r.t. b.

The identification of the link-type is already shown to be intractable (see Section 4.4 for
more details), so it is desirable to find a specific subclass of propositional formulae, where the
link-type distinction is tractable. In addition this class shall be general enough to gain the same
expressiveness as the class of bipolar ADFs. At first we will project the attacking and supporting
notion to variables in propositional formulae to have a stronger focus on the formulae (which
are the acceptance conditions).

Definition 3.1.8 (Attacking and supporting variable). Let ψ be a propositional formula. A vari-
able a ∈ Σψ

pv is

• attacking if there exists no I ⊆ Σψ
pv, such that I 6∈ modp(ψ) and I ∪ {a} ∈ modp(ψ),

and

• supporting if there exists no I ⊆ Σψ
pv, such that I ∈ modp(ψ) and I ∪ {a} 6∈ modp(ψ).
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The notion of attacking and supporting variables will identify the “role” of each variable in
the formula. If we use the formula as an acceptance condition the “role” of each variable is in a
one to one correspondence to the link-type of the variable (i.e. the link to another statement in
the ADF).

We have already mentioned that there may exist relations between two statements which
have no impact on each other (e.g. tautologies and contradictions in the acceptance condition
formulae). These variables, which can be omitted without loss of information (see Proposi-
tion 3.1.12) can not impact the truth-value of the formulae. So we introduce the notion of an
informative variable and formula and the complement concept of an uninformative variable and
formula. Intuitively an informative variable is a variable which provides information to the for-
mulae in some kind such that there exists an interpretation where the addition of this informative
variable to the interpretation changes the truth-value of the formula.

Definition 3.1.9 (Informative variable). Let ψ be a propositional formula. A variable a ∈ Σψ
pv

is informative in ψ if there exists an interpretation I ⊆ Σψ
pv such that VI(ψ) 6= VI∪{a}(ψ). It is

uninformative if it is not informative.

Corollary 3.1.10. A variable a ∈ Σψ
pv of the propositional formula ψ is informative iff a is at-

tacking, supporting, or neither attacking nor supporting. A variable a ∈ Σψ
pv of the propositional

formula ψ is uninformative iff a is attacking and supporting at the same time.

Proof. Follows by Definition 3.1.9 and Definition 3.1.8. A variable a in an arbitrary formula
ψ is informative iff there exists a model I ⊆ Σψ

pv such that the truth-value changes between I
and I ∪ {a}. If such a change exists it is either a counter example for the fact that the variable
is attacking or supporting. So a variable needs to be attacking or supporting, but it cannot
be attacking and supporting. If a second interpretation J ⊆ Σψ

pv exists, such that I 6= J ,
VI(ψ) 6= VJ(ψ), and J is again an attacking or supporting counter example, then a is neither
attacking nor supporting, but still informative.

Definition 3.1.11 (Informative propositional formula). A propositional formula ψ is said to be
informative if every variable a in ψ is informative.

Proposition 3.1.12. Every uninformative propositional formula ψ can be transformed to an
informative propositional formula by substituting all not informative variables with the constant
⊥, without changing the set of models.

Proof. Let ψ be a propositional formula which is not informative. Suppose a ∈ Σψ
pv is an

uninformative variable, then VI\{a}(ψ) = VI∪{a}(ψ) holds for every interpretation I ⊆ Σψ
pv.

With the substitution of all occurrences of the variable a in ψ with the constant ⊥, we do the
same as the truth-value evaluation process for VI\{a}(ψ) does. So the set of models for the
formula ψ remains the same. Through the removal of the variable a the link disappears and so
the uninformative link is no longer existent.

Definition 3.1.13 (Bipolar propositional formula). A propositional formulaψ is a bipolar propo-
sitional formula if every variable is supporting or attacking.

29



Chapter 3 Alternative Representations of ADFs

Now we will connect the approach which has its focus on formulae and the pForm-ADFs
such that both notions can be used to identify whether a pForm-ADF is bipolar or not.

Corollary 3.1.14. A pForm-ADFD = (S,AC) is bipolar if every statement s ∈ S has a bipolar
propositional formula as its acceptance condition ACs.

Proof. Follows from the Definitions 2.3.6, 3.1.7, 3.1.8 and 3.1.13.

In the following we will introduce the class of monotone propositional formulae, which re-
stricts the usage of the polarity of variables. There it is not allowed that one variable occurs with
a positive and a negative polarity in the same formula. As a natural further step we also introduce
the monotone pForm-ADFs, where every acceptance condition needs to be a monotone proposi-
tional formula. The idea behind this representation is, that we will be able to draw conclusions
on the link types of variables based on the knowledge of their polarity (see Proposition 3.1.19).

Definition 3.1.15 (Monotone propositional formula). A propositional formula ψ is a monotone
propositional formula if no variable occurs as a positive and negative polarity literal in the
formula.

Definition 3.1.16 (Monotone pForm-ADF). Let D = (S,AC) be a pForm-ADF. D is called a
monotone pForm-ADF if every statement s ∈ S has an acceptance condition ACs which is a
monotone propositional formula.

Algorithm 3.1.17 (Transformation of bipolar informative propositional formulae to monotone
propositional formulae). Let ψ be a bipolar informative propositional formula represented in
clause form. Remove all clauses which contain the same variable as a positive and a negative
literal. Then do the following substitutions:

• If the variable a ∈ Σψ
pv is attacking, then remove all positive literals “a” from the clauses

in ψ.

• If the variable a ∈ Σψ
pv is supporting, then remove all negative literals “¬a” from the

clauses in ψ.

Proposition 3.1.18. The transformation of a bipolar informative propositional formula ψ in
clause form to a monotone propositional formula in clause form ψ′ does not change the set of
models, i.e. ψ and ψ′ have the same set of models.

Proof. Let ψ be a bipolar propositional formula in clause form, a ∈ Σψ
pv be a propositional

variable of ψ, and I ⊆ Σψ
pv be an interpretation of ψ. The removal of a clause which is a

tautology does not change the set of models as the truth-value of the clause is always true.
ψ is bipolar and informative, so a can only be supporting or attacking. This holds for every
variable, therefore it is trivial that no variable can occur as a positive and a negative literal after
the transformation.
Now we distinct how the truth-values under some interpretation I ⊆ Σψ

pv behaves and then we
will show that the transformation will not change the truth-value behavior of the overall formula
under the interpretation. We let a 6∈ I to argue about all interpretations where a is not in the set
of variables. To capture all sets, we also investigate the interpretations I ∪ {a}.
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(I) Assume a is supporting. Choose one arbitrary clause c ∈ CF(ψ), where {¬a} ⊆ c and
remove the ¬a-literal from it such that cn = c \ {¬a} holds. We can distinguish between
three cases which can occur for the clause:

(i) VI(c) = false: This state is not possible, because the literals in c are connected via
disjunctions and {¬a} ⊆ c holds, so VI(c) = true has to hold.

(ii) VI(c) = true and VI∪{a}(c) = true: The substitution of c by cn will not change
the truth value, as VI(cn) = VI∪{a}(cn) = VI(c). VI(cn) = VI(c) holds because
VI∪{a}(c) = true and therefore there needs to be another literal except ¬a in c
which evaluates to true under I . So the formula still evaluates to true if we remove
¬a.

(iii) VI(c) = true and VI∪{a}(c) = false: I ∈ modp(ψ) and I ∪ {a} 6∈ modp(ψ) is
a contradiction to the assumption that a is supporting, so there needs to be an c′ ∈
(CF(ψ) \ {c}) such that VI(c′) = false . Therefore we know that I 6∈ modp(ψ) and
I ∪ {a} 6∈ modp(ψ) has to hold. Since VI(c) = true and VI∪{a} = false holds, ¬a
is the only reason for c to be true under I . Therefore VI(cn) = VI∪{a}(cn) = false .

(II) Assume a is attacking. Choose one arbitrary clause c ∈ CF(ψ), where {a} ⊆ c and
remove the a-literal from it such that cn = c \ {a} holds. We can distinct between three
cases which can occur for the clause:

(i) VI∪{a}(c) = false: This state is not possible, because the literals in c are connected
via disjunctions and {a} ⊆ c holds, so VI∪{a}(c) = true has to hold.

(ii) VI(c) = true and VI∪{a}(c) = true: For this interpretation the variable a does not
have an impact on the truth-value. So the substitution of c by cn will not change the
truth value, as VI(cn) = VI(c).

(iii) VI(c) = false and VI∪{a}(c) = true: I 6∈ modp(ψ) and I ∪ {a} ∈ modp(ψ)
is a contradiction to the assumption that a is attacking, so there needs to be an c′ ∈
(CF(ψ)\{c}) such that VI∪{a}(c′) = false. Therefore we know that I 6∈ modp(ψ)
and I ∪ {a} 6∈ modp(ψ) has to hold. Since VI(c) = false and VI∪{a}(c) = true
holds, a is the only reason for c to be true under I ∪ {a}. Therefore VI(cn) =
VI∪{a}(cn) = false .

As one removal does not change the set of models every additional removal will not change the
models neither.

Proposition 3.1.19. Let ψ be a monotone propositional formula and a ∈ Σψ
pv be a variable of

ψ, then the following holds:

(I) If a has a positive polarity, a has to be a supporting variable and

(II) if a has a negative polarity it has to be an attacking variable.

Proof. Let ψ be a monotone propositional formula and assume without loss of generality that ψ
is inNNF . In addition assume that ψ is represented as a formula tree. So negations only occur
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as direct parents of the leaves. Therefore no negation occurs on the path from a variable with
positive polarity and exactly one negation occurs on the path from a negative polarity variable.

(I) Suppose a ∈ Σψ
pv has a positive polarity and a is not a supporting variable. Then an

interpretation I ⊆ Σψ
pv exists, such that I ∈ modp(ψ) and (I ∪ {a}) 6∈ modp(ψ). a

occurs only as a positive literal in ψ, therefore on each path from one occurrence of a
to the root of the formula tree no negation occurs. As I ∈ modp(φ) holds, we know
that the truth-value VI(a) = false is not propagated to the root of the formula tree. By
I ∪ {a} 6∈ modp(φ) we need a subformula whose truth-value is changed from true to
false by the addition of a to the interpretation. As VI∪{a}(a) = true and no negation
occurs on the path from a to the root, no such truth value change to false can be caused
by a. Therefore no such interpretation I can exist and a has to be supporting.

(II) Suppose a ∈ Σψ
pv has a negative polarity and a is not an attacking variable. Then an

interpretation I ⊆ Σψ
pv exists, such that I 6∈ modp(ψ) and (I ∪ {a}) ∈ modp(ψ). a

occurs only as a negative literal in ψ, therefore on each path from one occurrence of a to
the root of the formula tree exactly one negation occurs. As I 6∈ modp(φ) holds, we know
that the truth-value VI(¬a) = true is not propagated to the root of the formula tree. By
I ∪ {a} ∈ modp(φ) we need a subformula whose truth-value is changed from false to
true by the addition of a to the interpretation. As VI∪{a}(¬a) = false and exactly this
one negation occurs on the path from a to the root, no such truth value change to true can
be caused by a. Therefore no such interpretation I can exist and a has to be attacking.

Note that the proposition only identifies that a positive polarity variable is supporting and a
negative polarity variable is attacking. It is still possible that the variable is both, attacking and
supporting. So we can not check with that syntactical trick whether a variable is informative or
not.

Corollary 3.1.20. Each variable a ∈ Σψ
pv in a monotone propositional formula ψ is attacking

or supporting.

Proof. Every variable a in a monotone propositional formula ψ has either a positive or negative
polarity (Definition 3.1.15). By Proposition 3.1.19 the Corollary follows.

Corollary 3.1.21. Every monotone pForm-ADF D = (S,AC) is a BADF.

Proof. Follows by Definition 2.3.6, Corollary 3.1.14, and Corollary 3.1.20.

Definition 3.1.22 (pForm-ADF equivalence). Let D = (S,AC) and D′ = (S′, AC ′) be pForm-
ADFs. D is equivalent to D′ if S = S′ and for all I ⊆ S the following holds:

∀s ∈ S : I ∈ modp(ACs) ⇐⇒ I ∈ modp(AC
′
s)

Theorem 3.1.23. Each pForm-BADF can be transformed to an equivalent monotone pForm-
ADF and every monotone pForm-ADF is a pForm-BADF.
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Proof. That each pForm-BADF can be transformed to an equivalent monotone pForm-ADF is
shown by Proposition 3.1.18 and that every monotone pForm-ADF is a pForm-BADF is shown
by Corollary 3.1.21.
Note that an ADF which is not a BADF can not be a monotone pForm-ADF. By the definition
of BADFs (see Definition 2.3.6), an ADF is not a pForm-BADF if it has a link which is neither
attacking nor supporting. Corollary 3.1.20 shows that each variable is attacking or supporting
and so no such link can exist in a monotone pForm-ADF.

Table 3.1 tries to connect the existing ADF representation with the pForm-ADF represen-
tation for a better understanding on the relation between attacking and supporting links. The
topmost section of the table shows some kind of truth table. This one omits specific formulae
which are analyzed and only enumerates in each column one possible pattern of models. In the
bottom section of the table in each column an example for a propositional formula with this set
of models is given. On the left side of the top section the standard enumeration of the possible
truth assignments to the atoms is given, together with a representation as a set-theoretic inter-
pretation. In the middle-section of the table the variables are checked against the definition of
supporting and attacking links. The rows “attacking ce” and “supporting ce” will show one
counter-example (if it exists) on which the attacking respectively supporting link property is not
satisfied. The counter-example states exactly one interpretation I. This means that the addition
of the variable a (resp. b) will result in a change of the acceptance condition truth-value such
that the property for attack or support is no longer satisfied for the link to a (resp. b). Finally the
row link-type is summarizing the outcome of the counter-examples and gives an overview about
the final link type of the variable.

In addition the table illustrates that not informative links may be removed without any impact
to the set of models. In the examples it is also realized that each BADF is already represented as
a monotone pForm-ADF and only the formulae with dependent links are not represented in this
class (as it is not possible). Note the side-effect that the formulae which are not represented as
monotone formulae are already the result of the monotone transformation procedure if we use
them on the non-BADFs.

Semantics

We have shown that the pForm-ADFs are another representation for ADFs. In the prior section
we have defined the pForm-ADFs and revamped some of the underlying definitions for BADFs to
have a more natural approach via the new representation. Additionally we presented a subclass
where deciding some properties of the link types is trivial. To introduce an alternative to the
ADFs with total functions, we have to reformulate the definitions for the semantics too. We will
present these alternative definitions in this section in the following two parts:

At first we will investigate the semantics which are defined on the set of all ADFs without
restrictions. Then we introduce the semantics which only work for BADFs. In general an addi-
tion part about the monotone pForm-ADFs can be presented, but the semantics do have the same
definitions for pForm-BADFs and monotone pForm-ADFs. In fact there are only differences in
the complexity of the semantics with respect to the link type detection.
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a b I possible model-patterns for I
0 0 ∅ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 {b} 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 {a} 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 {a,b} 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a
attack ce - b ∅ b - - ∅ ∅ - b - b - - - -

support ce - - - - b - b - ∅ ∅ - - ∅ ∅ b -
link type as s s s a as d s a d as s a a a as

b
attack ce - a - - ∅ ∅ ∅ ∅ - a - - - a - -

support ce - - a - - - a - ∅ ∅ ∅ ∅ - - a -
link type as s a as s s d s a d a a as s a as

prop. formula ⊥ a
∧
b

a
∧
¬
b

a ¬
a
∧
b

b (a
∨
b)∧

(¬
a
∨
¬
b)

a
∨
b

¬
(a
∨
b)

(a
∨
¬
b)∧

(¬
a
∨
b)

¬
b

a
∨
¬
b

¬
a

¬
a
∨
b

¬
(a
∧
b)

>

Table 3.1: Relation between propositional models and attacking/supporting links for two vari-
ables

Semantics on pForm-ADFs

Here we will have our focus on the conflict-free property as well on the model and the well-
founded model. To get the conflict-free definition for pForm-ADFs we need to use the equiv-
alence between the total functions and the propositional formulae, defined by Definition 3.1.3.
So we get the adapted definition for the conflict-free property on pForm-ADFs.

Definition 3.1.24 (conflict-free set for pForm-ADFs). Let D = (S,AC) be a pForm-ADF. A
set M ⊆ S is conflict-free if for all s ∈ M : M ∈ modp(ACs) holds. cf pADF (D) is the set of
all conflict-free sets for D.

The adaption for the model can be done in the same manner. In addition we have substituted
the two implications with an iff to shorten the definition and make it more intuitive.

Definition 3.1.25 (model for pForm-ADFs). Let D = (S,AC) be a pForm-ADF. M ⊆ S is a
model of D if for each s ∈ S, M ∈ modp(ACs) iff s ∈ M , holds. modelpADF (D) is the set of
models for the pForm-ADF D.

At last we will have to take a further look on the well-founded model. This semantics is
based on the operator ΓD(A,R) (see Definition 2.3.16). The idea behind ΓD is to collect all
statements which are accepted (resp. rejected) for sure. Iterated application of the operator on
the collected set of statements results in a fixed-point which represents the set of statements
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which are accepted (resp. rejected) regardless the selection of any other statement which is not
known to be selected or rejected without doubt. Based on the equivalence between the notions
of the model and the binary function value in and the definition of ΓD for ADFs, it is easy to
see that the concept of the partial interpretation reflects the condition that regardless of other
assumptions the value is always in respectively out. So the definition can be adapted as follows:

Definition 3.1.26 (well-founded model for pForm-ADFs). Let D = (S,AC) be a pForm-ADF.
Consider the operator

ΓD(A,R) = (acc(A,R), rej(A,R)),

where acc(A,R) =

A ∪ {s ∈ (S \ (A ∪R)) | V(A,R)(ACs) = true},

and rej(A,R) =

R ∪ {s ∈ (S \ (A ∪R)) | V(A,R)(ACs) = false}.

ΓD is monotonic in both arguments and thus has a least fixed-point. E is the well-founded model
of D iff for some E′ ⊆ S, (E,E′) is the least fixed-point of ΓD.

Semantics on pForm-BADFs

Now let us have a look on the remaining semantics, namely the stable model together with
the admissible set and the preferred model which are defined on top of the stable model. The
definition of the stable model for BADFs checks the stability of models. This check is done
by the monotone operator ThD(M) which is applied to a reduction of the ADF based on the
specific model. Only if the least fixed-point of this operator has the same set as the model, it
is stable. At first we need to adapt the operator, which is already done with the knowledge of
Definition 3.1.3:

ThD(M) = {s ∈ S |M ∈ modp(ACs)}

The reduction (defined in Definition 2.3.10) is done by removing all statements which are not
in the currently checked model. Then all attacking links are removed from the set of links. In
the last step all acceptance condition mappings are removed which contain a removed statement
or refer to a parent which is no longer in relation (the removal of the links restricts the set of
parents). To get the same behavior for the pForm-ADFs, we will not remove the variables which
shall be removed by the last step. Instead we will substitute the variables with ⊥.

Definition 3.1.27 (stable model for pForm-ADFs). Let D = (S,AC) be a pForm-BADF. A
model M of D is a stable model if M is the least model of the reduced pForm-ADF DM =
(SM , ACM ) obtained from D by

(I) eliminating all nodes not contained in M , such that SM = S ∩M ,

(II) for all s ∈ SM substitute in ACs all a ∈ ΣACs
pv with ⊥ if a 6∈ SM , to gain AC ′

s,

(III) for all s ∈ SM substitute in AC ′
s all a ∈ Σ

AC′
s

pv with ⊥ if a ∈ att(ACs), to gain ACMs .
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smodelpADF (D) is the set of all stable models of D.

Lemma 3.1.28. Let D = (S,L,C) be an ADF, D′ = (S,AC) be a pForm-ADF, such that D
is equivalent to D′, and s, t ∈ S be two statements in the ADFs D and D′. The removal of all
mappings in Cs, where t occurs results in the same acceptance condition as it is represented by
ACs, where each occurrence of t is substituted with ⊥.

Proof. Each mapping in the ADF acceptance condition Cs, where t occurs is in the pForm-ADF
representation an interpretation I , where t ∈ I holds. If the mapping of the acceptance condition
is out then I 6∈ modp(ACs) and if it is in then I ∈ modp(ACs). The removal of all acceptance
conditions where t occurs equals the removal of all interpretations which contain t. In every
interpretation J ⊆ (S \ {t}), the truth value of t is mapped to ⊥. Therefore the substitution of t
with the constant ⊥ will result in the same acceptance of s.

Corollary 3.1.29. Definition 2.3.10 and 3.1.27 accept the same set of models for two equivalent
ADFs, where one is represented by binary functions and the other is a pForm-ADF.

Proof. Follows by Definition 3.1.3 and Lemma 3.1.28.

In the same manner as we have adapted the stable model we can alter the admissible set, as
no new mechanics are used for them.

Definition 3.1.30 (admissible set for pForm-ADFs). Let D = (S,AC) be a pForm-BADF.
M ⊆ S is admissible in D iff there is R ⊆ S such that

(I) for each s ∈M holds, that for each r ∈ R : r 6∈ att(ACs)

(II) M is a stable model of D −R = (SR, ACR) and D −R is obtained by:

(i) deleting all statements s ∈ R from S to gain SR,

(ii) substituting for all s ∈ SR in ACs all a ∈ ΣACs
pv with ⊥ if a ∈ R.

Note that we can omit the explicit manipulation of the links, which is needed for ADFs
in general, as these informations are preserved in the acceptance conditions of pForm-ADFs.
The last extension does not change for the pForm-ADFs, as a preferred model is just a subset
maximal admissible set.

3.2 ADFs as Hypergraphs

The pForm-ADF representation has a strong logical and mathematical focus and it has enough
expressiveness to get rid off the necessity of the links. Indeed Dung’s AF has a strong connection
and similarity to graphs. We will present a representation of ADFs which will emphasize on the
connection to graph theory. We already know that ADFs are a generalization of Dung’s AFs.
So we will also use a generalization of graphs: Hypergraphs. A hypergraph is a graph, which
contains hyperedges. The difference between edges and hyperedges is that they connect a set
of nodes instead of only two. To express the direction of the attack respectively support, we

36



3.2 ADFs as Hypergraphs

will attach signs to each node in the hyperedge. A sign may be positive, negative or neutral.
If it is neutral (zero) it identifies the statement which will be attacked or supported by other
statements, a positive sign (one) stands for a supporting statement, and a negative sign (minus
one) expresses an attacking statement. We will call an edge an “incoming edge” for a statement,
if this statement has a neutral sign.

