
Answer-Set Programming Encodings for Argumentation
Frameworks

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria

Abstract. We present reductions from Dung’s argumentation framework (AF)
and generalizations thereof to logic programs under the answer-set semantics.
The reduction is based on a fixed disjunctive datalog program (the interpreter)
and its input which is the only part depending on the AF to process. We discuss
the reductions, which are the basis for the system ASPARTIX in detail and show
their adequacy in terms of computational complexity.

1 Motivation

Dealing with arguments and counter-arguments in discussions is a daily life process.
We usually employ this process to convince our opponent to our point of view. As
everybody knows, this is sometimes a cumbersome activity because we miss a formal
reasoning procedure for argumentation.

This problem is not new. Leibniz (1646–1716) was the first who tried to deal with
arguments and their processing by reasoning in a more formal way. He proposed to use
a lingua characteristica (a knowledge representation (KR) language) to formalize argu-
ments and a calculus ratiocinator (a deduction system) to reason about them. Although
Leibniz’s dream of a complete formalization of science was destroyed in the thirties of
the last century, restricted versions of Leibniz’s dream survived.

In Artificial Intelligence (AI), the area of argumentation (see [1] for an excellent
summary) has become one of the central issues within the last decade, providing a
formal treatment for reasoning problems arising in a number of interesting applications
fields, including Multi-Agent Systems and Law Research. In a nutshell, argumentation
frameworks formalize statements together with a relation denoting rebuttals between
them, such that the semantics gives an abstract handle to solve the inherent conflicts
between statements by selecting admissible subsets of them. The reasoning underlying
such argumentation frameworks turned out to be a very general principle capturing
many other important formalisms from the areas of AI and Knowledge Representations.

The increasing interest in argumentation led to numerous proposals for formaliza-
tions of argumentation. These approaches differ in many aspects. First, there are several
ways how “admissibility” of a subset of statements can be defined; second, the notion
of rebuttal has different meanings (or even additional relationships between statements
are taken into account); finally, statements are augmented with priorities, such that the
semantics yields those admissible sets which contain statements of higher priority.

Argumentation problems are in general intractable, thus developing dedicated al-
gorithms for the different reasoning problems is non-trivial. A promising approach to

implement such systems is to use a reduction method, where the given problem is trans-
lated into another language, for which sophisticated systems already exist. Earlier work
[2, 3] proposed reductions for basic argumentation frameworks to (quantified) proposi-
tional logic. In this work, we present solutions for reasoning problems in different types
of argumentation frameworks by means of computing the answer sets of a datalog pro-
gram. To be more specific, the system is capable to compute the most important types of
extensions (i.e., admissible, preferred, stable, complete, and grounded) in Dung’s origi-
nal framework [4], the preference-based argumentation framework [5], the value-based
argumentation framework [6], and the bipolar argumentation framework [7, 8]. Hence
our system can be used by researchers to compare different argumentation semantics on
concrete examples within a uniform setting. In fact, investigations on the relationship
between different argumentation semantics has received increasing interest lately [9].

The declarative programming paradigm of Answer-Set Programming (ASP) [10,
11] under the stable-models semantics [12] (which is our target formalism) is espe-
cially well suited for our purpose. First, advanced solvers such as Smodels, DLV, GnT,
Cmodels, Clasp, or ASSAT which are able to deal with large problem instances (see
[13]) are available. Thus, using the proposed reduction method delegates the burden
of optimizations to these systems. Second, language extensions can be used to employ
different extensions to AFs, which so far have not been studied (for instance, weak
constraints or aggregates could yield interesting specially tailored problems for AFs).
Finally, depending on the class of the program one uses for a given type of extension,
one can show that, in general, the complexity of evaluation within the target formalism
is of the same complexity as the original problem. Thus, our approach is adequate from
a complexity-theoretic point of view.

With the fixed logic program (independent from the concrete AF to process), we are
more in the tradition of a classical implementation, because we construct an interpreter
in ASP which processes the AF given as input. This is in contrast to, e.g., the reductions
to (quantified) propositional logic [2, 3], where one obtains a formula which completely
depends on the AF to process. Although there is no advantage of the interpreter ap-
proach from a theoretical point of view (as long as the reductions are polynomial-time
computable), there are several practical ones. The interpreter is easier to understand,
easier to debug, and easier to extend. Additionally, proving properties like correspon-
dence between answer sets and extensions is simpler. Moreover, the input AF can be
changed easily and dynamically without translating the whole formula which simplifies
the answering of questions like “What happens if I add this new argument?”.

