Logic on MARS:
 Ontologies for Generalised Property Graphs

Maximilian Marx Markus Krötzsch Veronika Thost

TU Dresden

IJCAI 2017

Full paper: https://iccl.inf.tu-dresden.de/web/MARS/en

What do these people have in common?

What do these people have in common?

People that have won two Nobel prizes

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

fact notation: award(Curie, nobelChemistry)@\{year : 1911\}

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

fact notation: award(Curie, nobelChemistry)@\{year : 1911\}
Knowledge Graph: labeled graph; edges carry annotation sets (finite sets of attribute-value pairs)

Laureates in Knowledge Graphs

Wikidata: a free and open Knowledge Graph

fact notation: award(Curie, nobelChemistry)@\{year : 1911\}
Knowledge Graph: labeled graph; edges carry annotation sets (finite sets of attribute-value pairs)
MARS: multi-attributed relational structure (annotated hypergraph)

Annotation-aware reasoning

Example: for sole "award" winners, infer "laureate," i.e., from award(Curie, nobelChemistry)@\{year : 1911\}

Annotation-aware reasoning

Example: for sole "award" winners, infer "laureate," i.e., from award(Curie, nobelChemistry)@\{year : 1911\}, infer laureate(nobelChemistry, Curie)@\{year : 1911\}

Annotation-aware reasoning

Example: for sole "award" winners, infer "laureate," i.e., from award(Curie, nobelChemistry)@\{year : 1911\}, infer laureate(nobelChemistry, Curie)@\{year: 1911\}
\rightsquigarrow Rule:
$\forall x, y . \forall S . \operatorname{award}(x, y) @ S \wedge(\lfloor \rfloor \backslash\lfloor$ with $:+\rfloor)(S) \rightarrow$ laureate $(y, x) @ S$

Annotation-aware reasoning

Example: for sole "award" winners, infer "laureate," i.e., from \quad award(Curie, nobelChemistry) @ \{year: 1911\},
infer \quad laureate(nobelChemistry, Curie) @ \{year : 1911\}
\rightsquigarrow Rule:
$\forall x, y . \forall S . \operatorname{award}(x, y) @ S \wedge(\lfloor \rfloor \backslash\lfloor$ with $:+\rfloor)(S) \rightarrow$ laureate $(y, x) @ S$
Specifier $(\lfloor\backslash \backslash\lfloor$ with : +\rfloor): any annotation set without attribute "with"
\checkmark \{year: 1911\}
$X_{\text {\{year : 1903, with : PierreCurie, with : Becquerel\} }}$

What else do we need?

Goal: derive "award" for co-laureates \rightsquigarrow copying annotation sets is not enough, we need to compute a new annotation set

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

MAPL: multi-attributed predicate logic

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

MAPL: multi-attributed predicate logic

- enrich edges with finite binary relations (annotation sets)

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

MAPL: multi-attributed predicate logic

- enrich edges with finite binary relations (annotation sets)
- quantification over annotation sets

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

MAPL: multi-attributed predicate logic

- enrich edges with finite binary relations (annotation sets)
- quantification over annotation sets

Theorem

MAPL has the same expressivity as weak second-order logic.
\rightsquigarrow Entailment for MAPL theories is not semi-decidable.

A Logic for Knowledge Graphs

Goal: annotation-aware reasoning

- derived knowledge may depend on annotation sets
- compute new annotation sets

MAPL: multi-attributed predicate logic

- enrich edges with finite binary relations (annotation sets)
- quantification over annotation sets

Theorem

MAPL has the same expressivity as weak second-order logic.
\rightsquigarrow Entailment for MAPL theories is not semi-decidable.
Idea: Encode arbitrary arity predicates in annotation sets

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets
- Function definitions derive new annotation sets

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets
- Function definitions derive new annotation sets

Example: from
award(Bardeen, nobelPhysics)@\{year: 1956, with : Shockley, with : Brattain \}

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets
- Function definitions derive new annotation sets

Example: from
award(Bardeen, nobelPhysics)@\{year: 1956, with : Shockley, with : Brattain \} infer
award(Shockley, nobelPhysics)@\{year : 1956, with : Bardeen, with : Brattain \}

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets
- Function definitions derive new annotation sets

Example: from
award(Bardeen, nobelPhysics)@\{year: 1956, with : Shockley, with : Brattain \} infer
award(Shockley, nobelPhysics)@\{year : 1956, with : Bardeen, with : Brattain $\}$
\rightsquigarrow Rule
$\operatorname{award}(x, y) @ S \wedge\lfloor$ with $: z\rfloor(S) \rightarrow \operatorname{award}(z, y) @$ CoLaureate (S, x, z)

MAPL Rules

A decidable fragment

- Specifiers express constraints on annotation sets
- Function definitions derive new annotation sets

Example: from
award(Bardeen, nobelPhysics)@\{year: 1956, with : Shockley, with : Brattain \} infer
award(Shockley, nobelPhysics)@\{year : 1956, with : Bardeen, with : Brattain $\}$
\rightsquigarrow Rule
$\operatorname{award}(x, y) @ S \wedge\lfloor$ with $: z\rfloor(S) \rightarrow \operatorname{award}(z, y) @$ CoLaureate (S, x, z)
with function definition CoLaureate (U, v, w) :
\Rightarrow insert(with : v)
\lfloor with : $o\rfloor(U), o \not \approx w \Rightarrow \operatorname{insert}($ with : o)
\lfloor year : $d\rfloor(U) \Rightarrow$ insert $($ year : $d)$

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase
- Idea: never touch existing annotation sets, only derive new ones

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase
- Idea: never touch existing annotation sets, only derive new ones
- Function definitions are evaluated during rule application

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase
- Idea: never touch existing annotation sets, only derive new ones
- Function definitions are evaluated during rule application
- exponentially many possible annotation sets ensure termination

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase
- Idea: never touch existing annotation sets, only derive new ones
- Function definitions are evaluated during rule application
- exponentially many possible annotation sets ensure termination

Theorem

MARPL entailment is ExpTime-complete for data \& combined complexity.

Reasoning in MARPL

Overview

- Bottom-up materialisation: MARS chase
- Idea: never touch existing annotation sets, only derive new ones
- Function definitions are evaluated during rule application
- exponentially many possible annotation sets ensure termination

Theorem

MARPL entailment is ExpTime-complete for data \& combined complexity.

Theorem

MARPL entailment is PTime-complete for data complexity if the size of annotation sets is bounded.

Conclusion \& Outlook

Summary:

MAPL general, second-order based framework for attributed logics; not semi-decidable

MARPL decidable, rule-shaped fragment; ExpTime-complete for data \& combined complexity

Future Work:

- Create attributed ontologies, e.g., for Wikidata
- Implement a MARPL reasoner
- Identify more expressive decidable fragments of MAPL
- Study attributed versions of other KR formalisms
- Classify data complexities, identify tractable fragments