Definition 3.2.1 (ADF as Hypergraph). An ADF as a Hypergraph is a pair H = (S,R), where

• S is a set of statements

• R is a set of hyperedges E

A hyperedge E is a set of pairs (s, w), where

• s ∈ S,

• w ∈ {−1, 0, 1}, and

• exactly one pair exists such that w = 0.

Each edge can be seen as a joint attack and a “rescuing” support. If one statement has more
than one edge, the edges together can be seen as a mutual support and a “strong” attack. With
rescuing and strong we mean that one support respectively attack is enough to accept or reject
the whole edge respectively set of edges. Intuitively we need to put this kind of semantics into
the meaning of edges to achieve the same expressiveness as the propositional formulae have.
Based on a set of selected statements we can decide whether an edge is acceptable or not.

Definition 3.2.2 (acceptable edge). A hyperedge E = {(si, wi)} ∈ R of an ADF H = (S,R)
is acceptable w.r.t. a set M ⊆ S if the sum esum(E,M) =

∑
{w | (s, w) ∈ E, s ∈ M} is not

equal to the number of negative weighted pairs multiplied by minus one in the edge E.

Example 3.2.3 (acceptable edge). Let H = (S,R) be a hypergraph ADF, with S = {a, b, c}
and the following edge {(a, 0), (b, 1), (c,−1)} ∈ R. This would be the same as the acceptance
condition ACa = b ∨ ¬c. Now we will show how the acceptance of the edge is computed for
two different cases. In case 1 we have a, b and c selected and case 2 has only a and c selected.
At first we need to get the number of negative weighted pairs, which is 1. For case 1 we have to
build the esum which is 0 (−1 + 1 + 0). 0 does not equal −1, so this edge is acceptable under
the set of selected statements. In case 2 esum is −1 (−1 + 0), which equals −1. So case 2 is no
example for an acceptable edge and therefore a cannot be accepted here.

Definition 3.2.4 (acceptable statement). Given an ADF H = (S,R) and a set M ⊆ S. A
statement s ∈ S is acceptable w.r.t. M if all incoming edges are acceptable w.r.t. to the set M .
accM (H) denotes the set of all acceptable statements in H w.r.t. M .

Based on the definition of an acceptable statement we can now formulate how a conflict-free
set will look like. We will show that it is possible to use this representation to decide whether
a set is a conflict-free set or not. We will omit further investigations to more semantics as this
form of representation is intended for graphical representation, although it would be possible to
define them too.
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Definition 3.2.5 (conflict-free set). Given an ADF H = (S,R). A set M ⊆ S is conflict-free if
∀s ∈M we know that s ∈ accM (H) holds.

As we want to have a relation between these hypergraph ADFs and the pForm ADFs, we
will show that both are equivalent.

Definition 3.2.6. A pForm ADF D = (S,AC) is equivalent to a hypergraph ADF H = (S′, R)
iff S = S′ and for every s ∈ S and every M ⊆ S : M ∈ modp(ACs) iff s ∈ accM (H) holds.

Proposition 3.2.7. For every pForm-ADF D = (S,AC) an hypergraph ADF H = (S′, R) can
be constructed such that D and H are equivalent and vice versa.

Proof. In general S and S′ are the same sets as this is one requirement for the equivalence of
both representations.
Without loss of generality let the acceptance condition formulae be in CF .In addition consider
an auxiliary function, which maps a negative literal to −1 and a positive literal to 1:

weight(lit) =

{
1 if lit is positive
−1 if lit is negative

At first we will show that we can construct a pForm-ADF D = (S,AC) with an arbitrary
hypergraph ADF H = (S′, R): Let e be a hyperedge in R, then we can construct the set of
variables via

ev = {a | (a, 1) ∈ e} ∪ {¬a | (a,−1) ∈ e}.

As all acceptance conditions are represented in CF , every ev can be seen as a clause. So we can
construct the acceptance condition ACs in CF :

ACs = {ev | (s, 0) ∈ e}

So we have created for each statement an acceptance condition, based on the hypergraph edges.
The construction of an hypergraph ADF H = (S′, R) from an arbitrary pForm-ADF D =

(S,AC) is done as follows: For each s ∈ S and there for each clause c ∈ ACs, we construct a
hyperedge

es,c = {(atom(a),weight(a)) | a ∈ c} ∪ {(s, 0)},

where atom represents the variable in an arbitrary literal. Now we can create a set of hyperedges
for each acceptance condition Hs = {ec,s | (s, 0) ∈ ec,s}. Then H =

⋃
s∈S Hs.

To show that both are equal, we need to show that for all M ⊆ S : M ∈ modp(ACs) iff
s ∈ accM (H) holds.
To evaluate if a an interpretation I is a model of a CNF, we need at least one literal in each
conjunct to be true with respect to I . So in each conjunct we need an atom a ∈ atom(ACs)
which is in the interpretation and occurs as a positive literal, or which is not in the interpretation
and occurs as a negative literal. To ensure that M 6∈ modp(ACs), each literal in every conjunct
needs to evaluate to false under M . So all negative literals have to be in the interpretation
and all positive literals are not allowed to be inside the interpretation. So esum(E,M) of the
corresponding edge E will be the inverse number of all negative literals, which is the only case
where the edge is not acceptable and therefore also s 6∈ accM (H).
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Now we will give a small example of such a hypergraph ADF.

Example 3.2.8 (hypergraph ADF). ADF D = (S,AC), where S = {a, b, c, d}, and

ACa = b ∧ (c ∨ ¬d)

ACb = ¬c ∧ ¬d
ACc = b ∨ ¬d
ACd = ¬c

The corresponding R for the ADF H = (S,R) is:
Ea1 = {(a, 0), (b, 1)} Ea2 = {(a, 0), (c, 1), (d,−1)}
Eb1 = {(b, 0), (c,−1)} Eb2 = {(b, 0), (d,−1)}
Ec1 = {(c, 0), (b,−1), (d,−1)} Ed1 = {(d, 0), (c,−1)}

a b

c d

In the graphical representation we swap the numbers with red dashed and blue dotted lines for
the attack respectively the support. If attacking and supporting links are in the hyperedge, the
last part of the edge is black, as it is dependent on the set, whether an attack or an support will
be important. Due to the visualization we can already see that b is attacked two times directly,
so if c or d is in the set, b can not be an acceptable statement. Another situation can be seen
for the node a: b can only support a if c is selected to “neutralize” an attack by d or if d is not
present.
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CHAPTER 4
Properties and Complexity of ADFs

Based on the presented pForm-ADF in the previous chapter, we will emphasize on some proper-
ties of ADFs now. This chapter will start with transformations to subclasses, where the approach
of [Brewka et al., 2011a] will be presented. In addition we will introduce a new transformation
to construct from every ADF a BADF. We then apply the idea of the transformation of ADFs
to BADFs in order to generalize the stable extension such that it will work on arbitrary ADFs.
Then we will investigate how some of the semantics relate to each other in comparison to Dung’s
Theorem (Theorem 2.2.16) and the definition of the stable extension. At last we will give a short
overview on already existing computational complexity results and then extend these.

4.1 Transformations to Subclasses

The basic idea behind transformations to subclasses is the possibility to map the whole general-
ized class to one specific subclass without loss of information. Indeed this is not possible in every
case as some restrictions can not be simulated in subclasses. If some kind of transformation can
be done this may help to generalize well understood properties from the subclasses.

ADF→ AF

Brewka, Dunne and Woltran proposed a transformation of ADFs to AFs [Brewka et al., 2011a].
This approach is tailored for a specific pair of semantics, namely the model semantics for ADFs
and the stable extension for AFs. It extends the concept of semantical structures which was
already mentioned in Section 2.2. To simulate ADFs via AFs the acceptance conditions of the
statements are represented as boolean circuits which are directly encoded into the AF. For each
statement in the ADF the acceptance of the corresponding argument in the AF is based on the
truth-value output of the encoded circuit. The intuitive idea on the transformation is to encode
the result of this circuit as a boolean network in an AF. For better readability they also used the
fact that the boolean total functions (i.e. acceptance conditions) of ADFs can also be represented
as a propositional formula. Based on these formulae, they constructed the semantic structures
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such that the ADF-model corresponds to the stable extension of the transformed AF with respect
to the statements of the ADF (i.e. taking only the arguments into account which are present
in the ADF). Although this approach seems to work, there are some cases where the proposed
transformations do not result in an AF with the desired properties. A fix on the structures for
these issues is already done by the authors, but it is yet not publicized1. In the following we will
introduce their procedure on the pForm-ADFs and present the correct semantical structures.

In the first step of the transformation for each statement an additional one needs to be cre-
ated which represents the negation of the original statement. Intuitively this statement will be
an argument selected by the stable extension if the corresponding statement is not selected by
the ADF-model. If the acceptance condition of the statement is a truth-constant (i.e. ⊥ or >),
we have to connect the two arguments, i.e. m and its negated variant ¬m, with an unidirectional
attack (see Figure 4.1). In the case where the acceptance condition is not a truth-constant, we
have to connect the two arguments with a mutual attack. After the arguments and their counter-

¬m m ¬m m

Figure 4.1: Semantic structure for the truth constants > (on the left) and ⊥

arguments are built and related to each other, the structures which represent the boolean net-
works need to be attached to the arguments. There the network represents the acceptance of the
argument, which together with its counter-argument is at the “output” position of the network.
The related arguments are then the “inputs” for the network. The used semantical structures are
illustrated in Figure 4.2 and 4.3. The first type of structures is used if the acceptance condition

¬m m

¬ii

¬m m

¬i i

Figure 4.2: Semantic structures for non-compound literals

is only one literal. In the figure we suppose that the statement m of the pForm-ADF has the
acceptance condition i respectively ¬i. These structures intuitively take advantage of the stable
extension. So the left structure is a projection of the acceptance condition i for the statement
m. If i is selected, then also m will be selected by the stable extension. Reversely the right
structure projects the acceptance condition ¬i for the statement m and the stable extension can
only accept m if ¬i is accepted. The structures in the second figure (Figure 4.3) construct an

1The used structures are taken from their work in progress paper and they are used with the permission of the
authors (G. Brewka, P. Dunne and S. Woltran), without any claim of my own contribution.
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i

¬i ¬j

j

∧

m ¬m

i

¬i ¬j

j∨

m ¬m

Figure 4.3: Semantic structures for conjunction and disjunction

AF for a statement m in a pForm-ADF, where the acceptance condition ACm is either i ∧ j or
i ∨ j. Intuitively they connect the arguments with some helper arguments, whose acceptance in
the stable extension will enforce the acceptance of either m or ¬m. Indeed this acceptance is
based on the acceptance of the arguments i and j. Note that on i and j again such a boolean
network will be attached.

Example 4.1.1 (Transformation of an ADF to an AF).
The pForm-ADF D = ({a, b, c}, {ACa, ACb, ACc}) with the acceptance conditions ACa =
b ∨ c, ACb = >, and ACc = a ∧ ¬b can be transformed to the AF with the above described
steps. At first we need to generate the arguments and their counter-arguments. In addition,
based on the acceptance condition, the structural rules for the attacks need to be applied.

a ¬a

b

¬b

c

¬c

Then we insert the structures for the acceptance condition of a and b. So we will get the following
AF D′:
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a ¬a

b

¬b

c

¬c ∧

∨

For better readability we have used orange dotted lines for the attack relations based on the
disjunctive structure and blue dashed lines for the attack relations on the conjunctive structures.
Now we can compare the model of D, which is {a, b} and the stable extension of D′, which is
{a, b,¬c}. As there does not exist a statement ¬c in D, we only compare a and b and they are
indeed the model of D.

Although the example only shows how this structures are built on simple formulae with only
one connective, it is indeed possible to build a semantic structure for each configuration of nested
connectives. Then the structure needs to be constructed step by step and for each connective an
additional helping argument needs to be introduced, which is some kind of a temporary output
node for the subformula. In the following example we will show how such a pattern for a
compound formula looks like.

Example 4.1.2 (Syntactical structure for compound formulae). We will omit the definition of the
acceptance conditions of all statements but one. Lets look at the node d with the acceptance
condition ACd = (a ∧ b) ∨ c. Then we have to construct the following semantic structure for
the AF:

¬a

¬b∧

h¬h

c

∨ d ¬d
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The new helper argument h represents the value of the subformula a ∧ b and ¬h is the counter
argument for the case where an argument with the acceptance condition a ∧ b would not be
accepted. Note that in this example we omit all arguments which are not in relation to arguments
in the semantic structures. Indeed in a full ADF to AF transformation there would be also
relations between ¬a and a (as well as for b and c), but they are dependent from the acceptance
conditions for a (resp. b and c).

Note that the construction of the semantical structures is based on the analysis of the modus
operandi of the stable extension. The introduced auxiliary arguments and their relations are in
fact an application of Meta-Argumentation (for further details see Section 6.1).

In Chapter 5, we will present an implementation together with benchmark results, to analyze
how well the transformation approach performs compared with a direct implementation of the
ADF-model semantics.

ADF→ BADF

In the Sections 2.3 and 3.1 we have reviewed and presented the ADF and the pForm-ADF. There
we had the distinction between BADFs and those ADFs which are not bipolar. We needed this
kind of restriction to the subclass of BADFs to define some properties and semantics. As these
semantics are not capable for the scope of all ADFs, a procedure to transform every ADF into a
BADF will be presented. To gain this transformation an approach from the concept of monotone
pForm-ADFs, where we already have shown that the monotone pForm-ADFs are equal to the
class of BADFs (see Theorem 3.1.23), will be utilized.

Motivation of the transformation

We do know that every monotone pForm-ADF is a BADF and that an ADF which is not bipolar
can not be represented as a monotone pForm-ADF. Note that it is computationally hard (coNP-
hard) to decide if a pForm-ADF is bipolar.

Our goal is to transform an arbitrary ADF to a corresponding BADF. It turned out to be use-
ful to base this transformation on the transformation from pForm-BADFs to monotone pForm-
ADFs. Borrowing ideas from the ADF → AF procedure, we will utilize auxiliary structures to
accomplish this. To this end we apply the transformation for monotone formulae (see Defini-
tion 3.1.18) on the formulae. Every bipolar formula will be transformed to a monotone formula,
and every formula which is not bipolar will be transformed to a quasi-monotone formula. This
quasi-monotone formula satisfies for all attacking and supporting variables the monotone con-
dition and only the variables which are dependent violate it.

Based on this distinction between monotone (i.e. bipolar) and quasi-monotone (i.e. not bipo-
lar) formulae, acceptance conditions and pForm-ADFs it is easy to see that the dual polarity of
the variable seems to be the central problem. In fact both polarities for the variable are neces-
sary to represent the dependent nature of the link. Based on the interpretation, roughly speaking,
the variable is “choosing” whether it “uses” its positive or negative polarity to change the truth
value of the formula. This kind of changing attitude is also the intuitive reason behind the prop-
erty that the variable is dependent. Since both polarities are needed to preserve the dependent
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link behavior we cannot change the formula such that the variable satisfies the monotone con-
dition. Instead of changing the formula we just split the statement into two parts: In one part
we will change the formula such that the variable only utilizes its positive polarity and in the
other one only the negative polarity occurs. In the quasi-monotone case the variable has some
kind of choice, so we also let the statement choose: if one of the two parts is accepted, then the
statement will be accepted. In practice these two parts are two new statements which have the
customized formulae as acceptance conditions and the original statement gets a new acceptance
condition, which is the disjunction of the two new helping statements.

One thing is still missing, namely the description of the customization (or transformation) of
the formulae to resolve the dependent link. Intuitively we partition the set of interpretations of
the formula to be transformed into two parts, namely one where the dependent variable evaluates
to true and one where the variable evaluates to false under an arbitrary interpretation. So we get a
formula where every model is an interpretation where the dependent variable occurs and another
formula where every model is an interpretation where the dependent variable does not occur.
Due to this partition it is easy to see that the variable has in the new formulae no interpretations
where the supporting respectively attacking property can be refuted. Since this partition works
on the semantical tier and not the syntactical it will also work for the set of all formulae and not
only for the quasi-monotone ones. We just used this idea to motivate the approach.

Specification of the algorithm

In the following we will describe the detailed algorithm for arbitrary formulae. Algorithm 4.1
covers the basic mechanics and steps for the transformation. The basic idea is to add auxil-
iary statements for each dependent variable to resolve the dependent link into an attacking and
supporting part. Note that we used the notation of statement.AC to refer to the acceptance con-
dition for the statement. Every allocation to this structure is indeed a manipulation of the set of
acceptance conditions.

The input for the algorithm is a pForm-ADF and at the end of the algorithm a transformed
pForm-BADF is the result. In line 2, it is ensured that every statement will be checked whether it
has to be transformed or not. Newly created statements through the transformation are checked
too, since they are added to the set of statements in the line 11. The check whether the acceptance
condition of a statement has dependent variables or not is done in line 4. Here as a preparation
step it is possible to compute this information once before the algorithm (dependency-method
1) or every time the check is done (dependency-method 2). Then the first dependent variable
is taken and the acceptance condition of the current statement is copied two times and the two
copies of the acceptance conditions formulae are altered such that the dependent variable is
conjunctively attached to one formula and the negated variable to the second one (lines 6 and 7).
Then the two new acceptance conditions are attached to two new statements and the acceptance
condition of the current statement is altered to be the disjunction of the two new ones. Finally
we add the two new statements to the set of statements in the pForm-BADF (line 11). In line 13
it is ensured that every statement of the origin pForm-ADF is also in the pForm-BADF.

Based on the used dependency-method some additional things have to be taken into account.
If method 1 was used, then s′ and s′′ inherit all the dependent variables of s, except the one which
was resolved by the construction of s′ and s′′. In addition we have to mark s dependent-variable-
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Algorithm 4.1: ADF→ BADF algorithm
Input : A pForm-ADF D = (S,AC)
Output: The transformed pForm-BADF D′ = (S′, AC ′), which corresponds to D

1 S′← ∅
2 while S != ∅ do
3 s ∈ S
4 if s has dependent variables then
5 α← first dependent variable of s
6 ψ← s.AC ∧α
7 φ← s.AC ∧¬α
8 s.AC← s′ ∨ s′′
9 s′.AC← ψ

10 s′′.AC← φ
11 S ← S ∪ {s′, s′′}
12 end
13 S′← S′ ∪ {s}
14 S ← S \ {s}
15 end

free, because the acceptance condition shifted to the new statements s′ and s′′. Method 2 needs
to check every time how the link types of the pForm-ADF have changed due to the change of
models for the two formulae. Both methods have their advantages and disadvantages. Method 1
does not need any more checking and can work without further investigations, but it is possible
that due to the change of models some variables are not dependent any more. So more additional
statements would be generated than needed. This results in a bigger pForm-BADF but will not
affect the correctness of the algorithm. The second method is more aware of the changes and
only creates new statements if they are really needed. But the check has to be done for all
variables (except these which are already transformed). Note additionally that we can not use
the concept of quasi-monotone formulae for this check as the lines 4-11 do not create monotone
formulae.

Correctness of the approach

Now we will show that the approach is a transformation which does not change the acceptance
values for the original statements (i.e. those in the ADF). Intuitively the transformation car-
ries the acceptance decision away from the current statement and delegates it to two helping
statements. These helping statements only accept one of the two cases (i.e. one time it only
accepts the interpretations which include the dependent variable, and once where it only accepts
interpretations which do not contain the dependent variable). To show the correctness of this
approach we have to prove that this delegation on the level of statements does not interfere with
the set of interpretations which are accepted by the delegating statement. Note that we can only
compare those statements which occur in both ADFs.
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Definition 4.1.3 (ADF → BADF transformation step). Let D = (S,AC) be a pForm-ADF
and s ∈ S be a statement, such that ACs is a propositional formula ψ which has a dependent
variable a. Then the transformation creates a pForm-ADF D′ = δ(D) in the following way:

(I) create AC ′
s′ , AC

′
s′′ , such that AC ′

s′ = ψ ∧ a and AC ′
s′′ = ψ ∧ ¬a

(II) AC ′
s = s′ ∨ s′′

(III) S′ = S ∪ {s′, s′′}, AC ′ = (AC \ {ACs}) ∪ {AC ′
s′ , AC

′
s′′ , AC

′
s}

Lemma 4.1.4. Let D = (S,AC), D′ = (S′, AC ′) be pForm-ADFs, s ∈ S be statement, such
that ACs is a propositional formula ψ which has a dependent variable a, and D′ = δ(D).
For the acceptance conditions the following holds: modp(ψ) = modp(AC

′
s′) ∪modp(AC

′
s′′).

Proof. Let the signature of ψ be Σψ
pv, I ⊆ Σψ

pv be an arbitrary interpretation of ψ. In addition
let ψ′ = ψ ∧ a and ψ′′ = ψ ∧ ¬a. We can distinct between two cases:

(I) I 6∈ modp(ψ): If I is not a model of ψ, then in ψ′ and ψ′′ one component of the conjunc-
tion (i.e. ψ) evaluates to false under the interpretation I and so it is not possible for the
whole conjunction to get the truth-value true under I . Therefore I is neither a model for
ψ′ nor for ψ′′.

(II) I ∈ modp(ψ): If I is a model of ψ, we have to investigate two cases:

(i) a ∈ I: As I ∈ modp(ψ) and a ∈ I: VI(a) = true and VI(ψ) = true . So
VI(ψ ∧ a) = true also holds.

(ii) a 6∈ I: As I ∈ modp(ψ) and a 6∈ I: VI(¬a) = true and VI(ψ) = true . So
VI(ψ ∧ ¬a) = true holds too.

Intuitively the next Lemma will show that the transformation does not change the set of
conflict-free sets with respect to the statements which occur in both pForm-ADFs.

Lemma 4.1.5. Let D = (S,AC), D′ = (S′, AC ′) be pForm-ADFs, s ∈ S be statement, such
that ACs is a propositional formula ψ which has a dependent variable a, and D′ = δ(D). Let
M ⊆ S, M ′ ⊆ S′ be two sets in D,D′ such that (M ′ \ {s′, s′′}) = M . Then M ∈ cf pADF (D)
iff M ′ ∈ cf pADF (D′).

Proof.