Our system makes use of the prominent answer-set solver DLV [10]. All necessary
programs to run ASPARTIX and some illustrating examples are available at

http://www.kr.tuwien.ac.at/research/systems/argumentation/

2 Preliminaries

In this section, we first give a brief overview of the syntax and semantics of disjunctive
datalog under the answer-sets semantics [12]; for further background, see [10, 14].

We fix a countable set U of (domain) elements, also called constants; and suppose a
total order < over the domain elements. An atom is an expression p(t1, . . .,tn), where

p is a predicate of arity n ≥ 0 and each ti is either a variable or an element from U . An
atom is ground if it is free of variables. By BU we denote the set of all ground atoms
over U .

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b1, . . . , bm are atoms, and
“not ” stands for default negation. The head of r is the set H(r) = {a1, . . . , an} and
the body of r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) =
{b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a constraint
if n = 0. A rule r is safe if each variable in r occurs in B+(r). A rule r is ground if
no variable occurs in r. A fact is a ground rule without disjunction and empty body. An
(input) database is a set of facts. A program is a finite set of disjunctive rules. For a
program P and an input database D, we often write P(D) instead of D ∪ P . If each
rule in a program is normal (resp. ground), we call the program normal (resp. ground).
A program P is called stratified if there exists an assignment a(·) of integers to the
predicates in P , such that for each r ∈ P , the following holds: If predicate p occurs
in the head of r and predicate q occurs (i) in the positive body of r, then a(p) ≥ a(q)
holds; (ii) in the negative body of r, then a(p) > a(q) holds.

For any program P , let UP be the set of all constants appearing in P (if no constant
appears inP , an arbitrary constant is added toUP).Gr(P) is the set of rules rσ obtained
by applying, to each rule r ∈ P , all possible substitutions σ from the variables in P to
elements of UP .

An interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I (= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program P , if each r ∈ P is
satisfied by I . A non-ground rule r (resp., a program P) is satisfied by an interpretation
I iff I satisfies all groundings of r (resp., Gr(P)). I ⊆ BU is an answer set of P iff it
is a subset-minimal set satisfying the Gelfond-Lifschitz reduct

PI = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(P)}.

For a program P , we denote the set of its answer sets by AS(P).
Credulous and skeptical reasoning in terms of programs is defined as follows. Given

a program P and a set of ground atoms A. Then, we write P |=c A (credulous reason-
ing), ifA is contained in some answer set ofP ; we write P |=s A (skeptical reasoning),
if A is contained in each answer set of P .

We briefly recall some complexity results for disjunctive logic programs. In fact,
since we will deal with fixed programs we focus on results for data complexity. Recall
that data complexity in our context is the complexity of checking whether P (D) |= A
when datalog programs P are fixed, while input databases D and ground atoms A are
an input of the decision problem. Depending on the concrete definition of |=, we give
the complexity results in Table 1 (cf. [15] and the references therein).

stratified programs normal programs general case
|=c P NP ΣP

2

|=s P coNP ΠP
2

Table 1. Data Complexity for datalog (all results are completeness results).

3 Encodings of Basic Argumentation Frameworks

In this section, we first introduce the most important semantics for basic argumentation
frameworks in some detail. In a distinguished section, we then provide encodings for
these semantics in terms of datalog programs.

3.1 Basic Argumentation Frameworks

In order to relate frameworks to programs, we use the universe U of domain elements
also in the following basic definition.

Definition 1. An argumentation framework (AF) is a pair F = (A, R) where A ⊆ U
is a set of arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks (or
defeats) b. A set S ⊆ A of arguments defeats b (in F), if there is an a ∈ S, such that
(a, b) ∈ R. An argument a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A, it
holds that, if (b, a) ∈ R, then S defeats b (in F).

An argumentation framework can be naturally represented as a directed graph.

Example 1. Let F = (A, R) be an AF with A = {a, b, c, d, e} and R = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. The graph representation of F is the following.

a b c d e

Fig. 1. Graph of Example 1.

In order to be able to reason about such frameworks, it is necessary to group ar-
guments with special properties to extensions. One of the basic properties of such an
extension is that the arguments are not in conflict with each other.

Definition 2. Let F = (A, R) be an AF. A set S ⊆ A is said to be conflict-free (in F),
if there are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are
conflict-free (in F) by cf (F).

The first concept of extension, we present are the stable extensions which are based
on the idea that an extension should not only be internally consistent but also able to
reject the arguments that are outside the extension.

Definition 3. Let F = (A, R) be an AF. A set S is a stable extension ofF , if S ∈ cf (F)
and each a ∈ A \ S is defeated by S in F . We denote the collection all of stable
extensions of F by stable(F).

The framework F from Example 1 has a single stable extension {a, d}. Indeed
{a, d} is conflict-free, since a and d are not adjacent. Moreover, each further ele-
ment b, c, e is defeated by either a or d. In turn, {a, c} for instance is not contained
in stable(F), although it is clearly conflict free. The obvious reason is that e is not
defeated by {a, c}.

Stable semantics in terms of argumentation are considered as quite restricted. It is
often sufficient to consider those arguments which are able to defend themselves from
external attacks, like the admissible semantics proposed by Dung [4]:

Definition 4. Let F = (A, R) be an AF. A set S is an admissible extension of F , if
S ∈ cf (F) and each a ∈ S is defended by S in F . We denote the collection of all
admissible extensions of F by adm(F).

For the framework F from Example 1, we obtain, adm(F) = {∅, {a}, {c}, {d},
{a, c}, {a, d}}. By definition, the empty set is always an admissible extension, there-
fore reasoning over admissible extensions is also limited. In fact, some reasoning (for
instance, given an AF F = (A, R), and a ∈ A, is a contained in any extension of F)
becomes trivial wrt admissible extensions. Thus, many researchers consider maximal
(wrt set-inclusion) admissible sets, called preferred extensions, as more important.

Definition 5. Let F = (A, R) be an AF. A set S is a preferred extension of F , if S ∈
adm(F) and for each S′ ∈ adm(F), S (⊂ S′. We denote the collection of all preferred
extensions of F by pref (F).

Obviously, the preferred extensions of framework F from Example 1 are {a, c} and
{a, d}. We note that each stable extension is also preferred, but the converse does not
hold, as witnessed by this example.

Finally, we introduce complete and grounded extensions which Dung considered as
skeptical counterparts of admissible and preferred extensions, respectively.

Definition 6. Let F = (A, R) be an AF. A set S is a complete extension of F , if S ∈
adm(F) and, for each a ∈ A defended by S (in F), a ∈ S holds. The least (wrt set
inclusion) complete extension of F is called the grounded extension of F . We denote
the collection of all complete (resp., grounded) extensions of F by comp(F) (resp.,
ground(F)).

The complete extensions of framework F from Example 1 are {a, c}, {a, d}, and
{a}, with the last being also the grounded extensions of F .

We briefly review the complexity of reasoning in AFs. To this end, we define the
following decision problems for e ∈ {stable, adm , pref , comp, ground}:

stable adm pref comp ground

Crede NP NP NP NP P
Skept

e
coNP (trivial) ΠP

2 P P

Table 2. Complexity for decision problems in argumentation frameworks.

– Crede: Given AF F = (A, R) and a ∈ A. Is a contained in some S ∈ e(F)?
– Skepte: Given AF F = (A, R) and a ∈ A. Is a contained in each S ∈ e(F)?

The complexity results are depicted in Table 2 (many of them follow implicitly
from [16], for the remaining results and discussions see [17, 18]). All NP-entries as
well as the coNP-entry and the ΠP

2 -entry refer to completeness results. A few further
comments are in order: We already mentioned that skeptical reasoning over admissi-
ble extensions always is trivially false. Moreover, we note that credulous reasoning
over preferred extensions is easier than skeptical reasoning. This is due to the fact that
the additional maximality criterion only comes into play for the latter task. Indeed for
credulous reasoning the following simple observation makes clear why there is no in-
crease in complexity compared to credulous reasoning over admissible extensions: a
is contained in some S ∈ adm(F) iff a is contained in some S ∈ pref (F). A simi-
lar observation immediately shows why skeptical reasoning over complete extensions
reduces to skeptical reasoning over the grounded extension. Finally, we recall that rea-
soning over the grounded extension is tractable, since the grounded extension of an AF
F = (A, R) is given by the least fix-point of the operator ΓF : 2A → 2A, defined as
ΓF (S) = {a ∈ A | a is defended by S in F} (see [4]).