(I) Assume M ∈ cf pADF (D): If M is conflict-free, then for every m ∈ M we know by
Definition 3.1.24 that M ∈ modp(ACm) holds. The transformation step only changed
the acceptance condition of s. So M still satisfies all acceptance conditions of the state-
ments, except AC ′

s. If s ∈ M , then s′ or s′′ needs to be added to M ′ to satisfy AC ′
s. By

Lemma 4.1.4 we know that modp(ACs) = modp(AC
′
s′) ∪modp(AC

′
s′′) holds. So M is
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either a model forAC ′
s′ or forAC ′

s′′ . The addition of the satisfied statement (i.e. s′ respec-
tively s′′) will satisfy AC ′

s and does not interfere with the other acceptance conditions. If
s 6∈M we do not need to change anything, as all acceptance conditions will stay satisfied
under M .

(II) Assume M ′ ∈ cf pADF (D′): If M ′ is conflict free, and none of {s, s′, s′′} are in the
conflict free set, then it will be also a conflict free set in D, as the acceptance conditions
are satisfied without them. If s′ ∈M or s′′ ∈M , but s 6∈M , the removal of s′ respectively
s′′ will not change the truth-value of the other statements with respect to M and so the
removal will not change the property of being conflict-free. If s ∈ M , then s′ ∈ M or
s′′ ∈ M has to hold too, because of AC ′

s. Again by Lemma 4.1.4 we know that if AC ′
s′

or AC ′
s′′ is satisfied, also ACs is satisfied. So the removal of s′ resp. s′′ will not set the

truth-value of ACs to false.

Based on the result for conflict-free sets we will advance to the notion of models.

Lemma 4.1.6. Let D = (S,AC), D′ = (S′, AC ′) be pForm-ADFs, s ∈ S be statement, such
thatACs is a propositional formula ψ which has a dependent variable a, andD′ = δ(D). Then,
for allM ⊆ D holds: M ∈ modelpADF (D) iffM ′ ∈ modelpADF (D′), where (M ′\{s′, s′′}) =
M .

Proof. The model is a conflict-free set, where each statement whose acceptance condition is
satisfied, has to be in the set of statements. If s ∈ M , then M ∈ modp(ACs), therefore
M ∈ modp(AC

′
s′) orM ∈ modp(AC

′
s′′) holds and has to be collected into the set of statements

(by Lemma 4.1.4). So AC ′
s is also satisfied and the property of a model is satisfied. If s 6∈ M ,

then neither s′ nor s′′ can be added to the set of statements and nothing changes for the set of
models.
If s 6∈ M ′, then also s′ and s′′ can not be in M ′. In this case M ′ and M are the same. If s′ or
s′′ is selected to be in M ′, then also s has to be added to the model (AC ′

s = s′ ∨ s′′). So the
addition of one of the two helping statements does enforce the addition of s. One of the helping
statements was selected because the set of statements satisfied its acceptance condition. Again
by Lemma 4.1.4 we know that this selection of statements would also satisfy ACs. So again
these two models are equal with respect to the statements in D.

Lemma 4.1.7. Let D = (S,AC), D′ = (S′, AC ′) be pForm-ADFs, s ∈ S be statement, such
that ACs is a propositional formula ψ which has a dependent variable a, and D′ = δ(D).
Let (A,R),(A′, R′) be the least fixed-point of ΓD respectively ΓD′ . Then A = A′ \ {s′, s′′} and
R = R′ \ {s′, s′′} holds.

Proof. Assume we begin with an empty set of accepted and rejected statements. Each step
collects the statements whose acceptance conditions are true respectively false under the partial
interpretation, based on the accepted and rejected statements. If we collect one of the unchanged
statements in D or D′ they have the same acceptance conditions and so the sets of accepted and
rejected statements will be the same. If we have to accept s′ or s′′, then we can also accept s
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in the next step. This will only happen if a is already accepted or rejected, as this is a variable
on the top-level conjunction (i.e. it is a switch to accept or reject the statement). In addition
the acceptance of s′ will reject s′′ and vice versa. If both, s′ and s′′ are rejected, then the
partial interpretation for both acceptance conditions AC ′

s′ and AC ′
s′′ validate to false (i.e. it is

unsatisfiable under the current partial interpretation). So the same has to hold for ACs, as they
share the same set of propositional models with s′ and s′′.

Now we can show that the transformation δ(D) of an ADF D does not change the sets of
statements under the semantics defined for ADFs with respect to the statements in D.

Theorem 4.1.8. Let D = (S,AC), D′ = (S′, AC ′) be pForm-ADFs, s ∈ S be statement, such
that ACs is a propositional formula ψ which has a dependent variable a, and D′ = δ(D). Then

σADF (D) = (σADF (D′) \ {s′, s′′})

holds for σ = {cf ,model ,wf }

Proof. Follows by Lemma 4.1.5, 4.1.6, and 4.1.7.

We have shown that one application of the transformation δ does not change the set of
accepted sets under different semantics with respect to the statements in the origin ADF. In
addition we have shown that the transformation removes the dependent variable and splits it into
one supporting and one attacking variable. At next we want to show that the repeated application
of δ will result in a fixed-point, where the set of accepted sets under the semantics with respect
to the statements in the origin ADF, does not change and that the resulting ADF is bipolar.

Theorem 4.1.9. Let D = (S,AC) be a pForm-ADF, D′ = (S′, AC ′) be a pForm-BADF,
such that D′ is the fixed-point of δ(D), denoted by Fixδ(D), where γ is the set of all auxiliary
statements which are created during the applications of δ. Then

σADF (D) = (σADF (D′) \ γ)

holds for σ = {cf ,model ,wf }.

Proof. Based on Theorem 4.1.8 each application of δ does not change the set of acceptable
sets. As every iteration of δ removes one dependent variable and it only changes the ADF if a
dependent variable occurs, a fixed-point will be reached. D′ has no dependent variables, so it is
bipolar by Corollary 3.1.14.

4.2 Generalization of the Stable Extension

Based on the concept of the transformation of ADFs to BADFs, we will now present a gen-
eralized approach for the stable extension. Indeed we will try to generalize the stable model
semantics to work on ADFs and not only on BADFs. The basic idea is to use the results of the
transformation to refine the steps of the already existing stable model semantics. In the follow-
ing we will show the concept of the generalized semantics, followed by a proof that the refined
definition does inherit the results captured by Theorems 4.1.8 and 4.1.9.
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Definition 4.2.1 (Generalized stable model semantics for pForm-ADFs). Let D = (S,AC)
be a pForm-ADF. A model M of D is a stable model if M is the least model of the reduced
pForm-ADF DM = (SM , ACM ) obtained from D by

(I) eliminating all nodes not contained in M , such that SM = S ∩M ,

(II) for all s ∈ SM substitute in ACs all a ∈ ΣACs
pv with ⊥ if a 6∈ SM , to gain AC ′

s,

(III) for all s ∈ SM substitute in AC ′
s all a ∈ Σ

AC′
s

pv with ⊥ if a ∈ att(ACs), to gain AC ′′
s .

(IV) for all s ∈ SM , if {a1, ..., an} is the set of all selected dependent variables in ACs (i.e.
ai 6∈ att(ACs), ai 6∈ sup(ACs), ai ∈ atoms(ACs), and ai ∈ M for 1 ≤ i ≤ n) then
ACMs = AC ′′

s ∧ a1 ∧ · · · ∧ an

smodelpADFg
(D) is the set of all stable models of D obtained by the generalization.

Proposition 4.2.2. For a pForm-BADF D the following holds:

smodpadfD = smodelpADFg
(D)

Proof. A pForm-BADF consists of bipolar acceptance condition formulae. If an acceptance
condition formula has a variable which is neither supporting nor attacking, it is not a bipolar
acceptance condition formula. So the fourth step in the reduction process will never be applied.
As the fourth step is the only addition to the stable model semantics both definitions need to
have the same results.

At next we will show that the generalized stable model semantics will also w

Proposition 4.2.3. Let D = (S,AC) be a pForm-ADF which is not bipolar and let D′ =
Fixδ(D) be a pForm-BADF. Then

M ′ ∈ smodelpADF (D′) ⇐⇒ M ∈ smodelpADFg
(D)

holds for M ′ ∩ S = M . For ADFs which are not bipolar the generalized model semantics treat
the acceptance condition formulae which have dependent variables as if the pForm-ADF would
have been transformed to a pForm-BADF.

Proof. Let D = (S,AC) be a pForm-ADF, s ∈ S be an arbitrary statement such that ACs = ψ
has a dependent variable a. D′ = Fixδ(D). The reduction only works on selected statements,
so we assume that s ∈M .

(I) Assume that a 6∈M . As s ∈M , we know by Lemma 4.1.6 that s′′ with ψ∧¬a needs to be
inM too (VI(¬a) is only true iff a 6∈ I). a is not inM , so all occurrences of a inAC ′

s′ are
substituted by ⊥. ¬a turns into > and so the original formula before the transformation is
restored. In addition all other occurrences of a are substituted too. So the substitution of
a with ⊥ in ACs would do the same changes as in the transformed acceptance condition
AC ′

s′′ .
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(II) Assume that a ∈ M . By Lemma 4.1.6 we know that s′ with ψ ∧ a would be in M . The
transformed supporting version of the acceptance condition was selected, so there exists in
this model a supportive relation between s and a. To be sure that the acceptance condition
will only use its supportive character, the fourth step in the reduction process transforms
the ACs to its supportive counter part AC ′

s′ .

The proof has shown that for one dependent variable the right decision is done. As this is done
for every dependent variable, the above reasoning holds for every dependent variable too.

Intuitively we judge on the accepted statements of the model whether the attacking nature
of the dependent link was taken in account or not. If both statements are in the model, then the
attacking nature of the dependent link could not be taken into account, as otherwise the selection
of both would result in a set which invalidates the conflict-free property. In the case where the
dependent link was not attacking we have to assume that the supporting nature was present in
some extend and so we have to force the variable to be supporting in the reduction. In the case
where the dependent link statement was not selected it is treated in the same way as an attack (It
was refused to avoid an invalidation of the conflict-free property).

To give a better insight on the process we will present some examples of ADFs which are
not bipolar and then we will evaluate the stable models of them.

Example 4.2.4 (Small ADFs and their stable models). We will have look on the pForm-ADF
D1 = (S1, AC1) and D2 = (S2, AC2), where

S1 = S2 = {a, b, c},
AC1 = {AC1a, AC1b, AC1c},
AC1a = ¬b, AC1b = ¬a,AC1c = (a ∧ ¬b) ∨ (¬a ∧ b),
AC2 = {AC2a, AC2b, AC2c}, and

AC2a = b, AC2b = a,AC2c = (a ∧ b) ∨ (¬a ∧ ¬b)

These pForm-ADFs have the following models:
modelpADF (D1) =

{
{a, c}, {b, c}

}
modelpADF (D2) =

{
{c}, {a, b, c}

}
Based on these models we can use the reduction steps and achieve the following acceptance
conditions (Note that we omit the set of statements and just identify it by the presence of an
acceptance condition):

AC
{a,c}
1 = {AC ′

1a, AC
′
1c}, AC

{b,c}
1 = {AC ′′

1b, AC
′′
1c}

AC ′
1a = >, AC ′

1c = ((a ∧ ¬⊥) ∨ (¬a ∧ ⊥)) ∧ a ≡ (a ∧ >) ≡ a
AC ′′

1b = >, AC ′′
1c = ((⊥ ∧ ¬b) ∨ (¬⊥ ∧ b)) ∧ b ≡ (b ∧ >) ≡ b

AC
{c}
2 = {AC ′

2c}, AC
{a,b,c}
2 = {AC ′′

2a, AC
′′
2b, AC

′′
2c}

AC ′
2c = (⊥ ∧⊥) ∨ (> ∧>) ≡ >

AC ′′
2a = b, AC ′′

2b = a,AC ′′
2c = ((a ∧ b) ∨ (¬a ∧ ¬b)) ∧ a ∧ b ≡ a ∧ b
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Now we can construct the least models of the reductions and see whether the models are stable
or not, so we get the set of stable models:
smodelpADF (D1) =

{
{a, c}, {b, c}

}
smodelpADF (D2) =

{
{c}
}

These two examples show that self-support-cycles are still removed and that the dependent links
are really reduced to supporting links if they where selected in a model.

4.3 Relations between Semantics

This section will analyze relations between semantics of ADFs and studying differences to se-
mantics defined by Dung. We present some properties which hold for Dung’s AF but do not
hold for ADFs. In addition we will try to justify the results and give some ideas why these prop-
erties do not hold. Note that the following inconsistencies with the properties of Dung’s AF are
not serious enough to abandon the work or consideration of ADFs. They should be seen as a
reminder that some details of the concept should be revisited to fix some unwanted side effects
or unintuitive behavior.

One very basic property follows directly from Dung’s definition of the stable extension (see
Definition 2.2.10). Informally the property claims that no stable extension is a proper subset of
another stable extension. For better readability we state the corresponding property for ADFs.

Definition 4.3.1. Let D = (S,AC) be a pForm-ADF and M ′ ⊂ M ⊆ S be two sets of
statements of D. If M ∈ smodelpADF (D) then M ′ 6∈ smodelpADF (D).

In the following we will give a counter-example for this property, i.e. show that it does not
hold. Note that the ADF in the counter-example is a BADFs.

Example 4.3.2 (Counter-example to Definition 4.3.1). The pForm-BADF D = (S,AC) with
the statements S = {a, b} and the acceptance conditions
ACa = >,
ACb = ¬a ∨ b
has the following stable models: {a}, {a, b}.

We will now investigate the counter-example in more detail. The set {a} is obviously a
model and due to the acceptance condition it is also the least fixed-point of the monotonic oper-
ator ThD on the reduced ADF. It seems a little bit unintuitive that {a, b} is a stable model too,
so lets check what happens: {a, b} is a model, as both acceptance conditions are satisfied. The
reduction will not remove any statements and so it only has to remove the attacks for the reduct.
¬a ∨ b is substituted by ¬⊥ ∨ b which is equivalent to > ∨ b respectively >. So it is a legal ac-
tion to accept both statements together as a stable model, because the monotonic operator ThD
has approved a and b, as both are always acceptable due to their reduced acceptance condition.
From an intuitive point of view the acceptance condition of b means that b is accepted if a is not
selected or b is selected. So the only case where b may not be selected is when a is selected and
b not. If we remove the attacking link (a, b) from ACb during the reduction step, information
about the self-support of b should be preserved. Due to the fact that a disjunction only evaluates
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to false if both sub-formulae evaluate to false , the removal of the attack transforms the disjunc-
tion to a valid formula. Note that this behavior also holds for ADFs with binary total function
acceptance conditions. It seems the removal of attacks by substituting the attacks by top (resp.
removing the total function mappings where the attacking variable occurs) removes in the case
of the disjunctive connective too much information of the acceptance condition. One possible
fix for the stable model semantics on pForm-ADFs may be to analyze which changes have to
be done by the reduct to reflect an intuitive behavior of the reduced formulae, instead of the
substitution of atoms with constants.

Based on Dung’s theorem (see Definition 2.2.16) we can analyze another well known prop-
erty for Dung’s AF to ADFs. Point (I) and (II) of the theorem together relate the preferred exten-
sion with the grounded extension via the complete one. Although there is no ADF-counter-part
for the complete extension, we want to investigate if the following well-known property for AFs
also holds for ADFs. Shortly sketched, we do know that each preferred extension is a complete
extension. In addition the grounded extension is least complete extension with respect to set
inclusion. Therefore each grounded extension needs to be a subset of each preferred extension.

Definition 4.3.3. Let D = (S,AC) be a pForm-ADF, W ⊆ S be the well-founded model of D.
If P ⊆ S is a preferred model of D, then W ⊆ P .

In the same manner as above we will now present a counter-example to proof that this prop-
erty does not hold.

Example 4.3.4 (Counter-example to Definition 4.3.3). The pForm-ADF D = (S,AC) with the
statements S = {a, b, c, d} and the acceptance conditions
ACa = ¬b ∨ ¬c,
ACb = >,
ACc = d, and
ACd = >
has the following preferred models: {a, b} and {b, c, d} The well-founded model is {b, c, d}.

The above example obviously violates the property, as {b, c, d} 6⊆ {a, b}. The violation
may come from two sources: The well-founded or the preferred semantics. The well-founded
model is intuitively just the natural step to improve the functionality of the grounded extension
with the concept of supports. For Property 4.3.3 to hold we now will study possible adoptions.
First let us try to modify the well-founded mode and let the preferred stay the same. For the
example this would imply that either the set {b} or the empty set ∅ is the well-founded model.
The former is unintuitive since it would be hard to argue why b is selected and d not, although
they have the same acceptance condition. The empty set is likewise undesired since then the
well-founded model would not accept statements with tautological acceptance conditions. So
let us have a look on the preferred semantics. For the preferred model we need to compute the
subset-maximal admissible sets. Intuitively the admissible set is found by choosing a subset of
the statements and try to cut unwanted statements of the framework out till the chosen subset is a
stable model of this reduced framework (Note that there are some restrictions to the selection of
the unwanted statements which are cut out). It seems that this is the problem of the admissible
set, as we can remove d from the framework (it has no attack relation), and then {a, b} is a
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stable model. To improve the admissible set, maybe some additional restrictions for the removal
of statements (i.e. restrictions for elements in R) can solve this problem. Another approach can
be an independent development of the admissible set semantics, as the current concept is based
on relations between the admissible set and the stable extension of Dung’s AF.

4.4 Complexity Analysis of ADFs

This part is dedicated to the computational complexity of ADFs. We will review the currently
known results on common decision problems for ADFs and then we will present new results.
Note that we will describe the decision problems of already existing results and questions for
pForm-ADFs, although they were original defined for ADFs respectively AFs.

Review of existing results

As described in Section 2.5, we are interested in problems which consist of a question and result
in a “yes or no”-answer. These decision problems are generally defined as a given input and
one question. In argumentation several decision problems are of relevance. In order to present
currently available results we will first introduce the most important problems which are the
existence problem, as well as the skeptical and credulous acceptance problems.

The existence problem is the question for the existence of an model for a given semantics.
We will denote this problem with Existσ.

Existσ decision problem
Given: A pForm-ADF D = (S,AC) and a semantics σ.
Question: Does a σ-extension for D exist?

This problem is in many cases like the well-founded semantics or the admissible sets trivial,
as in every case at least the empty set is computed as an legit model. So some authors refine the
existence problem to ask whether a non-empty σ-extension of D exists or not.

Existσ
¬∅ decision problem

Given: A pForm-ADF D = (S,AC) and a semantics σ.
Question: Does a non-empty σ-extension of D exist?

Sometimes we want to know more detailed information about the accepted statements in
the model. The credulous acceptance problem asks if a specific statement occurs in one model
under a given semantics. The formal problem is denoted by Credσ.

Credσ decision problem
Given: A pForm-ADF D = (S,AC), a statement s ∈ S and a semantics σ.
Question: Does s occur in at least one σ-extension of D?
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Another interesting problem is the question whether a statement occurs in every model under
a given semantics or not. This would give a hint that this statement is crucial for the construction
of answers as it gets accepted by every answer set of statements. This problem is called the
skeptical acceptance problem Skeptσ.

Skeptσ decision problem
Given: A pForm-ADF D = (S,AC), a statement s ∈ S and a semantics σ.
Question: Does s occur in every σ-extension of D?

Note that the answers to some of these problems may lead to misleading conclusions. For ex-
ample the Skeptσ-question is answered with “yes” if the Existσ-question for the same pForm-
ADF is answered with “no”. At first this may seem a little bit unintuitive, but if there is no
extension then every statement is in every extension. So in practical use one should not only
depend on one decision problem.

One can also ask whether a given set of statements is a model under a given semantics. So
we want to verify if a given set is a model. We denote Verσ for the verification problem.

Verσ decision problem
Given: A pForm-ADF D = (S,AC), a set M ⊆ S and a semantics σ.
Question: Is M a σ-extension of D?

Till now we have presented decision problems which are of relevance in general for argu-
mentation. Next we will describe a central ADF-specific problem. During the work with ADFs
it is hard to miss that some semantics depend on the restriction of BADFs. A natural question
therefore is if an ADF is a BADF.

bipolarity decision problem
Given: A pForm-ADF D = (S,AC)
Question: Is D a BADF?

All currently known complexity results were proposed in the introductory work of ADFs.
Table 4.1 gives an overview on these complexity results [Brewka and Woltran, 2010]. In the
table we have one row for each semantics and every column stands for one decision problem.
The cells where the lines and columns intersect represent the currently available results. Note
that we have omitted the Existσ

¬∅ problem, as there are no results yet. The asterisk symbol
in the table means that the results assume that the link types are known before. The table also
shows that there are many open problems. An additional result which is not shown in the table
is that the bipolarity decision problem was shown to be coNP-hard.
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Credσ Skeptσ Verσ Existσ
Model ? ? ? ?
Stable NP-c* coNP-c* ? ?
Preferred NP-c* Π2P* ? trivial
Well-founded ? ? coNP-hard trivial

Table 4.1: Complexity results on decision problems for ADFs

New results

Based on the given overview we will now refine the results. Many of the complexities incorpo-
rate the assumption that the link types are known. As there are no results for this decision, we
will show the completeness of this problem. To decide the link type we need to evaluate once
if it is attacking and once if it is supporting. Our goal is to show the complexity of deciding,
whether a link is attacking or not.

attack link decision problem
Given: A pForm-ADF D = (S,AC) and two statements a, s ∈ S.
Question: Is a ∈ att(ACs).

In order to gain a completeness result, we need to show the membership and the hardness to
a complexity class.

Proposition 4.4.1. The attack link decision problem has a coNP-membership.

Proof. Let D = (S,AC) be a pForm-ADF, and a, s ∈ S be two statements. To show that
a 6∈ att(ACs) holds, an interpretation I ⊆ Σψ

pv where a 6∈ I holds can be guessed. Then it may
be checked if I 6∈ modp(ACs) and (I ∪{a}) ∈ modp(ACs). Both checks can be done in P and
therefore the complement problem is in NP. As the complement problem is in NP our original
problem, namely the decision if a ∈ att(ACs), is in coNP.

Proposition 4.4.2. The attack link decision problem is coNP-hard.

To show the hardness in the following proof we will need to use another problem which is
known to be coNP-hard and then we have to find a polynomial reduction to get a pForm-ADF,
where the answer to the attack question is always the same as the answer to the question asked
in the already known problem.

Proof. The validity problem is known to be coNP-complete.

validity decision problem
Given: A propositional formula ψ.
Question: Is ψ a valid formula?
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Let ψ be an arbitrary propositional formula, then we construct a pForm-ADF D = (S,AC),
such that

S = Σψ
pv ∪ {a, t}, where a, t 6∈ Σψ

pv,

ACs = s for all s ∈ (S \ {t}), and

ACt = ψ ∨ a.