3.2 Encodings

We now provide a fixed encoding πe for each extension of type e introduced so far,
in such a way that the AF F is given as an input database F̂ and the answer sets of
the combined program πe(F̂) are in a certain one-to-one correspondence with the re-
spective extensions. Note that having the fixed program πe at hand, the only translation
required for a given AF F is thus its reformulation as input F̂ , which is very simple (see
below). With some additions, we can of course combine the different encodings into a
single program, where the user just has to specify which type of extensions she wants
to compute.

In most cases, we have to guess candidates for the selected type of extensions and
then check whether a guessed candidate satisfies the corresponding conditions. We use
unary predicates in(·) and out(·) to make such a guess for a set S ⊆ A, where in(a)
represents that a ∈ S. Thus the following notion of correspondence is relevant for our
purposes.

Definition 7. Let S ⊆ 2U be a collection of sets of domain elements and I ⊆ 2BU

a collection of sets of ground atoms. We say that S and I correspond to each other,
in symbols S ∼= I iff |S| = |I| and (i) for each I ∈ I, there exists an S ∈ S, such
that {a | in(a) ∈ I} = S; and (ii) for each S ∈ S, there exists an I ∈ I, such that
{a | in(a) ∈ I} = S.

Let us first determine how an AF is presented to our programs as input. In fact, we
encode a given AF F = (A, R) as follows

F̂ = {arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R}.

The following program fragment guesses, when augmented by F̂ for a given AF
F = (A, R), any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X) :- not out(X), arg(X);

out(X) :- not in(X), arg(X);

:- in(X), in(Y), defeat(X, Y)}.

Proposition 1. For any AF F , cf (F) ∼= AS(πcf (F̂)).

The additional rules for the stability test are as follows:

πstable = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

:- out(X),not defeated(X)}.

The first rule computes those arguments attacked by the current guess, while the
constraint eliminates those guesses where some argument not contained in the guess
remains undefeated. This brings us to an encoding for stable extensions, which satisfies
the following correspondence result.

Proposition 2. For any AF F , stable(F) ∼= AS(πstable(F̂)).

Next, we give the additional rules for the admissibility test:

πadm = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

not defended(X) :- defeat(Y, X),not defeated(Y);

:- in(X), not defended(X)}.

The first rule is the same as in πstable . The second rule derives those arguments
which are not defended by the current guess, i.e., those arguments which are defeated
by some other argument, which itself is not defeated by the current guess. If such a
non-defended argument is contained in the guess, we have to eliminate that guess.

Proposition 3. For any AF F , adm(F) ∼= AS(πadm(F̂)).

We proceed with the encoding for complete extensions, which is also quite straight-
forward. We define

πcomp = πadm ∪ { :- out(X),not not defended(X)}.

Proposition 4. For any AF F , comp(F) ∼= AS(πcomp(F̂)).

We now turn to the grounded extension. Suitably encoding the operator ΓF , we can
come up with a stratified program which computes this extension. Note that here we
are not able to first guess a candidate for the extension and then check whether the
guess satisfies certain conditions. Instead, we “fill” the in(·)-predicate according to the
definition of the operator ΓF . To compute (without unstratified negation) the required
predicate for being defended,we nowmake use of the order< over the domain elements
and we derive corresponding predicates for infimum, supremum, and successor.

π< = { lt(X, Y) :- arg(X), arg(Y), X < Y ;

nsucc(X, Z) :- lt(X, Y), lt(Y, Z);

succ(X, Y) :- lt(X, Y),not nsucc(X, Y);

ninf(Y) :- lt(X, Y);

inf(X) :- arg(X),not ninf(X);

nsup(X) :- lt(X, Y);

sup(X) :- arg(X),not nsup(X)}.

We now define the desired predicate defended(X) which itself is obtained via a
predicate defended upto(X, Y) with the intended meaning that argument X is de-
fended by the current assignment with respect to all argumentsU ≤ Y . In other words,
we let range Y starting from the infimum and then using the defined successor predi-
cate to derive defended upto(X, Y) for “increasing” Y . If we arrive at the supremum
element in this way, we finally derive defended(X). We define

πdefended = { defended upto(X, Y) :- inf(Y), arg(X),not defeat(Y, X);

defended upto(X, Y) :- inf(Y), in(Z), defeat(Z, Y), defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

not defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

in(V), defeat(V, Y), defeat(Y, X);

defended(X) :- sup(Y), defended upto(X, Y)}, and
πground = π< ∪ πdefended ∪ {in(X) :- defended(X)}

Note that πground is indeed stratified.

Proposition 5. For any AF F , ground(F) ∼= AS(πground (F̂)).

Obviously, we could have used the defended(·) predicate in previous programs,
especially πcomp could be defined as

πcf ∪ πdefended ∪ { :- in(X),not defended(X); :- out(X), defended(X)}.

We now continue with the more involved encoding for preferred extensions. Com-
pared to the one for admissible extensions, this encoding requires an additional maxi-
mality test. However, this is sometimes quite complicate to encode (see also [19] for a
thorough discussion on this issue).

In fact, to compute the preferred extensions, we will use a saturation technique as
follows: Having computed an admissible extension S, we make a second guess using
new predicates, say inN(·) and outN(·), such that they represent a guess S′ ⊃ S. For
that guess, we will use disjunction (rather than default negation), which allows that both
inN(a) and outN(a) are contained in a possible answer set (under certain conditions),
for each a. In fact, exactly such answer sets will correspond to the preferred extension.
The saturation is therefore performed in such a way that all predicates inN(a) and
outN(a) are derived, for those S′ which do not characterize an admissible extension.
If this saturation succeeds for each S′ ⊃ S, we want that saturated interpretation to
become an answer set. This can be done by using a saturation predicate spoil, which is
handled via a constraint :-not spoil. This ensures that only saturated guesses survive.

Such saturation techniques always requires a restricted use of negation. The predi-
cates defined in π< will serve for this purpose. Two new predicates are needed: predi-
cate eq(·) which indicates whether a guess S′ represented by atoms inN(·) and outN(·)
is equal to the guess for S (represented by atoms in(·) and out(·)). The second pred-
icate we define is undefeated(X) which indicates that X is not defeated by any el-
ement from S′. Both predicates are computed in πhelpers via predicates eq upto(·)
(resp. undefeated upto(·, ·)) in the same manner as we used defended upto(·, ·) for
defended(·) in the module πdefended above. To this end let

πhelpers = π< ∪ { eq upto(Y) :- inf(Y), in(Y), inN(Y);

eq upto(Y) :- inf(Y), out(Y), outN(Y);

eq upto(Y) :- succ(Z, Y), in(Y), inN(Y), eq upto(Z);

eq upto(Y) :- succ(Z, Y), out(Y), outN(Y), eq upto(Z);

eq :- sup(Y), eq upto(Y);

undefeated upto(X, Y) :- inf(Y), outN(X), outN(Y);

undefeated upto(X, Y) :- inf(Y), outN(X),not defeat(Y, X);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

outN(Y);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

not defeat(Y, X);

undefeated(X) :- sup(Y), undefeated upto(X, Y)}.

πspoil = { inN(X) ∨ outN(X) :- out(X); (1)
inN(X) :- in(X); (2)
spoil :- eq; (3)
spoil :- inN(X), inN(Y), defeat(X, Y); (4)
spoil :- inN(X), outN(Y), defeat(Y, X), undefeated(Y); (5)
inN(X) :- spoil, arg(X); (6)
outN(X) :- spoil, arg(X); (7)
:- not spoil}. (8)

stable adm pref comp ground

Crede πstable(bF) |=c a πadm (bF) |=c a πadm(bF) |=c a πcomp(bF) |=c a πground(bF) |= a

Skept
e

πstable(bF) |=s a (trivial) πpref (bF) |=s a πground(bF) |= a πground(bF) |= a

Table 3. Overview of the encodings of the reasoning tasks for AF F = (A, R) and a ∈ A.

We define
πpref = πadm ∪ πhelpers ∪ πspoil .

When joined with F̂ for some AF F = (A, R), the rules of πspoil work as follows:
(1) and (2) guess a new set S′ ⊆ A, which compares to the guess S ⊆ A (characterized
by predicates in(·) and out(·) as used in πadm) as S ⊆ S′. In case S′ = S, we obtain
predicate eq and derive predicate spoil (rule (3)). The remaining guesses S′ are now
handled as follows. First, rule (4) derives predicate spoil if the new guess S′ contains a
conflict. Second, rule (5) derives spoil if the new guess S′ contains an element which
is attacked by an argument outside S′ which itself is undefeated (by S′). Hence, we
derived spoil for those S ⊆ S′ where either S = S′ or S′ did not correspond to an
admissible extension of F . We now finally spoil up the current guess and derive all
inN(a) and outN(a) in rules (6) and (7). Recall that due to constraint (8) such spoiled
interpretation are the only candidates for answer sets. To turn them into an answer set,
it is however necessary that we spoiled for each S′, such that S ⊆ S′; but by definition
this is exactly the case if S is a preferred extension.