The question for our decision problem is now: “Is a ∈ att(ACt)?”
Now we show that a ∈ att(ACt) ⇐⇒ ψ is valid: Based on the construction of ACt it follows
that ΣACt

pv = Σψ
pv∪{a} and therefore every interpretation I ⊆ Σψ

pv is also a legal interpretation of
the acceptance condition ACt. The answer to the validity problem may be one of the following
cases.

• ψ is not valid: So we know that for at least one interpretation I ⊆ Σψ
pv it holds that

I 6∈ modp(ψ), then I 6∈ modp(ACt). Since a 6∈ I and I ∪ {a} ∈ modp(ACt) this is a
counter example for an attack, i.e. a 6∈ att(ACt).

• ψ is valid: It follows that for every interpretation I ⊆ Σψ
pv it holds that I ∈ modp(ψ).

ACt is a disjunction of ψ and a. If ψ always evaluates to true, then I ∈ modp(ACt) and
I ∪ {a} ∈ modp(ACt) for all I ⊆ ΣACt

pv holds. So no counter example for the attacking
link can be found, i.e. a ∈ att(ACt) holds.

The answer of the attack is in this case purely dependent on the validity of the formula ψ there-
fore both will give in all cases the same answer.

The membership proof for the quite similar support link decision problem is completely
analogous and for the proof of its hardness only the acceptance condition for ACt needs to be
modified a little bit. Therefore we will omit these proofs to reduce redundancy. With these two
questions we can now check for every link which type it has. So we get some additional sense
about the costs for the knowledge which is assumed to be given by some of the existing results.
Although the information about the links can be acquired once for all the problems at least the
intractability of this subproblem shall be kept in mind.

Credmstable decision problem
Given: A monotone pForm-ADF D = (S,AC) and a statement s ∈ S.
Question: Is s in at least one stable model of D?

The notion of monotone pForm-ADFs (see Definition 3.1.16) has been introduced in this
work. We want to show that the computational complexity for the credulous acceptance problem
on the stable model semantics (Credmstable ) remains for monotone pForm-ADFs the same as for
pForm-ADFs with the assumption of the link type knowledge. In this way we want to show that
it is slightly easier to solve the problem for monotone pForm-ADFs because they do not need the
assumption of the link type knowledge. In addition we also want to show that there is no reason
that the complexity decreases as a result of the restriction to monotone formulae.
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Proposition 4.4.3. Credmstable for monotone pForm-ADFs is NP-hard.

Proof. Every Dung’s AF can be transformed to a pForm-ADF. As all variables occur as pure
attacks, every acceptance condition formula is a conjunction of literals with negative polarity,
which is a monotone pForm-ADF. So the hardness results on Dung’s AF (see [Dimopoulos and
Torres, 1996]) carry over to monotone pForm-ADFs.

Proposition 4.4.4. Credmstable for monotone pForm-ADFs has an NP-membership.

Proof. Let D = (S,AC) be a monotone pForm-ADF and s ∈ S be a statement in D. Guess a
model M ⊆ S, where s ∈ M . The check if M is a model corresponds to evaluating if a given
interpretation is a model for propositional formulae. The construction ofDM is computationally
easy: substitute in every formula all variables which have a negative polarity occurrence in the
formula (see Proposition 3.1.19). The computation of the (unique) least fixed-point of DM by
the application of ThD also takes maximal m ∈M many steps, where each step is a truth-value
evaluation of propositional formulae under a given interpretation.
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CHAPTER 5
Implementation

This chapter will emphasize on the implementation of software systems to compute the sets of
accepted statements, defined by the semantics, for specific instances. In addition we present
experiments for the evaluation of the performance. At first we describe how the encodings for
the systems are done (Section 5.1) and in Section 5.2 the results of the experiments are shown
and discussed.

5.1 ASP - Encodings

As a preliminary we will first introduce the paradigm of logic programming with strong em-
phasis on Answer Set Programming. In the following we will present an implementation of the
ADF→ AF transformation [Brewka et al., 2011a] (see Section 4.1). After this rather small pro-
gram, we will present and describe our new system ADFsys [Ellmauthaler and Wallner, 2012].
Note that we only show parts of the whole encodings in this chapter. For the full listings see
Appendix A and B.

Introduction to Logic Programming

The paradigm of logic programming has the aim to describe in a declarative way the facts and
inference rules. With this description all inferences which satisfy these declarations can be de-
termined. A slightly older, but highly sophisticated and well-known approach is LOGPROG
(for details see [Apt, 1997]). In LOGPROG the declaration of propositional theories consisting
of variables, predicates and functions is possible. Alas, to achieve efficient programs in LOG-
PROG a programmer needs to use complex propositional data-structures which have tendencies
to become unintuitive. In addition it is not always declarative, as there exist constructs where
the order in the source code matters.

The paradigm of Answer Set Programming - ASP (for an overview see [Brewka et al.,
2011c]) does not try to provide that much freedom for data structures compared to LOGPROG.
So it works generally on a flat data-structure and so it does not allow function symbols in its
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core version. The basic idea behind ASP is to solve computational hard problems with a declar-
ative approach, which is modular such that the problem definition and instances are two different
components where each component may be changed.

Let us begin with basic definitions for the ASP programming paradigm: We begin with
the propositional case, as answer set programming allows in addition the usage of predicates.
Note that despite predicates are allowed no other concepts of first-order logic like quantifiers are
allowed. An ASP program consists of a set of rules. A rule is an expression of the form

a← b1, ..., bm, not c1, ..., not cn.

where a, all bi, and all ci are atoms. The rule consists of two parts, the so-called head and the
body, separated by the ←-symbol. Intuitively a rule can be read that the head (a in the above
rule) can only be derived if the body (b1, ..., bm, not c1, ..., not cn in the rule) is satisfied by the
already derived knowledge. Note that the not prefix before the ci atoms is not a negation in the
classical logic way. It can be seen as some sort of nonmonotonic negation, as it means that ci
can not be derived. An atom a is a positive literal and not a is a “default” negated literal (i.e.
weak negation). A special form of a rule is the rule in the form

a← .

where a is not dependant of any other atom and always true. In this case the← can be omitted
and we may write

a.

which is called a fact. A further natural idea is to use an empty head, such that

← b1, ..., bm, not c1, ..., not cn.

is the form of this rule. Intuitively this can be seen as a rule which infers⊥, which is the same as
a contradiction. This type of rule is called a constraint and it can be used to identify impossible,
unwanted, or contradicting inferences.

A set of rules is called an ASP program, which results in potentially multiple results, so-
called answer sets. An answer set is a set of atoms which are the derived inferences and the
knowledge base together. Due to the allowed usage of weak negation it is possible to create
negation loops in rules such that different answer sets can be derived (see the example below).

Example 5.1.1 (ASP rules with more than one answer-set).

r1 : a← not b.

r2 : b← not a.

In this example we have two rules. If we take a look on the program p = {r1} ∪ {r2}, we see
that neither a nor b is derived and so we can apply both rules to derive additional atoms. If we
derive r1 first, then we can not derive r2 because now a exists. The same holds for the other case
where we first have derived r2. So the program p would provide two answer sets:

{
{a}, {b}

}
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It can get quite complex to deal with such negations, because during the collection of new
derived knowledge some already used (and before applicable) rule will no longer be applicable
and its knowledge is no longer derivable and therefore the answer set may be inconsistent. This
means ASP is a non-monotonic formalism. Answer sets which are stable can be computed via
the Gelfond-Lifschitz reduct [Gelfond and Lifschitz, 1988]. The reduct is built for every model
M of the program Π. There all rules with at least one negated literal which is also in the model
M are removed. In the remaining rules all negated literals are deleted from the bodies. So a
negation-free, reduced program is constructed which has a unique least model. If this model of
the reduced program equals M , then M is stable.

We now consider in addition predicates and variables, i.e. an atom can now be a predicate
p(t1, ..., tn) with arity n ≥ 0. The terms t1, ..., tn can either be constants or variables. In the
programming paradigm, we will use for facts (atoms, constants and predicate names) lower
case letters and variables for general rules are denoted by names beginning with an upper case
letter. So a rule a ← p(X). will infer a if any predicate p(c) exists, where c is a constant. To
handle variables it is important for ASP to solvers to get a grounded input. This means that the
variables are substituted by all possible constants. Indeed in a naive way this would end in an
exponential blowup, so the specialized grounders utilize many tricks to produce as compact and
small as possible grounded versions of the program. As we need to use a grounder before we
can use these problems, also all rules need to be groundable. So every weakly negated atom
(i.e. those that have a not before them) also needs to occur positively in the body. If we are not
interested in some of the variables in a relation, we may use the underline (_) to express this.
(e.g. a(X) ← rel(_, X) creates the fact a(X) if there exists any relation rel(Y,X), but we do
not care which value Y has. Note that there may be more than one relation which can satisfy
this rule, but this does not matter because we are dealing with sets).

The paradigm we have shown till now has the computational power to solve problems in
NP. Now we will present extensions of this concept, where some of these methods may increase
the computational power to higher levels of the polynomial hierarchy. The first extension we
want to introduce are aggregates together with optimization. With aggregates the number of
relations can be counted. These aggregates can be used in a way like they are used in SQL.
#count{a, b, c} is one example, which would give the answer 3. As variables and underlines are
allowed to occur, it is possible to count the number of relations which has something in common
(e.g. #count{rel(_, X)}, X. may count how many elements are related to X). The results of
these aggregates may be used to refine rules with boundaries in the form of L{number}U to
only make the body applicable if the number is between the boundaries L and U (e.g. a ←
2{#count{rel(_, b)}}5. may only derive a if there are 2, 3, 4, or 5 relations where b occurs as
the second element). In addition to the usage of aggregates for more distinct definitions of rules,
it is also possible to add weights to some derived facts and let the ASP solver find a solution
with a minimal, respectively optimal, score with respect to the weights. The second extension
we want to present is the extension to disjunctive logic programs. There it is allowed to use rules
with disjunctions in the head:

a1 ∨ ... ∨ ai ← b1, ..., bm, not c1, ..., not cn.

The first intuition says that these disjunctive programs do the same as the construct shown in
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Example 5.1.1. With disjunctive programs stronger properties for the elements in the head are
enforced. The above example may be extended with additional rules to have a, b and both
together in one answer set. In contrast to the approach with weak negation loops, the disjunctive
program only computes answer sets which are subset-minimal with respect to the elements in
the disjunctive rule head.

Note that ASP solves problems which are known to be in NP or harder. With a special cod-
ing technique, the saturation (see [Eiter and Gottlob, 1995] for additional insight on saturation),
it is possible to also solve coNP problems. We will use saturation for some of the implemen-
tations and we will describe it when we use it the first time. Notice that the use of disjunctive
programs already increases the expressiveness of the logic program to Σ2P.

Introduction to the used Solver

The below described encodings are done with the Potsdam Answer Set Solving Collection
(Potassco1) [Gebser et al., 2011b]. We have decided to use this package of software, be-
cause it is one of the best solvers currently available [Calimeri et al., 2011, Denecker et al.,
2009, Gebser et al., 2007b]. In addition some nice features like an embedded LUA2 [Ierusalim-
schy et al., 2007] code processor to generate additional information with an imperative approach
are included too. Here the idea is to call an imperative function when a rule is applied and use
the return value of this function as the derived knowledge.

We have used a selection of the tools from Potassco. To translate the ASP-program to
a grounded one, we use gringo. It creates an lparse conform output, which is needed
as the input for the solver of the Potassco-package. The used solver is claspD, which
is clasp [Gebser et al., 2007a] together with the power to work with disjunctive programs.
In addition we use metasp [Gebser et al., 2011a] to get the subset-minimal property of the
preferred semantics.

Each solver has some own additions to the syntax of the language to define the ASP-program.
So we will give a short overview on some of the needed standards we have used. In general we
have to use :- instead of← to separate the head from the body. For better readability we will
use in the listing← although it has to be the double-dot followed by the dash. For conjunctive
programs we have to use | for the ∨ symbol. Again we will print in the listings the ∨ instead
to achieve a more convenient presentation. The symbol % is used to handle the line from the
symbol till its end as a comment .

To use the mentioned LUA-code, we need to define a region for it. The listing shows how
such a LUA-code may be embedded. Here we just define the LUA function foo which does return
anything. In addition line 6 shows how this function is invoked. If b is derived as a fact, then
we will derive a(returnvalue_of_foo). Note that the return value of foo is not cached, so the
function is invoked every time it occurs. The last line shows another rule where a clasp-specific
syntax is used. In the first predicate of the body we see a semicolon. This is a shorthand to
reduce the number of predicates. This line can also be written as

ismodel(F ) : −subformula(F ), subformula(F1), F := neg(F1), nomodel(F1).

1see http://potassco.sourceforge.net/ for the system and further documentation
2see http://www.lua.org/ for the language definition
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1 # b e g i n _ l u a
2 f u n c t i o n foo ( )
3 r e t u r n a n y t h i n g
4 end
5 # e n d _ l u a
6 a ( @foo ) ← b .
7 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 ) .

Listing 1: Clasp specific syntax

which needs much more space than the above notation. The used := is the symbol for an
assignment. So F needs to be neg(F1) to get the rule applicable. An additional handy syntax
pattern is the colon and the count-shortcut (instead of writing the count aggregate it is sufficient
to write curly brackets). The expression {rel(S,X):fact(S)},X:=foo would be the
number of relations relations rel(S,X) for the facts S, where X is foo.

We need to use #maximize[e@p] and #minimize[e@p] to utilize the optimization exten-
sion of clasp. Here e is some element, which will be counted (e.g. p(X) to count the number
of derived predicates p), and p is a number which declares the priority of the optimization. The
optimization will first be done for the highest priority and then those sets which are maximal are
optimized for the next smaller priority and so on.

At last we want to give a short overview on how to use the programs in form of an example.

Example 5.1.2 (Usage gringo and clasp). Let program1.dl and instance1.dl be
ASP-programs. Then the answer sets are computed with the following command from a com-
monly used shell:

$> gringo program1.dl instance1.dl | claspD 0

As already said we need to ground the programs first to get them solved by claspD, so we
called gringo first and then we used its output as the input for claspD. Note that claspD
is the solver for disjunctive programs. It can also solve programs without disjunctive rules, so
we do not change between clasp and claspD calls. The zero after the program call is an
argument to claspD, which forces the enumeration of all answer sets instead of just the first
one found.

ADF→ AF

This section will describe how the encoding of the ADF→AF-transformation is implemented
and give an insight on the used coding techniques and mechanics. This implementation was
done as a preliminary study on ADFs. The study had the aim to empirically test whether a
native encoding of the model semantics for ADFs performs better than the transformation to
AFs together with the computation of the stable extension or not. For easier computation of
the acceptance conditions we restricted them to CNF. Based on this easier representation of
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acceptance conditions, we will present the native encoding for the model semantics for these
ADFs, together with the transformation to AFs.

To represent a pForm-ADF, we need to use the following encoding.

Definition 5.1.3 (Representation of the statements). Let D = (S,AC) be a pForm-ADF. The
ASP-program Ŝ contains for each statement one fact such that Ŝ = {statement(s). | s ∈ S}.

Definition 5.1.4 (Representation of the acceptance conditions). Let D = (S,AC) be a pForm-
ADF, where the acceptance conditions are represented in clause form. In addition let π be a
mapping to get an unique name for each clause over all acceptance conditions.

ÂC = {cl(s, π(c)). | s ∈ S, c ∈ ACs}
Ĉpos = {pos(π(c), a). | c ∈ ACs, a ∈ c, a is a positive literal}
Ĉneg = {neg(π(c), a). | c ∈ ACs, a ∈ c, a is a negative literal}
Â = ÂC ∪ Ĉpos ∪ Ĉneg

The program Â represents the clause form of each acceptance condition in D.

Based on the two programs to represent the statements and the acceptance conditions the
program Ê = Ŝ ∪ Â can be used to encode the facts about one pForm-ADF. Note that the truth-
constants ⊥ and > can not be used as symbols, but omitting the literals Ĉpos and Ĉneg equals an
empty set of literals in the clause form and omitting the clauses ÂC for one statement equals an
empty set of clauses in the clause form. So it is possible to project these two truth-constants for
the acceptance condition.

Now we will explain how the direct encoding of the model for the presented representation
of pForm-ADFs is done. Listing 2 shows the whole source of the direct encoding. Here we use
a “guess & check” approach. Lines 1 and 2 incorporate the guess, where for each statement it
is guessed whether it is in the model or not. Based on the introduction to ASP it should be clear
that every subset of the set of statements is guessed as a possible answer set. In the lines 9 and
10 the constraints check whether the guessed answer set fulfills the desired property or not. So
only the “right” sets stay as answer sets. Before this check can occur we derive which clauses
validate true under the current guess (line 4 and 5). Then we infer for each formula the predicate
fconj if it is false under the current guess. Based on this inference now the two constraints
can check whether a statement was selected whose acceptance condition validates to false or a
statement was not selected although its acceptance condition has the truth-value true under the
current guess.

Note that we use the already existing software system ASPARTIX3 [Egly et al., 2010] to
compute the stable extension of the AF. Therefore we will follow their representation of AFs,
where arg(x) is the definition of one argument x and att(a,b) projects that a attacks b.
To encode the transformation, a creation of new arguments is needed to get the negated argu-
ments and the helping nodes for the logical connectives. To obtain this in an easy to read and
understandable way, we use the underline “_” as the prefix for a negated argument. In addition

3see http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of ASPARTIX
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1 i n (X) ← n o t o u t (X) , s t a t e m e n t (X) .
2 o u t (X) ← n o t i n (X) , s t a t e m e n t (X) .
3

4 v d i s j (X,Y) ← c l (X,Y) , pos (Y, Z ) , i n ( Z ) .
5 v d i s j (X,Y) ← c l (X,Y) , neg (Y, Z ) , o u t ( Z ) .
6

7 f c o n j (X) ← c l (X,Y) , n o t v d i s j (X,Y) .
8

9 ← i n (X) , f c o n j (X) .
10 ← o u t (X) , n o t f c o n j (X) .

Listing 2: Direct Encoding of the model semantics

the “h_” prefix is used to identify helping arguments which are needed for the transformation.
To generate this new knowledge we used the embedded LUA-engine. Listing 3 shows how
these functions are built. Line 3 to 9 captures the function to create a negated atom and also
resolves double negation such that the negation of a negative literal is again a positive literal.
The used Val-object is some kind of interface to the solver to add the new knowledge. The
function dhelper is used to create a new argument for the disjunction in one clause. Note
that there also exist similar functions for the other elements of the created arguments during the
transformation, but they are in fact the same as the dhelper routine.

1 # b e g i n _ l u a
2 l o c a l i =−1
3 f u n c t i o n neg ( s )
4 i f ( s t r i n g . sub ( Val . name ( s ) , 1 , 1 ) ) == " _ " t h e n
5 r e t u r n Val . new ( Val . ID , s t r i n g . sub ( Val . name ( s ) , 2 ) )
6 e l s e
7 r e t u r n Val . new ( Val . ID , " _ " . . Val . name ( s ) )
8 end
9 end

10

11 f u n c t i o n d h e l p e r ( s )
12 i = i +1
13 r e t u r n Val . new ( Val . ID , " h_v_ " . . i )
14 end
15 # e n d _ l u a .

Listing 3: LUA-functions for the creation of arguments

Listing 4 shows the program part with the rules to create the arguments which correspond
to the statements of the ADF. In addition the negated arguments are inferred too. Lines 4 and
5 resolve the number of clauses (numcon) and the count of literals in each clause (numdis).
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1 a r g (X) ← s t a t e m e n t (X) .
2 a r g ( @neg (X) ) ← s t a t e m e n t (X) .
3

4 numcon (X,Y) ← s t a t e m e n t (X) , Y:=# c o u n t { c l (X, _ ) } .
5 numdis (Y, Z ) ← s t a t e m e n t (X) , c l (X,Y) ,

Z:=# c o u n t { pos (Y, _ ) , neg (Y, _ ) } .
6

7 verum (X) ← s t a t e m e n t (X) , numcon (X,Y) , Y==0.
8 f a l s um (X) ← s t a t e m e n t (X) , c l (X,Y) , numdis (Y, Z ) , Z==0.

Listing 4: Rules for the statement transformation

With this counts we can identify how the structure of the acceptance condition formula looks
like. The knowledge about the structure is used in line 7 and 8 to infer predicates for statements
which have a truth-constant as their truth-value.

Based on the transformation we know that we have to check whether the acceptance condi-
tion formula is based on variables or truth-constants. In the latter case only a unidirection attack
relation between the argument and its negated version is added. These additions are shown in
Listing 5 at the first two lines. The other two lines in the listing create a bidirectional attack
relation between the two arguments.

1 a t t (X, @neg (X) ) ← verum (X) .
2 a t t ( @neg (X) ,X) ← f a l s um (X) .
3 a t t (X, @neg (X) ) ← s t a t e m e n t (X) , n o t verum (X) , n o t f a l s um (X) .
4 a t t ( @neg (X) ,X) ← s t a t e m e n t (X) , n o t verum (X) , n o t f a l s um (X) .

Listing 5: Attack relations between arguments and counterarguments

Next, we will have a look on the transformation of the relation between two statements
where the acceptance condition consists only of one literal. This is the last case where we do
not need any additional helping arguments (see Listing 6). The first two rules infer on basis of
the count of the clauses and literals the knowledge that there is only one literal which is negative
respectively positive. Then in the following lines the attacks between the arguments and their
negated arguments are done as described in the section about the transformation.

At last the rules for acceptance conditions with compound formulae in CNF are missing.
Here we need to use the both structures introduced by the transformation. A more detailed
look on the structures for conjunction and disjunction shows that both structures are identical
in the arrangement of the attacks and differ in the position of the arguments. So a generic
attack structure for these two is used. Based on the arguments passed as a generic attack, other
arguments are put in place for the structure (Listing 7). Now the following rules only need to
use this generic attack predicate to build one semantic attack structure. To have a simpler way
to deal with positive and negative literals the predicate lit is introduced, where the argument
respectively the negated argument is used. This predicate is just a substitution for the pos and
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1 n e g l i t a t t ( Z ,X) ← s t a t e m e n t (X) , c l (X,Y) , numcon (X,A) ,
numdis (Y, B) , neg (Y, Z ) , A==1 , B==1.

2 p o s l i t a t t ( Z ,X) ← s t a t e m e n t (X) , c l (X,Y) , numcon (X,A) ,
numdis (Y, B) , pos (Y, Z ) , A==1 , B==1.

3

4 a t t ( Z ,X) ← n e g l i t a t t ( Z ,X) .
5 a t t ( @neg ( Z ) ,@neg (X) ) ← n e g l i t a t t ( Z ,X) .
6 a t t ( @neg ( Z ) ,X) ← p o s l i t a t t ( Z ,X) .
7 a t t ( Z , @neg (X) ) ← p o s l i t a t t ( Z ,X) .

Listing 6: Attack relations between arguments with single literals as acceptance conditions

1 a t t (H, T ) ← g e n a t t ( I , T ,H) .
2 a t t ( I ,H) ← g e n a t t ( I , T ,H) .
3 a t t ( I , @neg ( T ) ) ← g e n a t t ( I , T ,H) .

Listing 7: Generic attack relations

neg predicates. To reduce the number of needed arguments, we have a distinction of the shape
of the acceptance condition formula. This means that we analyze whether there exists only
one clause (i.e. the formula only has disjunctions), or there are more than one clause existing.
In the latter case a distinction is done between those clauses which only contain one literal
and those who contain more. Listing 8 shows these distinct rules. Intuitively spoken the rules
produce new helper arguments (dhelper, chelper, disjunct) which are connected
with the arguments via generic attacks. In the last two lines the attacks between the newly
created arguments and their negations are added, as they could not been inferred before.

ADF System

Here we will introduce our software system ADFsys4 [Ellmauthaler and Wallner, 2012] which
offers encodings to compute the already discussed and presented semantics of pForm-ADFs. To
make it easier to see which listings belong to each other, we will continue the line numbering for
closely related parts. For the encodings we removed the restriction of the acceptance condition
formulae to CNF. So every formulae may be used as an acceptance condition. Therefore the
input format is different from the format for the transformation. The encoding of input instances
(i.e. pForm-ADFs) is as follows:

Definition 5.1.5 (Representation of a pForm-ADF for ADFsys). LetD = (S,AC) be a pForm-
ADF. The ASP-program Ŝ contains for each statement one fact, such that

Ŝ = {statement{s}. | s ∈ S}.

4see http://www.dbai.tuwien.ac.at/research/project/argumentation/adfsys/ for sources and some examples
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1 % i f t h e a c c e p t a n c e c o n d i t i o n on ly c o n s i s t s o f a s e r i e o f
d i s j u n c t i o n s

2 d a t t ( @dhelper ( T ) ,T ,X) ← s t a t e m e n t ( T ) , c l ( T ,X) , numcon ( T ,A) ,
numdis (X, B) , A==1 , B>1 .

3 g e n a t t ( I , T ,H) ← d a t t (H, T ,X) , l i t (X, I ) .
4

5 % i f t h e a c c e p t a n c e c o n d i t i o n has a t l e a s t one c o n j u n c t i o n
6 c a t t ( @chelper ( T ) ,T ) ← s t a t e m e n t ( T ) , n o t f a l s um ( T ) ,

numcon ( T ,A) , A>1 .
7

8 % i f t h e s u b f o r m u l a from a c a t t c o n j u n c t i o n i s on ly one
l i t e r a l

9 g e n a t t ( @neg ( I ) ,@neg ( T ) ,H) ← c a t t (H, T ) , c l ( T ,X) ,
numdis (X, B) , l i t (X, I ) , B==1.

10

11 % i f t h e s u b f o r m u l a from a c a t t c o n j u n c t i o n c o n s i s t s o f a
s e r i e o f d i s j u n c t i o n s

12 d i n c a t t ( @ d i s j u n c t (X) ,X) ← c a t t (H, T ) , c l ( T ,X) , numdis (X, B) ,
B>1 .

13 d a t t ( @dhelper ( T ) ,T ,X) ← d i n c a t t ( T ,X) .
14 g e n a t t ( @neg ( I ) ,@neg ( T ) ,H) ← d i n c a t t ( I ,X) , c l ( T ,X) ,

c a t t (H, T ) .
15

16 % c r e a t e t h e mutua l a t t a c k s f o r t h e " d i s j u n c t "−nodes
( d i n c a t t )

17 a t t (X, @neg (X) ) ← d i n c a t t (X, _ ) .
18 a t t ( @neg (X) ,X) ← d i n c a t t (X, _ ) .

Listing 8: Generic attacks for different shapes of acceptance condition formulae

The ASP-program Â represents the acceptance conditions, such that

Â = {ac(s, acs) | s ∈ S, acs ∈ AC}.

For the acceptance condition formula every formula can be used, which is a formula by the
following induction:

(i) Every s ∈ S is an acceptance condition formula.

(ii) c(v) and c(f) are acceptance condition formulae.

(iii) If φ is an acceptance condition formula, then neg(φ) is one too.

(iv) If φ and ψ are acceptance condition formulae, then these are one too:
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• and(φ, ψ),

• or(φ, ψ),

• imp(φ, ψ),

• xor(φ, ψ), and

• iff (φ, ψ).

The ASP-program Î is the representation of one pForm-ADF, where Î = Ŝ ∪ Â.

Note that the atoms c(v) and c(f) stand for the constant-symbols verum (i.e. >) and
falsum (i.e. ⊥).

Formula representation and evaluation

Before we will explain how the distinct semantics are computed we will first show how the
handling with the acceptance condition formulae is done and how it can be checked whether a
given interpretation is a model for a formula or not. The predicates to construct the given formula
act in a way like function symbols. Listing 9 shows how the acceptance condition formula is
broken down into its subformulae recursively. Line 1 takes the acceptance condition as the first

1 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
2 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .

Listing 9: Acceptance condition and its subformulae

“subformula”. Note that the subformula-predicate keeps track of the original statement to
which the formula and its parts belong to. In the next lines the formula is split into its parts,
and for each part a new subformula is inferred. Keep in mind that we only show how this
concept works on the conjunction and the negation, as the other connectives work in the same
manner. After all predicates are resolved we have intuitively spoken the whole formula tree as
our knowledge.

With this formula tree it is now easy to check whether a set of statements satisfies the accep-
tance condition formulae or not. The distinct rules for conjunction, disjunction, and negation,
as well as the rules for atoms are shown in Listing 10. To check whether an interpretation is a
model for a formula or not, we need some set of statements which are true respectively false .
So we use the predicates in and out to define which statements are selected and which are not.
How these two sets are constructed will be shown later. The listing shows some of the rules
to infer those formulae which evaluate to true under the current assignment. Indeed there are
also rules for the case where they evaluate to false . These will infer the predicate nomodel,
whose definition is omitted to reduce redundancy. Lines 5 and 6 deal with formulae which are
atoms. If the atom itself is selected or the atom is the truth-constant verum it is obvious that the
selection is a model for this atom, meaning this subformula evaluates to true. The following rule
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5 i s m o d e l (X) ← atom (X) , i n (X) .
6 i s m o d e l (X) ← atom (X) , X:= c ( v ) .
7 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 ) .
8 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
9 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := or ( F1 , F2 ) , i s m o d e l ( F1 ) .

10 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := or ( F1 , F2 ) , i s m o d e l ( F2 ) .

Listing 10: Verification whether a set of statements is a model or not

deals with the negation. Intuitively the rule fires and induces new knowledge if there are two
subformulae F and F1, where F is the formula neg(F1), and the current selection of elements
is not a model of F1. To resolve whether a conjunction evaluates to true, line 8 takes the for-
mulae which are conjunctions and demands both of the subformulae to be true under the current
statement assignment too. For the disjunction we need two rules as it is satisfied if at least one
of the two subformulae validates to true .

Link-type distinction

Some of the semantics are defined for BADFs and so we will need a link-type distinction. This
computation is also implemented and before we will picture the semantics we show how this
encoding works. We will have to check every link. The property of being attacking respectively
supporting is dependent on two interpretations, so we also need to distinct between these two
evaluations. To have a simple method to check whether the interpretations are models or not,
we revamped the ismodel and nomodel rules such that each predicate is defined for one
formula with respect to a link and the current evaluation. The link predicates link(X,S)
represent one link, where the statement X occurs in the acceptance condition of S. The problem
to decide whether a link is attacking (resp. supporting) or not is in coNP, so we need to use the
saturation coding technique.

The basic idea behind this technique is to use a disjunctive rule to guess the sets where we
want to show the coNP-hard property. Then we have to infer a predicate with positive rules
(i.e. no weak negations occur in the rule) if the property holds in this case. If the property is not
satisfied we remove it with a constraint from the answer set. In the case where the property is
satisfied, we will saturate the answer set, which means we set all elements to be in and out at the
same time. Intuitively this means that we have only saturated sets as answer sets (which are all
identical and therefore collapse to one answer set) if the property holds and if the property does
not hold, at least one answer set candidate was not saturated and is therefore a minimal set w.r.t.
the disjunctive guess. As this minimal answer set has a constraint which removes it, we do get
no answer set as the answer of the computation.

Let us go back to the encoding for the link-types. Before we can apply the saturation, we
have to guess which type the link is (Listing 11). Based on this guess we can now check for the
guess whether it was right or not. Precisely for this check we will need the saturation mentioned
above. Listing 12 pictures the saturation for our needs. To keep it simpler we only show the rules
for the case where we guessed an attack link. The supporting and uninformative links (i.e. attack
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1 a t t (X, S ) ∨ supp (X, S ) ∨ a t t _ s u p p (X, S ) ∨ dep (X, S ) ← l i n k (X, S ) .

Listing 11: Guess which link type the link has

and support) are similar to the attacking (Note that the rules in the lines 8 to 11 have to be copied
and adapted for the other link-types). Line 2 is the disjunctive guess to select a set of statements

2 i n (X, I , J , 1 ) ∨ o u t (X, I , J , 1 ) ← l i n k ( I , J ) , s t a t e m e n t (X) ,
atom (X) , s u b f o r m u l a ( J ,X) .

3 ← i n (X, X, J , 1 ) .
4 i n (X, I , J , 2 ) ← i n (X, I , J , 1 ) .
5 o u t (X, I , J , 2 ) ← o u t (X, I , J , 1 ) , X != I .
6 i n (X, X, J , 2 ) ← o u t (X, X, J , 1 ) .
7

8 n o a t t c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) .
9 n o a t t c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , nomodel ( F , I , J , 1 ) ,

nomodel ( F , I , J , 2 ) .
10

11 ok ( I , J ) ← n o a t t c l a s h ( I , J ) , a t t ( I , J ) .
12

13 ← n o t ok ( I , J ) , check ( I , J ) , n o t dep ( I , J ) .
14

15 i n (X, I , J , 1 ) ← ok ( I , J ) , o u t (X, I , J , 1 ) , X!= I .
16 o u t (X, I , J , 1 ) ← ok ( I , J ) , i n (X, I , J , 1 ) , X!= I .

Listing 12: Saturation for the attacking link property

for the link and then every guess where the linked statement is selected is removed. Then a
second set of statements is created, where the link statement is added to the guessed set. For this
pair of sets the attack property is checked. If the property holds there is no clash. The guess was
right if we check whether the link is attacking and no clash is detected. In the case where the
check was not right, the constraint in line 13 removes the guess from the acceptable answer sets.
In the last two lines we saturate, i.e. we set all statements to in and out at the same time if the
check was right. At last we have to deal with the case where the link is dependent. This is an
NP-hard problem and therefore we do not need saturation. If we check for the dependency we
try to find a set of interpretations to show that it is neither attacking nor attacking. In order to
do that we need an additional guess for a second interpretation. Note that we use the guess for
the saturation together with a second, identical guess to gain the two interpretations. The guess
together with the check for the dependency can be found in Listing 13.

Conflict-free sets and the model semantics

After the description of the preliminary encoding parts, we can continue with the semantics.
Naturally the easiest property and semantics have also the shortest and easiest encodings. So
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17 i n (X, I , J , 3 ) ∨ o u t (X, I , J , 3 ) ← l i n k ( I , J ) , dep ( I , J ) ,
s t a t e m e n t (X) , atom (X) , s u b f o r m u l a ( J ,X) .

18 ← i n (X, X, J , 3 ) .
19 i n (X, I , J , 4 ) ← i n (X, I , J , 3 ) .
20 o u t (X, I , J , 4 ) ← o u t (X, I , J , 3 ) , X != I .
21 i n (X, X, J , 4 ) ← o u t (X, X, J , 3 ) .
22

23 i s d e p ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) ,
nomodel ( F , I , J , 2 ) , nomodel ( F , I , J , 3 ) , i s m o d e l ( F , I , J , 4 ) .

24 ← dep ( I , J ) , n o t i s d e p ( I , J ) .

Listing 13: Dependent link check

we will start with the conflict-free sets and the model semantics. Both are based on the “guess
& check” technique. In Listing 14 we start with a guess of selected statements. The constraint
in line 4 removes all sets where a conflict emerges (i.e. a statement is selected although its
acceptance condition is not satisfied). Without the last line we obtain the encoding for the

1 i n (X) ← n o t o u t (X) , s t a t e m e n t (X) .
2 o u t (X) ← n o t i n (X) , s t a t e m e n t (X) .
3

4 ← i n (X) , ac (X, F ) , nomodel ( F ) .
5 ← o u t (X) , ac (X, F ) , i s m o d e l ( F ) .

Listing 14: Model computation for an ADF

conflict-free sets. This last line is the check to be sure that no statement was forgotten, as every
statement whose acceptance condition is satisfied has to be accepted by the model.

Based on the model semantics we can now add the check for the stable model semantics.
At first we have revamped the nomodel and ismodel predicates to give the possibility to
evaluate the same formula more than once. So we added the elements to the current subformula
formula F, the statement S to which the formula belongs and the current evaluation I. Note that
the predicates in and out now also have to specify in which evaluation step they are selected or
not. In addition we have to add ismodel and nomodel rules to remove attacks. One example
of such a rule is presented in Listing 15. The used evaluation step model is the evaluation of

1 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) ,
I != model , a t t (X, S ) , i n ( s , model ) .

Listing 15: One attack elimination rule

the model, as the basis for the stable model reduction. We can see that the rule evaluates to
false under the interpretation, even if it was in the model, because it is an attacking link-type.
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The removal of links which are not selected is not needed, due to the fact that they are already
set to be out. After this reduction we need to construct the least model of the reduction. This
construction is an iterative procedure and so we will also use an iteration. This reflects the
computation of the least fixed-point of the ThD operator on the model-reduct (see Section 2.3
and 3.1). We start with the number of the statements (Listing 16) and set every statement to be
out. Afterwards we check the models for this empty interpretation. For every iteration step, the

2 mode lS ta t emen tCoun t ( I ) ← I :={ i n ( S , model ) : s t a t e m e n t ( S ) } .
3 i t e r a t i o n ( I ) ← mode lS ta t emen tCoun t ( I ) .
4 o u t ( S , I ) ← s t a t e m e n t ( S ) , mode lS ta t emen tCoun t ( I ) .
5 modelcheck ( I ) ← i t e r a t i o n ( I ) .

Listing 16: First iteration step

next iteration is created till the last (i.e. evaluation iteration zero) is reached. Listing 17 shows
this procedure. In line 7 and 8 we add every statement which had a true acceptance condition
in the step before to the set of accepted statements. In addition we copy all the remaining not
selected elements to the current iteration. We do not need to check more iterations, as we have to

6 i t e r a t i o n ( J ) ← i t e r a t i o n ( I ) , J := I−1, I >0 .
7 i n ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1,

i s m o d e l ( F , S , I ) , ac ( S , F ) .
8 o u t ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, n o t i n ( S , J ) ,

o u t ( S , I ) .

Listing 17: Iteration and model construction

add at least one statement per step till the fixed-point is reached. So we will not need more steps
than the number of statements. After we have reached and evaluated the last iteration, we add
all statements which are selected in this step to the set of accepted elements in the least model.
Finally we have to check whether all elements of the model are also in the least model or not
(Listing 18).

9 i n ( S ) ← i n ( S , J ) , J : = 0 .
10 ← i n ( S , model ) , n o t i n ( S ) .

Listing 18: Least model and stability check

Semantics based on the stable model semantics

Next we will present the admissible set property together with the preferred semantics. The
admissible set needs to work with the two sets R and M . So these two are guessed. In addition
we shift the check that no element in R may attack an element in M into the guess method for
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1 i n (X,m) ← n o t o u t (X,m) , s t a t e m e n t (X) .
2 o u t (X,m) ← n o t i n (X,m) , s t a t e m e n t (X) .
3

4 i n (X, r ) ← n o t o u t (X, r ) , s t a t e m e n t (X) , i n (Y,m) .
5 o u t (X, r ) ← n o t i n (X, r ) , s t a t e m e n t (X) .
6

7 ← i n (X, r ) , i n (Y,m) , a t t (X,Y) .
8 ← i n (X, r ) , i n (Y,m) , a t t _ s u p p (X,Y) .
9

10 i n (X, model ) ← i n (X,m) , o u t (X, r ) .
11 o u t (X, model ) ← s t a t e m e n t (X) , n o t i n (X, model ) .

Listing 19: Guess for R and M

R (Listing 19). Based on the guess of the two sets, we can infer the set which has to be checked
to be a stable model or not. At the moment where we have a guess for the model, we can reuse
the above described encoding for the stable semantics. In order to get the subset maximization
to obtain the preferred semantics, we use metasp. So we only need to add a maximization for
the elements we want to get maximized. As it is easier to define it with minimization we just
minimize the inverse set in Listing 20 (i.e. the statements which are out). To use metasp the

12 # minimize [ o u t (X) ] .

Listing 20: Maximization of in(X)

encoding for it needs to be grounded and passed to the solver too. In addition some additional
strings need to be inserted in the shell command to tell metasp what has to be done. How the
commands look alike can be seen on the homepage and will be mentioned in the experiments-
section (Section 5.2).

Well-founded semantics

The last semantics we have encoded is the well-founded one. Its definition uses the concept of
partial interpretations, so we need a validity test as well as an unsatisfiability test. In addition
the function ΓD is constructed step by step, so we will need an iteration too.

Listing 21 shows how the iteration is tailored. There in every step one undecided statement
is guessed and then it is checked whether the statement still belongs to the undecided set, or to
the set of accepted respectively rejected statements (see Definition 3.1.26).

For the validity test (which is coNP-hard) the saturation technique is used once more (see
Listing 22). To check the unsatisfiability we use again the solving power of the solver together
with saturation. Due to the fact that the order in which the undecided statements are checked
matters some answer sets may result in a subset of the well-founded model. To prevent this
we apply the optimization feature of clasp. Additional it may be the case that an undecided
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1 snum ( I ) ← I :={ s t a t e m e n t (Y) } .
2 i t e r a t i o n ( I ) ← snum ( J ) , I := J−1.
3 i t e r a t i o n ( I ) ← i t e r a t i o n ( J ) , I := J−1, I >=0.
4 % c r e a t e u n d e c i d e d s e t o f v a r i a b l e s a t t h e s t a r t i n g p o i n t

o f t h e f u n c t i o n
5 undec (X, I ) ← snum ( I ) , s t a t e m e n t (X) .
6 % i t e r a t e t h e f u n c t i o n one s t e p f u r t h e r , and g u e s s an

a d d i t i o n a l e l e m e n t f o r A or R
7 inA (X, I ) ← inA (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
8 inR (X, I ) ← inR (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
9 s e l e c t (X, I ) ← n o t d e s e l e c t (X, I ) , s t a t e m e n t (X) ,

i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 .
10 d e s e l e c t (X, I ) ← n o t s e l e c t (X, I ) , s t a t e m e n t (X) ,

i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 .
11 ← A:={ s e l e c t ( _ , I ) } , i t e r a t i o n ( I ) , A>1 .
12 undec (X, I ) ← i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 ,

d e s e l e c t (X, I ) .

Listing 21: Iteration and guess attempt for the well-founded semantics

13 i n (X, I ) ∨ o u t (X, I ) ← undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
14 i n (X, I ) ← i t e r a t i o n ( I ) , J= I +1 , inA (X, J ) .
15 o u t (X, I ) ← i t e r a t i o n ( I ) , J= I +1 , inR (X, J ) .
16 okA ( I ) ← s e l e c t (X, I ) , ac (X, F ) , i s m o d e l ( F , I ) .
17 okA ( I ) ← A:={ s e l e c t ( _ , I ) } , i t e r a t i o n ( I ) , A=0 .
18 inA (X, I ) ← okA ( I ) , s e l e c t (X, I ) .
19 i n (X, I ) ← okA ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
20 o u t (X, I ) ← okA ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .

Listing 22: Acceptance of statements whose partial interpretation is true

statement is not checked at all, which is prevented by a second optimization parameter. So only
the correct answer set remains.

5.2 Experiments

All experiments were done on an openSUSE machine with eight Intel Xeon processors
(2.33 GHz) and 49 GB memory. For the computation of the answer sets, we used gringo
(version 3.0.3) and clasp (version 2.0.4) for the ADF→ AF transformation tests, and gringo
(version 3.0.3) together with claspD (version 1.1.2) was used for the ADF system.
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ADF→ AF

Preliminary tests indicate that the transformation takes in general more time than the computa-
tion of a model in the ADF respectively in the AF. We have chosen to implement the transforma-
tion with a declarative approach to make it easier to verify the program integrity. It is no surprise
that the transformation needs a high amount of time due to the fact that almost all work is done
by the grounder together with the embedded LUA interpreter. Indeed an imperative approach for
the transformation may lead to better performance. Our goal was to compare the solving time
of an ADF model with a corresponding AF stable extension. Based on these results we wanted
to see whether it is more useful to compute semantics based on ADFs or to compute them based
on corresponding AFs.

Test setup

To test the performance of the computation, we have written a generator to produce random
ADFs with acceptance conditions in CNF. The randomization is dependent on three parameters:

• number of statements (s): The number of statements which are in the ADF.

• max. number of neighbors (n): This is the number of the maximal allowed different
variables occurring in one acceptance condition formula.

• probability for easy formulas (p): The probability to produce an easy formula, which
means that only one literal or the truth constants verum or falsum are the acceptance
condition.

Based on these parameters the generator produces formulae with s statements, where each state-
ment has either an easy formula (with probability p) or a 3-CNF formula. In the latter case this
formula is a CNF where exactly three literals are in each clause. Each generated CNF formula
has at most n different variables and the number of clauses equals the effectively used number
of variables. To reduce the chance of easy unsatisfying clauses or redundant clauses it is in
addition ensured that no variable occurs twice in one clause. Note that the actual used number
of variables may be smaller than n, but it is more likely to be close to n. During the instance
generation each variable has a 0.5 chance to be used as a positive (respectively negative) literal.