Proposition 6. For any AF F , pref (F) ∼= AS(πpref (F̂)).

We summarize the results from this section.

Theorem 1. For any AF F and e ∈ {stable, adm , comp, ground , pref }, it holds that
e(F) ∼= AS(πe(F̂)).

We note that our encodings are adequate in the sense that the data complexity of the
encodings mirrors the complexity of the encoded task. In fact, depending on the chosen
reasoning task, the adequate encodings are depicted in Table 3. Recall that credulous
reasoning over preferred extensions reduces to credulous reasoning over admissible
extensions; and skeptical reasoning over complete extensions reduces to reasoning over
the single grounded extension. The only proper disjunctive program involved is πpref ,
all other are encodings are disjunction-free. Moreover, πground is stratified. Stratified
programs have at most one answer set, hence there is no need to distinguish between
|=c and |=s. If one now assigns the complexity entries from Table 1 to the encodings as
depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision problems using our programs.
As an example consider the ΠP

2 -complete problem of coherence [17], which decides
whether for a given AF F , pref (F) ⊆ stable(F) (recall that pref (F) ⊇ stable(F)
always holds). We can decide this problem by extending πpref in such a way that an
answer-set of πpref survives only if it does not correspond to a stable extension. By

definition, the only possibility to do so, is if some undefeated argument is not contained
in the extension.

Corollary 1. The coherence problem for an AF F holds iff the program

πpref (F̂) ∪ {v :- out(X),not defeated(X); :- not v}

has no answer set.

4 Encodings for Generalizations of Argumentation Frameworks

4.1 Value-Based Argumentation Frameworks

As a first example for generalizing basic AFs, we deal with value-based argumentation
frameworks (VAFs) [6] which themselves generalize the preference-based argumenta-
tion frameworks [5]. Again we give the definition wrt the universe U .

Definition 8. A value-based argumentation framework (VAF) is a 5-tuple F = (A, R,
Σ, σ, <) where A ⊆ U are arguments, R ⊆ A × A, Σ ⊆ U is a non-empty set of
values disjoint from A, σ : A → Σ assigns a value to each argument from A , and < is
a preference relation (irreflexive, asymmetric) between values.

Let0 be the transitive closure of<. An argument a ∈ A defeats an argument b ∈ A
in F if and only if (a, b) ∈ R and (b, a) /∈0.

Using this notion of defeat, we say in accordance to Definition 1 that a set S ⊆ A
of arguments defeats b (in F), if there is an a ∈ S which defeats b. An argument a ∈ A
is defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if b defeats a in F , then
S defeats b in F . Using these notions of defeat and defense, the definitions in [6] for
conflict-free sets, admissible extensions, and preferred extensions are exactly along the
lines of Definition 2, 4, and 5, respectively.

In order to compute these extensions for VAFs we thus only need to slightly adapt
the modules introduced in Section 3.2. In fact, we just overwrite F̂ for a VAF F as

F̂ = {arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ R} ∪

{val(a, σ(a)) | a ∈ A} ∪ {valpref(w, v) | v < w};

and we require one further module, which now obtains the defeat(·, ·) relation accord-
ingly:

πvaf = { valpref(X, Z) :- valpref(X, Y), valpref(Y, Z);

pref(X, Y) :- valpref(U, V), val(X, U), val(Y, V);

defeat(X, Y) :- attack(X, Y),not pref(Y, X)}

We obtain the following theorem using the new concepts for F̂ and πvaf , as well as
re-using πadm and πpref from Section 3.2.

Theorem 2. For any VAF F and e ∈ {adm , pref }, e(F) ∼= AS(πvaf ∪ πe(F̂)).

For the other notions of extensions, we can employ our encodings from Section 3.2
in a similar way. The concrete composition of the modules however depends on the
exact definitions, and whether they make use of the notion of a defeat in a uniform
way. In [20], for instance, stable extensions for a VAF F are defined as those conflict-
free subsets S of arguments, such that each argument not in S is attacked (rather than
defeated) by S. Still, we can obtain a suitable encoding quite easily using the following
redefined module:

πstable = πcf ∪ { attacked(X) :- in(Y), attack(Y, X);

:- out(X),not attacked(X)}.

Theorem 3. For any VAF F , stable(F) ∼= AS(πvaf ∪ πstable(F̂)).
The coherence problem for VAFs thus can be decided as follows.

Corollary 2. The coherence problem for a VAF F holds iff the program

πpref (F̂) ∪ {attacked(X) :- in(Y), attack(Y, X);

v :- out(X),not attacked(X); :-not v}

has no answer set.

4.2 Bipolar Argumentation Frameworks
Bipolar argumentation frameworks [7] augment basic AFs by a second relation between
arguments which indicates supports independent from defeats.
Definition 9. A bipolar argumentation framework (BAF) is a tuple F = (A, Rd, Rs)
where A ⊆ U is a set of arguments, and Rd ⊆ A × A and Rs ⊆ A × A are the defeat
(resp., support) relation of F .

An argument a defeats an argument b in F if there exists a sequence a1, . . . , an+1

of arguments from A (for n ≥ 1), such that a1 = a, and an+1 = b, and either
– (ai, ai+1) ∈ Rs for each 1 ≤ i ≤ n − 1 and (an, an+1) ∈ Rd; or
– (a1, a2) ∈ Rd and (ai, ai+1) ∈ Rs for each 2 ≤ i ≤ n.
As before, we say that a set S ⊆ A defeats an argument b in F if some a ∈ S

defeats b; an argument a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A, it holds
that, if b defeats a in F , then S defeats b in F .

Again, we just need to adapt the input database F̂ and incorporate the new defeat-
relation. Other modules from Section 3.2 can then be reused. In fact, we define for a
given BAF F = (A, Rd, Rs),

F̂ ={arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ Rd} ∪ {support(a, b) | (a, b) ∈ Rs},

and for the defeat relation we first compute the transitive closure of the support(·, ·)-
predicate and then define defeat(·, ·) accordingly.

πbaf = { support(X, Z) :- support(X, Y), support(Y, Z);

defeat(X, Y) :- attack(X, Y);

defeat(X, Y) :- attack(Z, Y), support(X, Z);

defeat(X, Y) :- attack(X, Z), support(Z, Y)}.

Following [7], we can use this notion of defeat to define conflict-free sets, stable
extensions, admissible extensions and preferred extensions1 exactly along the lines of
Definition 2, 3, 4, and 5, respectively.

Theorem 4. For any BAF F and e ∈ {stable, adm , pref }, e(F) ∼= AS(πbaf ∪πe(F̂)).

More specific variants of admissible extensions from [7] are obtained by replacing
the notion a conflict-free set by other concepts.

Definition 10. Let F = (A, Rd, Rs) be a BAF and S ⊆ A. Then S is called safe in F
if for each a ∈ A, such that S defeats a, a /∈ S and there is no sequence a1, . . . , an

(n ≥ 2), such that a1 ∈ S, an = a, and (ai, ai+1) ∈ Rs, for each 1 ≤ i ≤ n − 1. A set
S is closed under Rs if, for each (a, b) ∈ Rs, it holds that a ∈ S if and only if b ∈ S.

Note that for a BAF F , each safe set (in F) is conflict-free (in F). We also remark
that a set S of arguments is closed under Rs iff S is closed under the transitive closure
of Rs.

Definition 11. Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-admissible
extension of F if S is safe (in F) and each a ∈ S is defended by S (in F). A set S ⊆ A
is called a c-admissible extension of F if S is closed under Rs, conflict-free (in F),
and each a ∈ S is defended by S (in F). We denote the collection of all s-admissible
extensions (resp. of all c-admissible extensions) of F by sadm(F) (resp. by cadm(F)).

We define now further programs as follows

πsadm = πadm ∪ { supported(X) :- in(Y), support(Y, X);

:- supported(X), defeated(X) }.

πcadm = πadm ∪ { :- support(X, Y), in(X), out(Y);

:- support(X, Y), out(X), in(Y) }.

Finally, one defines s-preferred (resp. c-preferred) extensions as maximal (wrt set-
inclusion) s-admissible (resp. c-admissible) extensions.

Definition 12. Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-preferred
extension of F if S ∈ sadm(F) and for each S′ ∈ sadm(F), S (⊆ S′. Likewise,
a set S ⊆ A is called a c-preferred extension of F if S ∈ cadm(F) and for each
S′ ∈ cadm(F), S (⊆ S′. By spref (F) (resp. cpref (F)) we denote the collection of all
s-preferred extensions (resp. of all c-preferred extensions) of F .