The tests were done with ten instances per class of parameter choices. We have chosen to
use the following parameters:

• s = {500, 1000}

• n = {10, 20, 50}

• p = {0, 10, 20, 50, 80, 100}

In addition we reversed the meaning of the input format such that the formula is represented as
a DNF and we have adjusted the transformation as well as the ADF-model computation to work
with the DNF-representation too. This was done to reduce the possibility of biased results based
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to the restriction of CNFs. Due to the inverted meaning of the input format we have used the
same instances for the DNF and CNF based computations.

To get reasonable results, we limited the maximal computation time for each task to ten
minutes. The invocation of the different tasks is done by the following commands, where $> at
the beginning of the line is meant to be the command line prompt in a Unix-like environment:

$> gringo instance model.dl | clasp 0
$> gringo instance transform.dl | clasp 0
$> gringo transformed_instance stable_extension.dl | clasp 0

The argument 0 for clasp means that all answer sets are computed and not only the first one
and the vertical line | is the pipe-symbol to pass the output of gringo to clasp as input.
Notice that the output of the transformation is not a valid input format for gringo, so it needs to
be adjusted (i.e. add a full stop (.) after each predicate).

Results

Our empirical results showed that most of the generated ADFs have exactly one model. Only 8
out of the 360 instances resulted in two models. The following figures will show how long the
computation of each class of parameters took on average. On the X-axis of the shown diagrams
the probability for complex formulae is assigned and the Y-axis incorporates the average time
for the computation of the problem. The solid lines in the diagram represent the data for the
native computation of the models on ADFs and the dashed lines show the computation times of
ASPARTIX5 for the transformed AF. In addition each color (i.e. blue, green, and red) has its
own symbol (i.e. circle, triangle and cross) which represents the different instances with respect
to their maximal number of variables in their acceptance conditions. Note that we have named
the different datasets in the key of the diagram by their number of statements and their maximal
variables in the acceptance condition. The trailing t symbolizes that this is the transformed
AF. The figures shall be investigated with caution, because the y-axis has a different scaling to
present the different results in a more meaningful way. Each scaling change is denoted by the
zigzag on the axis. To easily reconstruct the current scaling at each zigzag the current value is
written down. Between two of these values the scaling is linear.

Figure 5.1 shows the results for all instances with 500 statements, where the acceptance
condition formulae are in CNF. The first important observation is the better performance of
the native computation of the model compared to the computation of the stable extension on
the transformed framework. Roughly speaking almost all model computations were finished in
about ten seconds. Indeed the computation on the transformed frameworks took about 300 sec-
onds to complete for the hardest to solve instances. In general it can be said that the computation
gets harder the more variables are in the acceptance condition of the formulae. This is also re-
flected by the increased runtime for all instances where easy acceptance condition formulae are
less likely to appear.

5for further details see Section 6.2
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probability for easy acceptance conditions
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Figure 5.1: Computation times for 500 statements in CNF

The results for the instances with 500 statements, which use DNF acceptance conditions
(shown in Figure 5.2) feature a similar picture. In fact all observations for the CNF-case hold in
this case too. So it seems that we do not have to face a bias on basis of the chosen normal form.

Finally we want to have a look on the instances with 1000 statements. As the results for
DNF and CNF were similar for the 500 statement instances, we have only done the tests with
the CNF-representation. In general it seems that the proportion of the computation is similar to
the instances with 500 statements. Although the graphs for both instancetypes are related, we
have to keep in mind that even the easiest instance took over a second to compute for problems
where a small number of easy acceptance conditions occur. A very surprising result is seen for
the computation times of the instances with the highest number of variables in the acceptance
conditions (i.e. n = 50). There the average computation time decreases when the probability
for easy formulae decreases from 50% to 20% and then it even gets faster in the step to 10%.
We speculate that we have some kind of easy to solve cases for the ASP-solver and therefore
the computation time gets better. Indeed, the computation time in general seems to get worse,
because every instance for 1000 statements, 50 variables and 0% probability for easy acceptance
conditions exceeded the maximal runtime of ten minutes (600 seconds).

The presented results also relate in some extend to the filesize of the instances compared to
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Figure 5.2: Computation times for 500 statements in DNF

the transformed instances. All generated instances together need about 1.2 GB of space, while
the transformed AF-instances are with 4.5 GB about three to four times bigger. Notice that our
transformation process is done on flat formulae structures, so the semantic structures remain very
compact. So an implementation with arbitrary formulae would result in more complex semantic
structures. The differences in the performance for arbitrary formulae may increase even more,
as the semantic structures will get more complex.

ADF System

In the following we will present preliminary tests as a first benchmark of the computational be-
havior of the ADFsys encodings. In contrast to the ADF→ AF transformation results, we will
differentiate between the grounding and the solving time, to get a better sense on the computa-
tional expensive mechanics. For example the whole syntactical handling of the formulae, like
subformulae resolution, is purely dedicated to the grounder while the propositional model check
and other semantical concepts are almost purely done by the solver.
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Figure 5.3: Computation times for 1000 statements in CNF

Test setup

In order to get randomized instances we have reused the already existing 8-grid-graph
generator, written for the generation of AFs to get benchmarks for the systems ASPARTIX
and CEGARTIX6. The AFs are generated by arranging arguments in a grid. Then every direct
connection between two neighbors has a chance to become an attack between those two argu-
ments. In the 8-grid version of the generator all eight adjacent neighbors in the grid are potential
attacking arguments to the center argument. In addition each attack has a chance to be mutual.
Figure 5.4 illustrates how this grid concept works and how the adjacent neighbors are defined.
This grid consists of 31 arguments, which are arranged in a matrix with a width of 7. The two
dark gray arguments are two arbitrary arguments and the direct neighbors are colored in light
gray. If the argument is on the edge of the grid, it can be seen that it has less adjacent arguments
than those which are not on the edge.

For the generation of pForm-ADFs we use the grid-generator output for the underly-
ing definition of links between two statements. Based on this graph we add some randomized
information to the attack relations such that each attack relation represents one link between two

6for further details see Section 6.2
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Figure 5.4: Grid-concept of the grid-generator

statements. Intuitively each incoming edge to a statement is one variable in the corresponding
acceptance condition formula. How this variable is represented in the acceptance condition is
determined by the additional information. So each variable has the chance of 0.5 to be a negated
literal. All of the variables are connected via disjunctions or conjunctions and the decision which
connective is picked between two variables is also based on a probability. At last in ADFs it is
possible to have truth constants as variables, therefore there is a chance that a variable is sub-
stituted with a constant. The grid structure with the extended information on the links can be
easily transformed to the already presented input format for the ADFsys encodings. Summa-
rizing there are several parameters from which the generation of one test instance is dependent
of:

• number of statements

• grid width

• probability of symmetric links

• probability of a constant substitution

• probability of the use of a disjunction instead of a conjunction

Notice that every pForm-ADF generated by this generator is a monotone pForm-ADF and there-
fore a BADF (see Theorem 3.1.23).

In order to create a set of instances to get preliminary results, we have chosen the following
parameters for the ADF generation:

• statements= {10, 15, 20, 25, 30}

• {0, 0.5, 1} for each of the three probabilities

The width of the grid is determined by the number of statements. For 10 statements the width
is 3, for 15 statements a width of 4 is chosen, and for the other instances 5 is the used width.
Based on the possible parameter combinations we have 135 different instance classes. To get
more meaningful results, we created for each instance class 10 different ADFs. Based on first
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impressions on the execution time we limited the time for one computation (i.e. grounding
respectively solving) to five minutes (300 seconds). For our tests we decided to compute the
model and the well-founded semantics as well as the stable model. To invoke the different tasks,
we used the following commands (again we assume that a UNIX-like shell is used, with $> as
the prompt):

$> gringo semantic-encoding.dl instance.dl > grounded_instance
$> claspD 0 -f grounded instance

The first command is the invocation of the grounder gringo for a specific instance and an
encoding for the semantics. The result is stored in the grounded_instance file. In the
second command claspD is used with the parameter 0 to compute all results and -f to use a
given file as the input source. Notice that we have to compute the linktypes before it is possible
to find a solution for the stable model semantics. To use the output of claspD again as an
input for gringo we need to add the period at the end of each fact. We have done this with an
awk-script, which is a script-language with similarities to Java. Although we do not present
results for the preferred semantics, we want to mention how it can be invoked. Again we assume
that the linktypes are already computed:

$> gringo --reify preferred.dl input.dl | \
gringo - {meta.lp,metaO.lp,metaD.lp} \
<(echo "optimize(1,1,incl).") | claspD 0

Note that we use the files meta.lp, metaO.lp, and metaD.lp. These are part of the
metasp encoding package and can be downloaded from the Potassco site as well.

In the following we will see that the models are computed very fast and without any timeouts,
therefore we have created an additional set of instances, where each ADF has 100 statements to
get a better sense of the computation times for this efficient semantics.

Results

In the following we will present empirical results for the preliminary benchmarks on the 1350
instances. Each semantics is analyzed for its own and we have computed for each number
of statements the average computation time. There we omitted all timed out instances. To
reflect the failed instances we use the red, dashed line where the data-points are stars. So in
general the more instances failed, the higher is the bias on the average values (i.e. the more
instances failed the higher the real mean computation time would be if we do not restrict the
maximal computation time). The blue lines with a circle denote the data-points for the average
computation time of the grounder while the cross notation for the data-points reflects the time
for the solver. The overall computation time is denoted by the dark magenta, dotted line with
a plus-symbol for the data-points. In the figures the x-axis represents the number of statements
while we have up to two different y-axis. The left y-axis denotes the mean computation time in
seconds and the right y-axis projects the number of failed instances due to timeouts. Note that
we have chosen the number of statements for the x-axis as the collected data suggested that the
other parameters do not show the same grade of scaling in the computation time.

84



5.2 Experiments

Computation times for the models semantics
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Figure 5.5: Mean computation times for the model semantics

Model semantics. As already mentioned, the model semantics finished very quickly compared
to the other semantics. It is the only one where every instance could be solved in the given 300
seconds for each computation step. Figure 5.5 shows the results for the computation times.
Notice that the y-axis only shows values between zero and 12 seconds. But do note that the
slowest grounding procedure for one of the instances took about 70 seconds. Indeed there are
so few instances with this high computation effort such that the mean value is under 12 seconds.
It can be seen that most of the effort for the computation comes from the grounding process.
In fact many calls of the solver were computed and finished in under 0.1 seconds. The relative
high time for the grounding process may come from the formula handling, as every formula
needs to be broken down into its sub formulae in order to check if an interpretation is a model or
not. This is also reflected in relative big grounded instances compared to the input. So it seems
that a lot of information is grounded which results in big, but relatively easy to solve grounded
instances. As the computation of 500 and more statements for the CNF-based approach could
be done in reasonable time, we also tried to solve ADFs with 100 statements and the other
parameter choice as before. There the effort for the solving task is also negligible compared to
the grounding times. In the 300 seconds 180 of the 270 instances could be solved. The reason
why the computation of the models for the ADFsys encoding seems to be not as efficient as
the encoding used in the ADF → AF transformation is that the input format is different. The
restriction to use only formulae in CNF makes the propositional model verification easier and
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the representation of the CNF in the input file also has a constant formula depth. So there is
no need to compute the models of the subformulae. Indeed this is needed for the representation
of the ADFs in the encoding for arbitrary formulae. Note that the construction of a CNF from
an arbitrary formula may be exponential in the resulting size, so the CNF-restriction is not for
every case a good idea. In addition an arbitrary formula is typically more human-readable than
a CNF.

Computation times for the link−type resolution
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Figure 5.6: Mean computation times for the link-type resolution

Link-type resolution. In order to compute the stable model semantics, we first need to resolve
the link-types for a given ADF. How this encoding performs is illustrated by Figure 5.6. Again
we can observe that the grounding takes most of the computation time. In addition we encounter
at 20 statements the first instances where the 300 seconds computation time are not enough for
the grounding task. Based on the relatively low mean computation time of under 100 seconds it
seems that the instances which encountered a timeout may be particular explicitly hard to solve
instances. Indeed, all instances which failed to be computed for 20 statements had no constants
and all links where symmetric. So a very high grade of dependency between all the statements
is given. For 25 statements most of the timed out instances had the same properties as those for
the 20 statements, however some of them had a chance of 0.5 that constants may appear in the
acceptance conditions. More or less the same picture can be seen at the 30 statement instances.
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In fact there appeared for the first time instances where the mutual dependency of statements
have only a chance of 0.5 which timed out.

Computation times for the stable model semantics
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Figure 5.7: Mean computation times for the stable model semantics

Stable model semantics. Based on the link-type resolution we may now compute the stable
models for the ADFs. As we can not start the computation of some instances due to the lack of
a result for the link-types, we will reflect this variable in Figure 5.7. The instances which had no
chance to start the computation are denoted by the red dotted line with the square symbol as the
data-points. The surprising fact that the average computation for the stable models is within one
second can also be explained very well. We have compared the computation times for the models
with the computation times for the stable models. In the comparison between them almost all
instances which took more than four seconds on the models to finish were instances where the
link-type resolution failed (∼ 92%). So some kind of connection between the grounding time
for the model semantics and the grounding time for the link-type resolution can be seen. This
suggests that the average computation time in Figure 5.7 excludes the difficult instances entirely.
Another interesting fact is that the grounding process for the stable model was in many instances
(∼ 50%) faster than the process for the model, which is maybe based on some optimization in
the grounding process of gringo because of the additional rules.

87



Chapter 5 Implementation

Computation times for the well−founded semantics
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Figure 5.8: Mean computation times for the well-founded semantics

Well-founded semantics. At last we want to present the computation times for the well-
founded semantics. In Figure 5.8 the computation for this semantics is illustrated. During
the tests with the well-founded semantics we encountered an additional problem beside the high
computation times for this encoding: The solver claspD was not able to solve 179 of the in-
stances (∼ 13% of all instances), because of a segmentation fault during the execution. As these
failures occurred in all different instance classes, we have counted them in the same way as a
timeout, because it means that the computation was not possible. It can be seen in the statis-
tics that the well-founded semantics seems to be the hardest semantics to solve. Especially this
figure needs to be studied with care, because of the very high amount of instances with 20, 25,
and 30 statements timed out. In fact only two instances for the 25 and 30 statements instances
could be solved and for the 20 statement instances only 15 computations where successful in
the given time (∼ 6%). Therefore the decreasing mean computation time is mainly due to time-
outs and errors. In addition for this encoding it can be observed that the solving time exceeds
the grounder time. This is also reflected by the number of timeouts. From the 999 instances
(∼ 74% of all instances) which had no computation result, occurred 193 timeouts (∼ 14% of all
instances) during the grounding process and 627 timeouts (∼ 44% of all instances) during the
solving process.

As we encountered a high percentage of failed computations for this semantics, we want to
investigate further, how the un-computability in the given time relates to the other parameters we
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have chosen for the generation of the test instances. During the review of the different parameters
it appeared that the graphs grouped by the probability for constants was very similar to the
graphs grouped by the probability of symmetric link relations. So it seems that the combination
of the number of statements together with one of these probabilities behave in the given time
window very similar. Although this needs to be seen with caution, because we do not know
how long the computation of the failed instances would have taken. In addition it seems that
there is no big difference between the type of connectives used in the instances. Based on these
observations we present in Figure 5.9 how much successful computations were done, based on
the probability for the substitution of variables by constants. This diagram shows again on the
x-axis the number of statements, but the y-axis shows how much computations were successful.
The three lines correspond to the instances where the probability for the occurrence of variables
is 0 (blue line with boxed data-points), 0.5 (magenta line with a plus for th data-point symbols),
and 1 (orange line with a cross for the data-points). Due to the additional split of the instances
into the three groups with fixed probabilities for the constant occurrences, the maximum number
of successful computations is 90. The first observation is that the computations for ADFs where
every acceptance conditions only consists of constants performs for the small instances with 10
and 15 statements best. Those instances where the chance for variables equals the chance for
constants seems to behave more linear then those with the more extreme chances for the constant
occurrence.

Successful instances for the well−founded semantics
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Figure 5.9: Successful computation instances for the well-founded semantics
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Concluding remarks. One problem of the current encodings can be seen very well with this
statistics: The formulae need to be broken down into subformulae, even if it only consists of
constants and further the constant value is evaluated for every interpretation. So especially for
instances which only consist of constant acceptance conditions way too much computations are
done. In addition the above results also reflect the computational complexity of the problems
very well. It can be observed that the different problems do not behave linear and in addition
it can be observed that the underlying problem of the link-type resolution seems to be a very
expensive one compared to the problem of finding the stable models. Note that this is also
reflected in the fact that we need the saturation technique for the link-type resolution as well as
for the well-founded semantics. Although the coNP-problems (e.g. satisfiability for formulae
in the well-founded semantics) do not rely on a higher stage of the polynomial hierarchy, we
need to use disjunctive programs to solve them with ASP (Remember that the problem of solving
disjunctive programs is in Σ2P).
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CHAPTER 6
Related Work

In this chapter we will give an overview on related work in the field of abstract argumentation.
The majority of this part will present other frameworks and approaches which are related to
abstract argumentation and in some cases to ADFs. Then some other software systems for the
automated computation of semantics for frameworks will be the point of interest.

6.1 Related Concepts

For the sake of completeness, at first we want to mention again that many of the currently used
and proposed frameworks are based on the sophisticated and well-understood Dung’s Argu-
mentation Framework [Dung, 1995]. Several semantics and concepts emerged to overcome the
drawbacks of the simple and powerful basic AF. In the following we will present at first similar
ideas and concepts in comparison to ADFs. They are motivated through the idea to increase
the expressiveness of Dung’s AF. Subsequently we will present another semantic concept which
mainly concentrates on an evaluation of the attack relations. Then we will picture approaches
which are focused on the properties of the attack relations. Formalisms with multiple argumen-
tation frameworks are the point of interest in the following paragraph. Afterwards we will step
to a concept which has its emphasis on argumentation on the meta level of argumentation. In
a final step we will sketch a concept which is only indirectly related to Dung’s AF, but can be
simulated with ADFs.

Concepts to increase the expressiveness of Dung’s AF

With the aim to reinstate the semantics of Dung’s AF, Martin Caminada proposed a concept of
labeling for the arguments [Caminada, 2006]. These labels work in a similar way as arguments
are in respectively out in the semantics of Dung’s AF, but they are three-valued and allow the
representation of accepted, rejected and undecided arguments. In his work he shows that prop-
erties for the labeling correspond to the extensions defined by Dung. One additional outcome
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of these labelings is a more sophisticated formulation of acceptance, than just credulous and
skeptical acceptance. For more details on this refinement see [Dvořák, 2011].

Following a similar motivation as ADFs, Coste-Marquis, Devred, and Marquis introduced
Constraint Argumentation Frameworks - CAFs [Coste-Marquis et al., 2006]. In contrast to
ADFs, a CAF consists of arguments, attack-relations and one propositional formula. The ad-
dition of a formula (i.e. the constraint) to Dung’s AF is a restriction to the set of extensions. So
every set of accepted arguments also needs to be an interpretation which satisfies the constraint
formula. Indeed the constraints refine the expressiveness of the argumentation framework, but
it is less expressive as ADFs, as they can specify the relations between the used statements in a
more distinct way.

Another, apparently similar concept to ADFs are the abstract bipolar argumentation frame-
works (for an overview see the survey article [Amgoud et al., 2008]). Here the lack of native
support relations is the main motivation behind this approach. These argumentation frameworks
add to Dung’s AF an additional relation to represent a direct support between two arguments.
The evaluation of supports and attacks is generally done by a notion of attack and support qual-
ity. Intuitively every attack on an argument increases the attack quality against this argument
and support qualities are determined in the same way. If an argument has both, an attack and a
support quality, then the higher one is taken into account for the semantic evaluation of exten-
sions. Due to the possibility of cycles in the dependency of arguments and the calculation of
their quality, cycles are not permitted. Note that for the cycle detection supports and attacks are
counted as a relation. The main difference to ADFs is the reduced control of the link between
different attack and support relations. In ADFs it can be specified very precisely when the attack
is taken into account or not.

A more abstract approach are the highly generalized Hyper Frameworks [Weydert, 2011].
Here the author tried to overcome the general restriction that argumentation frameworks are
finite. His basic motivation is the idea that we also have to deal with the fact that there exist
infinitely many arguments for and against some statements. To get a formalism which can deal
with an infinite domain, the relation definition between arguments is defined in first order logic.
It is already shown that Dung’s AF can be simulated with a Hyper Framework, but due to its
highly abstract definition many definitions and properties are still open and are up to the user
to be defined. Additionally there is the question about the role of support relations between
arguments.

Approaches to conceptualize relational properties

Till now the presented argumentation frameworks had arguments and relations between the ar-
guments. In addition it is a natural piece of reasoning that these relations may be the target
of attacks. This idea is the motivation of Extended Argumentation Frameworks - EAF [Mod-
gil, 2009]. Again this concept is based on Dung’s AF and allows that attack relations may not
only attack arguments, but also other attack relations between two arguments. The improved
version of EAFs are the Argumentation Frameworks with Recursive Attacks - AFRAs [Baroni
et al., 2011b], where recursive attacks on relations are permitted (e.g. attacks on attacks on at-
tacks and similar things are possible). In addition in that paper of AFRA there is also a method
presented to represent such a framework as a Dung’s AF. For ADFs it shall be possible due to
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the expressiveness of the acceptance conditions that they can simulate the attacks on attacks per
EAFs. For example, if the attack from a statement a on b is attacked by c, it could be encoded
in the acceptance condition ACb as ¬a ∨ c. Note that if this really works well with the different
definitions of the semantics needs to be investigated further. In addition we suspect that it is also
possible to simulate AFRAs with ADFs.

Villata, Boella, and van der Torre introduced another approach to work with attacks. They
conceptualize successful and unsuccessful attacks for Dung’s AF. The basic idea behind these
attack semantics [Villata et al., 2011] is to only accept an argument if there is no successful
attack on this argument. Intuitively there are properties which are defined to hold if and only
if the property holds for every possible subset of arguments. With this general valid property a
distinction of attacker dependencies, successful, unsuccessful, and defended attacks is possible.
The most semantics (except the admissible extension) of Dung’s AF are revamped for this ap-
proach such that the acceptance is no longer based on the acceptance of other arguments, but on
the properties of the attacks.