Again, we can reuse parts of the πpref -program from Section 3.2. The only additions
necessary are to spoil in case the additional requirements are violated. We define

1 These extensions are called d-admissible and resp. d-preferred in [7].

πspref = πsadm ∪ πhelpers ∪ πspoil ∪

{ supported(X) :- inN(Y), support(Y, X);

spoil :- supported(X), defeated(X) }

πcpref = πcadm ∪ πhelpers ∪ πspoil ∪

{ spoil :- support(X, Y), inN(X), outN(Y);

spoil :- support(X, Y), outN(X), inN(Y) }.

Theorem 5. For any BAF F and e ∈ {sadm, cadm , spref , cpref }, we have e(F) ∼=
AS(πbaf ∪ πe(F̂)).

Slightly different semantics for BAFs occur in [8], where the notion of defense is
based on Rd, while the notion of conflict remains evaluated with respect to the more
general concept of defeat as given in Definition 9. However, also such variants can be
encoded within our system by a suitable composition of the concepts introduced so far.

Again, we note that we can put together encodings for complete and grounded ex-
tensions for BAFs, which have not been studied in the literature.

5 Discussion

In this work we provided logic-program encodings for computing different types of ex-
tensions in Dung’s argumentation framework as well as in some recent extensions of
it. To the best of our knowledge, so far no system is available which supports such a
broad range of different semantics, although nowadays a number of implementations
exists2. The encoding (together with some examples) is available on the web and can
be run with the answer-set solver DLV [10]. We note that DLV also supplies the built-in
predicate < which we used in some of our encodings. Moreover, DLV provides fur-
ther language-extensions which might lead to alternative encodings; for instance weak
constraints could be employed to select the grounded extension from the admissible, or
prioritization techniques could be used to compute the preferred extensions.

The work which is closest related to ours is by Nieves et al. [21] who also suggest to
use answer-set programming for computing extensions of argumentation frameworks.
The most important difference is that in their work the program has to be re-computed
for each new instance, while our system relies on a single fixed program which just
requires the actual instance as an input database. We believe that our approach thus is
more reliable and easier extendible to further formalisms.

Future work includes a comparison of the efficiency of different implementations
and an extension of our system by incorporating further recent notions of semantics, for
instance, the semi-normal semantics [22] or the ideal semantics [23].

Acknowledgments The authors would like to thank Wolfgang Faber for comments on
an earlier draft of this paper. This work was partially supported by the Austrian Science
Fund (FWF) under grant P20704-N18.
2 See http://www.csc.liv.ac.uk/∼azwyner/software.html for an overview.

References
1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171
(2007) 619–641

2. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings
NMR’04. (2004) 59–64

3. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean
formulas. In: Proceedings COMMA’06, IOS Press (2006) 133–144

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77 (1995) 321–358

5. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Ann. Math. Artif. Intell. 34 (2002) 197–215

6. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation
frameworks. J. Log. Comput. 13 (2003) 429–448

7. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumen-
tation frameworks. In: Proceedings ECSQARU’05. Volume 3571 of LNCS., Springer (2005)
378–389

8. Amgoud, L., Cayrol, C., Lagasquie, M.C., Livet, P.: On bipolarity in argumentation frame-
works. International Journal of Intelligent Systems 23 (2008) 1–32

9. Baroni, P., Giacomin, M.: A systematic classification of argumentation frameworks where
semantics agree. In: Proceedings COMMA’08, IOS Press (2008) 37–48

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM Trans. Comput. Log. 7 (2006) 499–562

11. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25 (1999) 241–273

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9 (1991) 365–386

13. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Proceedings LPNMR’07. Volume 4483 of
LNCS., Springer (2007) 3–17

14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22
(1997) 364–418

15. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys 33 (2001) 374–425

16. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theo-
ries. Theor. Comput. Sci. 170 (1996) 209–244

17. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141
(2002) 187–203

18. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In:
Proceedings ECSQARU’05. Volume 3571 of LNCS., Springer (2005) 317–328

19. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in an-
swer set programming: a meta-interpreter and applications. Theory and Practice of Logic
Programming 6 (2006) 23–60

20. Bench-Capon, T.J.M.: Value-based argumentation frameworks. In: Proceedings NMR’02.
(2002) 443–454

21. Nieves, J.C., Osorio, M., Cortés, U.: Preferred extensions as stable models. Theory and
Practice of Logic Programming 8 (2008) 527–543

22. Caminada, M.: Semi-stable semantics. In: Proceedings COMMA’06, IOS Press (2006) 121–
130

23. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.
171 (2007) 642–674