Multiple Argumentation Framework concepts

In contrast to the previously presented concepts, we will now emphasize on approaches which
work on multiple argumentation frameworks and deal with the exchange of knowledge which
was inferred by these distinct frameworks. The foundation of the work of Fibring Argumentation
Frames [Gabbay, 2009] is the conception of networks. A network may be any formalism for
reasoning (e.g. argumentation frameworks, neural networks, Kripke models). The underlying
idea is that each network is designed for different tasks and so it is not hard to imagine that
one network is embedded in another one. A natural question is now how to deal with these
nested networks. Is the inner or the outer network computed first? How are elements treated
which occur in two networks? How are cycles resolved? To overcome these questions Fibring
Argumentation Frameworks are a generalization of Dung’s AF to represent every other network
in an abstract way. To deal with the problems which occur from the nested networks, the Frames
are in addition closed under substitution.

A similar idea is behind Context Based Argumentation [Brewka and Eiter, 2009]. They stick
to Dung’s AF and conceptualized the idea to have different argumentation frameworks which
work parallel or in some sort of hierarchy to solve problems. The approach borrows mechan-
ics from Multicontext Systems [Brewka and Eiter, 2007, Giunchiglia and Serafini, 1994] and
presents a formal method to model different argumentation frameworks with knowledge ex-
change. The concept adds to each framework a so-called mediator which is responsible for the
communication and the relations to other frameworks. One framework together with its mediator
is called a context. The Context Based Argumentation offers bridge-rules as the method to relate
the different contexts with each other. In addition it also provides inconsistency handling which
is important for multiple contexts. Certainly it is possible to update the knowledge base of other
contexts, based on the results of one context. So the Context Based Argumentation offers ways
to add additional knowledge to the knowledge bases of other contexts. To allow heterogeneous
constructs of contexts with different argumentation frameworks the highly abstract generaliza-
tion of Managed Multi Context Systems - mMCS was introduced [Brewka et al., 2011b]. This
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concept offers in addition mechanisms to modify the knowledge bases in a way like relational
databases can manipulate informations.

Meta-Argumentation

All of the presented approaches used properties based on the arguments and their relations for
their inferences. Now we want to discuss a concept which allows to express statements on the
relations between arguments and their properties under a semantics. The Metalevel Argumen-
tation [Modgil and Bench-Capon, 2011] intuitively allows us to utilize claims like “argument
a defeats y” or “a is rejected” for a given or all semantics. In addition between these claims
are implicit attack relations. In the previous two claims “a is rejected” would attack the other
claim (“argument a defeats y”). A Structured Argumentation Framework - SAF is a Dung’s AF,
together with a language definition for the additional claims, a mapping function to map argu-
ments to well founded formulae in the language, and constraint rules defined in the language
which defines attack relations. The proposed Metalevel Argumentation Framework - MAF is
such a SAF with a specified set of allowed predicates and a specific set of rules to determine
how the predicates have to be used in the language. To show that this concept is a generalization
of Dung’s AF, it is also shown that a MAF can represent every Dung’s AF.

We have also mentioned in Section 4.1 that the ADF→ AF transformation is closely related
to the Metalevel Argumentation approach, because the semantical structures are built to control
the acceptance of arguments. So it is needed to understand how the semantics (in this case the
stable extension) works and how the acceptance is influenced by the relations between other
arguments.

Carneades

At last we want to present another framework, which is special, because it is not based on Dung’s
AF. Carneades [Gordon et al., 2007] is introduced as an abstract argumentation framework to
model arguments in the anglo-american law system. Since the first introduction it was under a
steady improvement (see e.g. [Gordon and Walton, 2009]) and so the explicit definitions for the
framework and the acceptance of arguments are evolving and changing in different publications.
Although the basic idea is still the same: Due to the connection to the law system, the framework
tries to find arguments which are pro or con some assertion. These arguments have different
types, depending on the kind of the information of the argument. Based on this type the needed
premises to accept such an argument is different and in addition the burden of proof can be
shifted. Intuitively the amount (or the quality) of arguments needed to accept an argument is
dependent on the type of the argument. To project this concept, every accepted argument needs
some kind of a argument-based argumentation-chain which is the proof of the acceptability of the
argument. To model this framework there are some elementary differences to Dung’s approach.
Beside both are modeled as directed graphs, in Carneades the nodes do have needed informations
for the acceptability. In addition it is basically forbidden to use cycles in the argumentation
graphs of Carneades. The argumentation-chains mentioned above are subgraphs of the graph,
which can be seen as some kind of proof-tree to fulfill the burden of proof. A further difference
is the concept that Carneades may be seen as a dialog and therefore it has stages and states.
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Although it is a completely alternative approach, Carneades are quite closely related to ADFs,
because it is possible to translate Carneades at one stage into an ADF [Brewka and Gordon,
2010]. So it was shown that Carneades can be represented by ADFs.

6.2 Related Software Systems

In this section we will give a quick overview on already existing systems which compute ex-
tensions and semantics for different related concepts. At first we will present other systems
developed at the Vienna University of Technology and then we will present a software system
for the University of Bologna and the Uppsala University. Afterwards a software system of the
Oxford University as well as one from the University of Groningen will be discussed.

The DLV-based solver based system ASPARTIX1 [Egly et al., 2008, 2010] uses the answer
set solving paradigm to solve different argumentation frameworks. It is not only capable of
computing different extensions of Dung’s AF, as it can also work with preference based, value-
based and bipolar Argumentation Frameworks. In addition an encoding to translate an AFRA
to a Dung’s AF is part of the system. As mentioned before, this system was also used as a
benchmark comparison of the ADF→ AF transformation.

dynPARTIX2 [Dvořák et al., 2011] is another system which solves argumentation frame-
works. This one can calculate the admissible, stable, complete and preferred extensions of
Dung’s AF. In addition it may answer the question whether an argument is skeptically (resp.
credulously) accepted. The difference between dynPARTIX and ASPARTIX is the used com-
putation model. dynPARTIX utilizes the SHARP framework, which is a library for heuristic
methods and tree decompositions. The implementation is based on theoretical results for fixed
parameter tractable algorithms for argumentation [Dvořák et al., 2010]. Note that this system
uses the same syntax as ASPARTIX does.

The third system from the Vienna University of Technology is CEGARTIX3 [Dvořák et al.,
2012]. This one uses clasp or MiniSat as an NP-oracle in an iterative fashion and is able to
compute the skeptical acceptance for the preferred semantics of Dung’s AF as well as both skep-
tical and credulous acceptance for stage and semi-stage semantics of Dung’s AF for a specified
argument.

A metalogic implementation for argumentation [Lundström et al., 2011a] is the next system
we want to introduce. Their system is based on a metalogic approach, which puts the argu-
mentation into a two player dialogue game environment to solve the acceptance problem of
arguments [Lundström, 2009]. There one player tries to accept one argument and the other tries
to refute it with other arguments. As the system also gives the possibility to browse the game-
tree after the evaluation, this program offers a way to review why a specific argument is accepted
or not. Due to the similarity between the dialogue and legal argumentation, this system is also
used in this context [Lundström et al., 2011b].

1available at http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/
2available at http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/
3available at http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/
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Based on JAVA the solver with graphical user interface Dungine4 [South et al., 2008]
can compute the grounded skeptical and preferred credulous acceptance of arguments. For the
reasoning-process a game-based structure is again used. A nice feature of the graphical user
interface is the option to work with the argumentation framework in an illustrated representation
and not only with text.

At last we want to present a credulous acceptance and rejection solver5 [Verheij, 2007],
written in Delphi 7. The tool computes the credulous acceptance for Dung’s AF for the
minimal admissible set, the grounded extension, the stable and semi-stable extension as well
as for the preferred extension. Beside the acceptance it also computes the rejection of several
arguments.

4available at http://www.argkit.org/
5available at http://www.ai.rug.nl/ verheij/comparg/
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CHAPTER 7
Conclusion & Future Work

Conclusion

In this work we have reviewed the concept of abstract argumentation and the approach of ADFs.
To refine this generalization of Dung’s AF, we have shown that the frameworks can be concep-
tualized on the foundation of propositional logic and in a short excursion that it is even possible
to represent them with hyper-graphs.

Based on our pForm-ADF representation we then have investigated some of the properties of
the frameworks and introduced the subclass of monotone pForm-ADFs. For those frameworks
we have proven that they are BADFs and that they can express every BADF without loss of
generality. Based on the idea of monotone pForm-ADFs we then proposed an algorithm to
transform an arbitrary ADF to a BADF. To overcome the shortcoming that the stable model
semantics and all semantics based on it are only defined for BADFs, we have presented and
proven the correctness of a generalized stable model semantics on basis of the outcome from
our novel ADF to BADF transformation.

Afterwards we have investigated some inter-semantics relations which hold for Dung’s AFs,
and we showed that they do not carry over to ADFs. This holds for the stable model semantics
as well as for the preferred semantics, which calls for further investigation.

To reduce the open gaps for complexity results on ADFs, we have presented results for
the link-type resolution of ADFs, as they are a prerequisite for the complexity results of the
stable model semantics. Due to the introduction of monotone pForm-ADFs we have shown that
the complexity for the Credmstable -decision problem, if restricted to the subclass of monotone
pForm-ADFs, is NP-complete and is therefore in the same complexity class as the Cred stable

problem on BADFs if the linktypes are known beforehand.
Furthermore we have proposed a software system which provides ASP encodings to compute

the different semantics for pForm-ADFs. This system is using mechanisms which correspond
to the known complexities of the different problems and it also provides some sense of possi-
ble memberships for currently unknown complexity results. The preliminary tests which are
provided as well in this work give first impressions on the mean computation time for differ-
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ent semantics. So we could observe that the model semantics may solve ADFs with up to 100
statements in five minutes, while the more complex semantics can only compute frameworks
with maximal 30 statements in the same time. This shows that the high expressiveness of ADFs
compared to AFs comes with the price of more involved computations

At last we have given an overview on other approaches for argumentation frameworks and
have discussed the differences and similarities with respect to ADFs.

Future Work

Our preliminary test results have showed that the encodings should be optimized for some spe-
cial cases of formulae (e.g. the acceptance conditions are truth-value constants) to reduce the
unnecessary computations of the same results over and over. Furthermore we have seen that the
grounding seems to be a bottle-neck for many semantics. So it is desirable to do additional opti-
mization of the encodings. In addition more investigations of the involved relations of statements
and acceptance conditions under different semantics are needed to create meaningful, compu-
tationally hard to solve, and general benchmark instances for ADFs to be able to do exhaustive
and comparable tests. Alternatively it may also lead to a better performance if we try to utilize
existing software systems like CEGARTIX [Dvořák et al., 2012] or DYNPARTIX [Dvořák et al.,
2011].

Another topic to further investigate is the inter-semantics properties with respect to Dung’s
AF. Based on the presented counter-examples it is also important to revisit the stable model
semantics to fulfill the properties given by Dung. The whole approach of the stable model is very
similar to the Gelfond-Lifschitz reduct. So it would be interesting to consider the correspondence
between those two concepts to gain a deeper understanding on the relation between ADFs and
logic programming. To strengthen the connection between the different related argumentation
approaches an investigation of a possible simulation of CAFs with ADFs may be considered.
In addition investigations of the relation between ADFs and EAFs respectively AFRAs may be
considered too.
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APPENDIX A
Listing of the ADF→ AF Encodings

A.1 Model for ADFs

1 % e n c o d i n g f o r a model f o r an ADF where t h e f o r m u l a s a r e i n CNF
2
3 % g u e s s i n g which s t a t e m e n t s a r e i n t h e model
4
5 i n (X) ← n o t o u t (X) , s t a t e m e n t (X) .
6 o u t (X) ← n o t i n (X) , s t a t e m e n t (X) .
7
8
9 v d i s j (X,Y) ← c l (X,Y) , pos (Y, Z ) , i n ( Z ) .

10 v d i s j (X,Y) ← c l (X,Y) , neg (Y, Z ) , o u t ( Z ) .
11
12 % e v e r y c o n j u n c t i o n which e v a l u a t e s t o f a l s e unde r t h e a s s i g n e m n t
13 f c o n j (X) ← c l (X,Y) , n o t v d i s j (X,Y) .
14
15 % remove a l l a s s i g n m e n t s which c o n t a i n s t a t e m e n t s whose f o r m u l a e a r e n o t v a l i d
16 ← i n (X) , f c o n j (X) .
17 % remove a l l a s s i g n m e n t s where s t a t e m e n t s a r e n o t s e l e c t e d a l t h o u g h t h e i r f o r m u l a s a r e v a l i d
18 ← o u t (X) , n o t f c o n j (X) .

A.2 ADF→ AF transformation

1 # b e g i n _ l u a
2 l o c a l i =−1
3 l o c a l j =−1
4 l o c a l k=−1
5 f u n c t i o n neg ( s )
6 i f ( s t r i n g . sub ( Val . name ( s ) , 1 , 1 ) ) == " _ " t h e n
7 r e t u r n Val . new ( Val . ID , s t r i n g . sub ( Val . name ( s ) , 2 ) )
8 e l s e
9 r e t u r n Val . new ( Val . ID , " _ " . . Val . name ( s ) )

10 end
11 end
12
13 f u n c t i o n d h e l p e r ( s )
14 i = i +1
15 r e t u r n Val . new ( Val . ID , " h_v_ " . . i )
16 end
17
18 f u n c t i o n c h e l p e r ( s )
19 j = j +1
20 r e t u r n Val . new ( Val . ID , " h_c_ " . . j )
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21 end
22
23 f u n c t i o n d i s j u n c t ( s )
24 k=k+1
25 r e t u r n Val . new ( Val . ID , "h_V " . . k )
26 end
27 # e n d _ l u a .
28
29 % g e n e r a t e f o r each s t a t e m e n t o f t h e ADF t h e argument and i t s n e g a t i o n f o r t h e AF
30 a r g (X) ← s t a t e m e n t (X) .
31 a r g ( @neg (X) ) ← s t a t e m e n t (X) .
32
33 % d e t e r m i n e t h e number o f c o n j u n c t i o n s and d i s j u n c t i o n s i n t h e g i v e n CNFs :
34 numcon (X,Y) ← s t a t e m e n t (X) , Y:=# c o u n t { c l (X, _ ) } .
35 numdis (Y, Z ) ← s t a t e m e n t (X) , c l (X,Y) , Z:=# c o u n t { pos (Y, _ ) , neg (Y, _ ) } .
36
37 % i d e n t i f y s t a t e m e n t s which have verum and f a l su m as t h e i r a c c e p t a n c e c o n d i t i o n
38 verum (X) ← s t a t e m e n t (X) , numcon (X,Y) , Y==0.
39 fa l s um (X) ← s t a t e m e n t (X) , c l (X,Y) , numdis (Y, Z ) , Z==0.
40
41 % a t t a c k r e l a t i o n s f o r t h e a rgumen t s and i t s n e g a t i o n s
42 a t t (X, @neg (X) ) ← verum (X) .
43 a t t ( @neg (X) ,X) ← f a l s um (X) .
44 a t t (X, @neg (X) ) ← s t a t e m e n t (X) , n o t verum (X) , n o t f a l s um (X) .
45 a t t ( @neg (X) ,X) ← s t a t e m e n t (X) , n o t verum (X) , n o t f a l s um (X) .
46
47 % g e n e r a t e t h e a t t a c k r e l a t i o n s i f t h e a c c e p t a n c e c o n d i t i o n i s one l i t e r a l
48 n e g l i t a t t ( Z ,X) ← s t a t e m e n t (X) , c l (X,Y) , numcon (X,A) , numdis (Y, B) , neg (Y, Z ) , A==1 , B==1.
49 p o s l i t a t t ( Z ,X) ← s t a t e m e n t (X) , c l (X,Y) , numcon (X,A) , numdis (Y, B) , pos (Y, Z ) , A==1 , B==1.
50 a t t ( Z ,X) ← n e g l i t a t t ( Z ,X) .
51 a t t ( @neg ( Z ) ,@neg (X) ) ← n e g l i t a t t ( Z ,X) .
52 a t t ( @neg ( Z ) ,X) ← p o s l i t a t t ( Z ,X) .
53 a t t ( Z , @neg (X) ) ← p o s l i t a t t ( Z ,X) .
54
55 % g e n e r a t e t h e a t t a c k r e l a t i o n s f o r a g e n e r i c a t t a c k
56 a t t (H, T ) ← g e n a t t ( I , T ,H) .
57 a t t ( I ,H) ← g e n a t t ( I , T ,H) .
58 a t t ( I , @neg ( T ) ) ← g e n a t t ( I , T ,H) .
59
60 % g e n e r a t e l i t e r a l s which a r e pos o r neg .
61 l i t (X,Y) ← pos (X,Y) .
62 l i t (X, @neg (Y) ) ← neg (X,Y) .
63
64 % g e n e r a t e t h e a t t a c k r e l a t i o n s , . . .
65
66 % i f t h e a c c e p t a n c e c o n d i t i o n on ly c o n s i s t s o f a s e r i e o f d i s j u n c t i o n s
67 d a t t ( @dhelper ( T ) ,T ,X) ← s t a t e m e n t ( T ) , c l ( T ,X) , numcon ( T ,A) , numdis (X, B) , A==1 , B>1 .
68 g e n a t t ( I , T ,H) ← d a t t (H, T ,X) , l i t (X, I ) .
69
70 % i f t h e a c c e p t a n c e c o n d i t i o n has a t l e a s t one c o n j u n c t i o n
71 c a t t ( @chelper ( T ) ,T ) ← s t a t e m e n t ( T ) , n o t f a l s um ( T ) , numcon ( T ,A) , A>1 .
72
73 % i f t h e s u b f o r m u l a from a c a t t c o n j u n c t i o n i s on ly one l i t e r a l
74 g e n a t t ( @neg ( I ) ,@neg ( T ) ,H) ← c a t t (H, T ) , c l ( T ,X) , numdis (X, B) , l i t (X, I ) , B==1.
75
76 % i f t h e s u b f o r m u l a from a c a t t c o n j u n c t i o n c o n s i s t s o f a s e r i e o f d i s j u n c t i o n s
77 d i n c a t t ( @ d i s j u n c t (X) ,X) ← c a t t (H, T ) , c l ( T ,X) , numdis (X, B) , B>1 .
78 d a t t ( @dhelper ( T ) ,T ,X) ← d i n c a t t ( T ,X) .
79 g e n a t t ( @neg ( I ) ,@neg ( T ) ,H) ← d i n c a t t ( I ,X) , c l ( T ,X) , c a t t (H, T ) .
80
81 % c r e a t e t h e mutua l a t t a c k s f o r t h e " d i s j u n c t "−nodes ( d i n c a t t )
82 a t t (X, @neg (X) ) ← d i n c a t t (X, _ ) .
83 a t t ( @neg (X) ,X) ← d i n c a t t (X, _ ) .
84
85 % c r e a t e t h e " m i s s i n g " a rgumen t s
86 a r g (X) ← a t t (X,Y) .
87 a r g (Y) ← a t t (X,Y) .
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APPENDIX B
Listing of the ADF System Encodings

B.1 Linktypes

1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 s t e p ( I , J , C) ← i n ( _ , I , J , C) .
29 s t e p ( I , J , C) ← o u t ( _ , I , J , C) .
30
31 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
32 % i s m o d e l (X, I , J , C)
33 % I , J . . . s t e p i n t h e below d e f i n e d o r d e r i n g
34 % C . . . c o u n t e r f o r t h e c−t h needed e v a l u a t i o n
35 i s m o d e l (X, I , J , C) ← atom (X) , i n (X, I , J , C) .
36 i s m o d e l (X, I , J , C) ← atom (X) , X:= c ( v ) , s t e p ( I , J , C) .
37 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 , I , J , C) .
38 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I , J , C) .
39 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 , I , J , C) .
40 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 , I , J , C) .
41 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , I , J , C) , nomodel ( F2 , I , J , C) .
42 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 , I , J , C) , nomodel ( F1 , I , J , C) .
43 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 , I , J , C) .
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44 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I , J , C) .
45 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I , J , C) .
46 i s m o d e l ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 , I , J , C) .
47
48 nomodel (X, I , J , C) ← atom (X) , o u t (X, I , J , C) .
49 nomodel (X, I , J , C) ← atom (X) , X:= c ( f ) , s t e p ( I , J , C) .
50 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 , I , J , C) .
51 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 , I , J , C) .
52 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 , I , J , C) .
53 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := o r ( F1 , F2 ) , nomodel ( F1 , I , J , C) , nomodel ( F2 , I , J , C) .
54 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , I , J , C) , i s m o d e l ( F2 , I , J , C) .
55 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , nomodel ( F1 , I , J , C) , nomodel ( F2 , I , J , C) .
56 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 , I , J , C) , nomodel ( F2 , I , J , C) .
57 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 , I , J , C) , i s m o d e l ( F2 , I , J , C) .
58 nomodel ( F , I , J , C) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 , I , J , C) , i s m o d e l ( F1 , I , J , C) .
59
60 % g e n e r a t e l i n k s between s t a t e m e n t s and atoms
61 l i n k (X, S ) ← s t a t e m e n t ( S ) , atom (X) , s u b f o r m u l a ( S ,X) , s t a t e m e n t (X) .
62 %a t t (X, S ) ∨ sup (X, S ) ∨ a t t _ s u p p (X, S ) ∨ d e p e n d e n t (X, S ) ← l i n k (X, S ) .
63
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 %% l i n k t y p e check
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67
68 % g u e s s which l i n k t y p e i t i s
69 a t t (X, S ) ∨ supp (X, S ) ∨ a t t _ s u p p (X, S ) ∨ dep (X, S ) ← l i n k (X, S ) .
70
71 % check whe the r t h e g u e s s was r i g h t o r n o t :
72
73 i n (X, I , J , 1 ) ∨ o u t (X, I , J , 1 ) ← l i n k ( I , J ) , s t a t e m e n t (X) , atom (X) , s u b f o r m u l a ( J ,X) .
74 ← i n (X, X, J , 1 ) .
75 i n (X, I , J , 2 ) ← i n (X, I , J , 1 ) .
76 o u t (X, I , J , 2 ) ← o u t (X, I , J , 1 ) , X != I .
77 i n (X, X, J , 2 ) ← o u t (X, X, J , 1 ) .
78
79 n o a t t c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) .
80 n o a t t c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , nomodel ( F , I , J , 1 ) , nomodel ( F , I , J , 2 ) .
81 n o s u p p c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , nomodel ( F , I , J , 1 ) .
82 n o s u p p c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) , i s m o d e l ( F , I , J , 2 ) .
83 n o a t t _ s u p p c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , nomodel ( F , I , J , 1 ) , nomodel ( F , I , J , 2 ) .
84 n o a t t _ s u p p c l a s h ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) , i s m o d e l ( F , I , J , 2 ) .
85
86
87 ok ( I , J ) ← n o a t t c l a s h ( I , J ) , a t t ( I , J ) .
88 ok ( I , J ) ← n o s u p p c l a s h ( I , J ) , supp ( I , J ) .
89 ok ( I , J ) ← n o a t t _ s u p p c l a s h ( I , J ) , a t t _ s u p p ( I , J ) .
90
91 ← n o t ok ( I , J ) , l i n k ( I , J ) , n o t dep ( I , J ) .
92
93 i n (X, I , J , 1 ) ← ok ( I , J ) , o u t (X, I , J , 1 ) , X!= I .
94 o u t (X, I , J , 1 ) ← ok ( I , J ) , i n (X, I , J , 1 ) , X!= I .
95
96
97 % e x t e n d e d check f o r dep :
98
99 % no s a t u r a t i o n as t h e problem whe the r a l i n k i s dep o r n o t i s i n NP and n o t i n coNP

100
101 i n (X, I , J , 3 ) ∨ o u t (X, I , J , 3 ) ← l i n k ( I , J ) , dep ( I , J ) , s t a t e m e n t (X) , atom (X) , s u b f o r m u l a ( J ,X) .
102 ← i n (X, X, J , 3 ) .
103 i n (X, I , J , 4 ) ← i n (X, I , J , 3 ) .
104 o u t (X, I , J , 4 ) ← o u t (X, I , J , 3 ) , X != I .
105 i n (X, X, J , 4 ) ← o u t (X, X, J , 3 ) .
106
107 i s d e p ( I , J ) ← l i n k ( I , J ) , ac ( J , F ) , i s m o d e l ( F , I , J , 1 ) , nomodel ( F , I , J , 2 ) , nomodel ( F , I , J , 3 ) ,

i s m o d e l ( F , I , J , 4 ) .
108 ← dep ( I , J ) , n o t i s d e p ( I , J ) .
109
110 # maximize [ a t t _ s u p p (X,Y) ] .
111 # h i d e .
112 #show a t t / 2 .
113 #show supp / 2 .
114 #show a t t _ s u p p / 2 .
115 #show dep / 2 .
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1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
29 i s m o d e l (X) ← atom (X) , i n (X) .
30 i s m o d e l (X) ← atom (X) , X:= c ( v ) .
31 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 ) .
32 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
33 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 ) .
34 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 ) .
35 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 ) , nomodel ( F2 ) .
36 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 ) , nomodel ( F1 ) .
37 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 ) .
38 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
39 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
40 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 ) .
41
42 nomodel (X) ← atom (X) , o u t (X) .
43 nomodel (X) ← atom (X) , X:= c ( f ) .
44 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 ) .
45 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 ) .
46 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 ) .
47 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := o r ( F1 , F2 ) , nomodel ( F1 ) , nomodel ( F2 ) .
48 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 ) , i s m o d e l ( F2 ) .
49 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , nomodel ( F1 ) , nomodel ( F2 ) .
50 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ) , nomodel ( F2 ) .
51 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ) , i s m o d e l ( F2 ) .
52 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 ) , i s m o d e l ( F1 ) .
53
54 %g u e s s i n g , whe the r a s t a t e m e n t i s i n o r n o t
55
56 i n (X) ← n o t o u t (X) , s t a t e m e n t (X) .
57 o u t (X) ← n o t i n (X) , s t a t e m e n t (X) .
58
59 % e n c o d i n g f o r t h e c o n f l i c t f r e e s e t s f o r an ADF wi th an a r b i t r a r y f o r m u l a as AC
60
61 ← i n (X) , ac (X, F ) , nomodel ( F ) .
62 # h i d e .
63 #show i n / 1 .
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B.3 Model

1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
29 i s m o d e l (X) ← atom (X) , i n (X) .
30 i s m o d e l (X) ← atom (X) , X:= c ( v ) .
31 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 ) .
32 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
33 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 ) .
34 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 ) .
35 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 ) , nomodel ( F2 ) .
36 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 ) , nomodel ( F1 ) .
37 i s m o d e l ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 ) .
38 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
39 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 ) .
40 i s m o d e l ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 ) .
41
42 nomodel (X) ← atom (X) , o u t (X) .
43 nomodel (X) ← atom (X) , X:= c ( f ) .
44 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 ) .
45 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 ) .
46 nomodel ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 ) .
47 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := o r ( F1 , F2 ) , nomodel ( F1 ) , nomodel ( F2 ) .
48 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 ) , i s m o d e l ( F2 ) .
49 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , nomodel ( F1 ) , nomodel ( F2 ) .
50 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ) , nomodel ( F2 ) .
51 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ) , i s m o d e l ( F2 ) .
52 nomodel ( F ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 ) , i s m o d e l ( F1 ) .
53
54 %g u e s s i n g , whe the r a s t a t e m e n t i s i n o r n o t
55
56 i n (X) ← n o t o u t (X) , s t a t e m e n t (X) .
57 o u t (X) ← n o t i n (X) , s t a t e m e n t (X) .
58
59 % e n c o d i n g f o r a model f o r an ADF wi th an a r b i t r a r y f o r m u l a as AC
60
61 ← i n (X) , ac (X, F ) , nomodel ( F ) .
62 ← o u t (X) , ac (X, F ) , i s m o d e l ( F ) .
63 # h i d e .
64 #show i n / 1 .
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1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
29 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I =model .
30 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , n o t a t t (X, S ) , n o t a t t _ s u p p (X, S ) ,

i n ( S , model ) .
31 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I =model .
32 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I != model , i n ( S , model ) .
33 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 , S , I ) .
34 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
35 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) .
36 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) .
37 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
38 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) , nomodel ( F1 , S , I ) .
39 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 , S , I ) .
40 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
41 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
42 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 , S , I ) .
43
44 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I =model .
45 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I != model , i n ( S , model ) .
46 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t (X, S ) , i n ( s , model ) .
47 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t _ s u p p (X, S ) , i n ( s , model ) .
48 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I =model .
49 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I != model , i n ( S , model ) .
50 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 , S , I ) .
51 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 , S , I ) .
52 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 , S , I ) .
53 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := or ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
54 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
55 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
56 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
57 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
58 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 , S , I ) , i s m o d e l ( F1 , S , I ) .
59
60 % g u e s s whe the r a s t a t e m e n t i s i n o r o u t ( f o r t h e model s e m a n t i c s )
61 i n (X, model ) ← n o t o u t (X, model ) , s t a t e m e n t (X) .
62 o u t (X, model ) ← n o t i n (X, model ) , s t a t e m e n t (X) .
63 modelcheck ( model ) .
64
65 % check i f t h e g u e s s was r i g h t
66 ← i n ( S , model ) , ac ( S , F ) , nomodel ( F , S , model ) .
67 ← o u t ( S , model ) , ac ( S , F ) , i s m o d e l ( F , S , model ) .
68
69 % remova l o f a l l n o t s e l e c t e d e l e m e n t s i s i m p l i c i t done by s e t t i n g them t o " o u t "
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70 mode lS t a t emen tCoun t ( I ) ← I :={ i n ( S , model ) : s t a t e m e n t ( S ) } .
71 i t e r a t i o n ( I ) ← mode lS ta t emen tCoun t ( I ) .
72 o u t ( S , I ) ← s t a t e m e n t ( S ) , mode lS t a t emen tCoun t ( I ) .
73 modelcheck ( I ) ← i t e r a t i o n ( I ) .
74
75 i t e r a t i o n ( J ) ← i t e r a t i o n ( I ) , J := I−1, I >0 .
76 i n ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, i s m o d e l ( F , S , I ) , ac ( S , F ) .
77 o u t ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, n o t i n ( S , J ) , o u t ( S , I ) .
78
79 i n ( S ) ← i n ( S , J ) , J : = 0 .
80
81 ← i n ( S , model ) , n o t i n ( S ) .

B.5 Admissible set

1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
29 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I =model .
30 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , n o t a t t (X, S ) , n o t a t t _ s u p p (X, S ) ,

i n ( S , model ) .
31 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I =model .
32 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I != model , i n ( S , model ) .
33 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 , S , I ) .
34 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
35 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) .
36 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) .
37 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
38 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) , nomodel ( F1 , S , I ) .
39 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 , S , I ) .
40 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
41 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
42 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 , S , I ) .
43
44 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I =model .
45 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I != model , i n ( S , model ) .
46 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t (X, S ) , i n ( s , model ) .
47 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t _ s u p p (X, S ) , i n ( s , model ) .
48 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I =model .
49 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I != model , i n ( S , model ) .
50 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 , S , I ) .
51 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 , S , I ) .
52 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 , S , I ) .
53 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := or ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
54 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
55 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
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56 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
57 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
58 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 , S , I ) , i s m o d e l ( F1 , S , I ) .
59
60 % g u e s s a s e t M and R
61 i n (X,m) ← n o t o u t (X,m) , s t a t e m e n t (X) .
62 o u t (X,m) ← n o t i n (X,m) , s t a t e m e n t (X) .
63
64 i n (X, r ) ← n o t o u t (X, r ) , s t a t e m e n t (X) , i n (Y,m) .
65 o u t (X, r ) ← n o t i n (X, r ) , s t a t e m e n t (X) .
66
67 ← i n (X, r ) , i n (Y,m) , a t t (X,Y) .
68 ← i n (X, r ) , i n (Y,m) , a t t _ s u p p (X,Y) .
69
70 % M can on ly be a model i f no e l e m e n t o f R i s a l s o i n M
71 i n (X, model ) ← i n (X,m) , o u t (X, r ) .
72 o u t (X, model ) ← s t a t e m e n t (X) , n o t i n (X, model ) .
73 modelcheck ( model ) .
74
75 % e v e r y M which i s n o t checked t o be a model has t o be removed ( as i t c a n t be a s t a b l e model )
76 ← i n (X,m) , n o t i n (X, model ) .
77
78 % check i f t h e g u e s s was r i g h t
79 ← i n ( S , model ) , ac ( S , F ) , nomodel ( F , S , model ) .
80 ← o u t ( S , model ) , ac ( S , F ) , i s m o d e l ( F , S , model ) , n o t i n ( S , r ) .
81
82 % remova l o f a l l n o t s e l e c t e d e l e m e n t s i s i m p l i c i t done by s e t t i n g them t o " o u t "
83 mode lS t a t emen tCoun t ( I ) ← I :={ i n ( S , model ) : s t a t e m e n t ( S ) } .
84 i t e r a t i o n ( I ) ← mode lS ta t emen tCoun t ( I ) .
85 o u t ( S , I ) ← s t a t e m e n t ( S ) , mode lS t a t emen tCoun t ( I ) .
86 modelcheck ( I ) ← i t e r a t i o n ( I ) .
87
88 i t e r a t i o n ( J ) ← i t e r a t i o n ( I ) , J := I−1, I >0 .
89 i n ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, i s m o d e l ( F , S , I ) , ac ( S , F ) , n o t i n ( S , r ) .
90 o u t ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, n o t i n ( S , J ) , o u t ( S , I ) .
91
92 i n ( S ) ← i n ( S , J ) , J : = 0 .
93
94 ← i n ( S , model ) , n o t i n ( S ) .

B.6 Preferred model

1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t
29 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I =model .
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30 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , n o t a t t (X, S ) , n o t a t t _ s u p p (X, S ) ,
i n ( S , model ) .

31 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I =model .
32 i s m o d e l (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( v ) , modelcheck ( I ) , I != model , i n ( S , model ) .
33 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 , S , I ) .
34 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
35 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) .
36 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) .
37 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
38 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 , S , I ) , nomodel ( F1 , S , I ) .
39 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 , S , I ) .
40 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
41 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , S , I ) .
42 i s m o d e l ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 , S , I ) .
43
44 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I =model .
45 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , o u t (X, I ) , I != model , i n ( S , model ) .
46 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t (X, S ) , i n ( s , model ) .
47 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , i n (X, I ) , I != model , a t t _ s u p p (X, S ) , i n ( s , model ) .
48 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I =model .
49 nomodel (X, S , I ) ← s u b f o r m u l a ( S ,X) , atom (X) , X:= c ( f ) , modelcheck ( I ) , I != model , i n ( S , model ) .
50 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 , S , I ) .
51 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 , S , I ) .
52 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 , S , I ) .
53 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := or ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
54 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
55 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := xor ( F1 , F2 ) , nomodel ( F1 , S , I ) , nomodel ( F2 , S , I ) .
56 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 , S , I ) , nomodel ( F2 , S , I ) .
57 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 , S , I ) , i s m o d e l ( F2 , S , I ) .
58 nomodel ( F , S , I ) ← s u b f o r m u l a ( S , F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 , S , I ) , i s m o d e l ( F1 , S , I ) .
59
60 % g u e s s a s e t M and R
61 i n (X,m) ← n o t o u t (X,m) , s t a t e m e n t (X) .
62 o u t (X,m) ← n o t i n (X,m) , s t a t e m e n t (X) .
63
64 i n (X, r ) ← n o t o u t (X, r ) , n o t a t t (X,Y) , n o t a t t _ s u p p (X,Y) , s t a t e m e n t (X) , i n (Y,m) .
65 o u t (X, r ) ← n o t i n (X, r ) , s t a t e m e n t (X) .
66
67 % M can on ly be a model i f no e l e m e n t o f R i s a l s o i n M
68 i n (X, model ) ← i n (X,m) , o u t (X, r ) .
69 o u t (X, model ) ← s t a t e m e n t (X) , n o t i n (X, model ) .
70 modelcheck ( model ) .
71
72 % e v e r y M which i s n o t checked t o be a model has t o be removed ( as i t c a n t be a s t a b l e model )
73 ← i n (X,m) , n o t i n (X, model ) .
74
75 % check i f t h e g u e s s was r i g h t
76 ← i n ( S , model ) , ac ( S , F ) , nomodel ( F , S , model ) .
77 ← o u t ( S , model ) , ac ( S , F ) , i s m o d e l ( F , S , model ) , n o t i n ( S , r ) .
78
79 % remova l o f a l l n o t s e l e c t e d e l e m e n t s i s i m p l i c i t done by s e t t i n g them t o " o u t "
80 mode lS t a t emen tCoun t ( I ) ← I :={ i n ( S , model ) : s t a t e m e n t ( S ) } .
81 i t e r a t i o n ( I ) ← mode lS ta t emen tCoun t ( I ) .
82 o u t ( S , I ) ← s t a t e m e n t ( S ) , mode lS ta t emen tCoun t ( I ) .
83 modelcheck ( I ) ← i t e r a t i o n ( I ) .
84
85 i t e r a t i o n ( J ) ← i t e r a t i o n ( I ) , J := I−1, I >0 .
86 i n ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, i s m o d e l ( F , S , I ) , ac ( S , F ) , n o t i n ( S , r ) .
87 o u t ( S , J ) ← i t e r a t i o n ( I ) , i t e r a t i o n ( J ) , J := I−1, n o t i n ( S , J ) , o u t ( S , I ) .
88
89 i n ( S ) ← i n ( S , J ) , J : = 0 .
90 o u t ( S ) ← s t a t e m e n t ( S ) , n o t i n ( S ) .
91
92 ← i n ( S , model ) , n o t i n ( S ) .
93
94 %s u b s e t m a x i m i z a t i o n o f i n ( x ) .
95 # min imize [ o u t (X) ] .
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1 % s p l i t t i n g a f o r m u l a i n t o i t s s u b f o r m u l a s
2 s u b f o r m u l a (X, F ) ← ac (X, F ) , s t a t e m e n t (X) .
3 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( F , _ ) ) .
4 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, and ( _ , F ) ) .
5 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( _ , F ) ) .
6 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, o r ( F , _ ) ) .
7 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, neg ( F ) ) .
8 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( F , _ ) ) .
9 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, xor ( _ , F ) ) .

10 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( F , _ ) ) .
11 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, imp ( _ , F ) ) .
12 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( F , _ ) ) .
13 s u b f o r m u l a (X, F ) ← s u b f o r m u l a (X, i f f ( _ , F ) ) .
14 s u b f o r m u l a ( F ) ← s u b f o r m u l a ( _ , F ) .
15
16 % d e c i d e whe the r a s u b f o r m u l a i s an atom or n o t
17 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) .
18 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) .
19 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) .
20 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := xor ( F1 , F2 ) .
21 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) .
22 noatom ( F ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := i f f ( F1 , F2 ) .
23
24 atom (X) ← s u b f o r m u l a (X) , n o t noatom (X) .
25 atom (X) ← s u b f o r m u l a (X) , X:= c ( v ) .
26 atom (X) ← s u b f o r m u l a (X) , X:= c ( f ) .
27
28 % check whe the r an i n t e r p r e t a t i o n i s a model o r n o t a t a s p e c i f i c i t e r a t i o n
29 i s m o d e l (X, I ) ← atom (X) , i n (X, I ) .
30 i s m o d e l (X, I ) ← atom (X) , X:= c ( v ) , i t e r a t i o n ( I ) .
31 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , nomodel ( F1 , I ) .
32 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := and ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I ) .
33 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F1 , I ) .
34 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := o r ( F1 , F2 ) , i s m o d e l ( F2 , I ) .
35 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , I ) , nomodel ( F2 , I ) .
36 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F2 , I ) , nomodel ( F1 , I ) .
37 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := imp ( F1 , F2 ) , nomodel ( F1 , I ) .
38 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I ) .
39 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , i s m o d e l ( F1 ; F2 , I ) .
40 i s m o d e l ( F , I ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 ; F2 , I ) .
41
42 nomodel (X, I ) ← atom (X) , o u t (X, I ) .
43 nomodel (X, I ) ← atom (X) , X:= c ( f ) , i t e r a t i o n ( I ) .
44 nomodel ( F , I ) ← s u b f o r m u l a ( F ; F1 ) , F := neg ( F1 ) , i s m o d e l ( F1 , I ) .
45 nomodel ( F , I ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F1 , I ) .
46 nomodel ( F , I ) ← s u b f o r m u l a ( F ; F1 ; F2 ) , F := and ( F1 , F2 ) , nomodel ( F2 , I ) .
47 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := or ( F1 , F2 ) , nomodel ( F1 , I ) , nomodel ( F2 , I ) .
48 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , i s m o d e l ( F1 , I ) , i s m o d e l ( F2 , I ) .
49 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := xor ( F1 , F2 ) , nomodel ( F1 , I ) , nomodel ( F2 , I ) .
50 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := imp ( F1 , F2 ) , i s m o d e l ( F1 , I ) , nomodel ( F2 , I ) .
51 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F1 , I ) , i s m o d e l ( F2 , I ) .
52 nomodel ( F , I ) ← s u b f o r m u l a ( F ) , F := i f f ( F1 , F2 ) , nomodel ( F2 , I ) , i s m o d e l ( F1 , I ) .
53
54 % g e t t h e number o f s t a t e m e n t s and c r e a t e an o r d e r i n g
55 snum ( I ) ← I :={ s t a t e m e n t (Y) } .
56 i t e r a t i o n ( I ) ← snum ( J ) , I := J−1.
57 i t e r a t i o n ( I ) ← i t e r a t i o n ( J ) , I := J−1, I >=0.
58
59 % c r e a t e u n d e c i d e d s e t o f v a r i a b l e s a t t h e s t a r t i n g p o i n t o f t h e f u n c t i o n
60 undec (X, I ) ← snum ( I ) , s t a t e m e n t (X) .
61
62 % i t e r a t e t h e f u n c t i o n one s t e p f u r t h e r , and g u e s s an a d d i t i o n a l e l e m e n t f o r A or R
63 inA (X, I ) ← inA (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
64 inR (X, I ) ← inR (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
65 s e l e c t (X, I ) ← n o t d e s e l e c t (X, I ) , s t a t e m e n t (X) , i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 .
66 d e s e l e c t (X, I ) ← n o t s e l e c t (X, I ) , s t a t e m e n t (X) , i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 .
67 ← A:={ s e l e c t ( _ , I ) } , i t e r a t i o n ( I ) , A>1 .
68 undec (X, I ) ← i t e r a t i o n ( I ) , undec (X, J ) , J := I +1 , d e s e l e c t (X, I ) .
69 % check whe the r t h e s e l e c t e d e l e m e n t i s i n A or n o t .
70 i n (X, I ) ∨ o u t (X, I ) ← undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
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71 i n (X, I ) ← i t e r a t i o n ( I ) , J= I +1 , inA (X, J ) .
72 o u t (X, I ) ← i t e r a t i o n ( I ) , J= I +1 , inR (X, J ) .
73
74 okA ( I ) ← s e l e c t (X, I ) , ac (X, F ) , i s m o d e l ( F , I ) .
75 okA ( I ) ← A:={ s e l e c t ( _ , I ) } , i t e r a t i o n ( I ) , A=0 .
76 inA (X, I ) ← okA ( I ) , s e l e c t (X, I ) .
77
78 i n (X, I ) ← okA ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
79 o u t (X, I ) ← okA ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
80
81
82 % check whe the r t h e s e l e c t e d e l e m e n t i s i n R or n o t .
83 okR ( I ) ← s e l e c t (X, I ) , ac (X, F ) , nomodel ( F , I ) , n o t okA ( I ) .
84 i n (X, I ) ← okR ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
85 o u t (X, I ) ← okR ( I ) , undec (X, J ) , J := I +1 , i t e r a t i o n ( I ) .
86 inR (X, I ) ← okR ( I ) , s e l e c t (X, I ) .
87
88 ok ( I ) ← okA ( I ) .
89 ok ( I ) ← okR ( I ) .
90
91 ← n o t ok ( I ) , i t e r a t i o n ( I ) .
92
93
94 wf (X) ← inA (X, 0 ) .
95 r (X) ← inR (X, 0 ) .
96
97 # maximize [ wf (X)@2 ] .
98 # maximize [ r (X)@1 ] .
99

100 # h i d e .
101 #show wf / 1 .
102 #show r / 1 .
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Dvořák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2012). Complexity-sensitive decision
procedures for abstract argumentation. In Proceedings of the 13th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2012), pages 54–64. AAAI
Press.

113



BIBLIOGRAPHY
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