Stochastic Local Search

Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

- Stochastic Local Search Algorithms
- Uninformed Random Walk
- Iterative Improvement
- Local Minima and Escape Strategies
- Randomized Iterative Improvement
- Tabu Search
- The GSAT Architecture
- The Walksat Architecture

"Logic is everywhere ..."
Stochastic Local Search Algorithms

A probability distribution for a finite set S is a function $D : S \mapsto [0, 1]$ with
$$\sum_{s \in S} D(s) = 1$$

Let $\mathcal{D}(S)$ denotes the set of probability distributions over a given set S.

Given a (combinatorial) problem Π, a stochastic local search algorithm for solving an arbitrary instance $\pi \in \Pi$ is defined by the following components:

- The search space $S(\pi)$, which is a finite set of candidate solutions $s \in S(\pi)$
- A set of solutions $S'(\pi) \subseteq S(\pi)$
- A neighbourhood relation on $S(\pi)$: $N(\pi) \subseteq S(\pi) \times S(\pi)$
- A finite set of memory states $M(\pi)$
- An initialization function $\text{init}(\pi) : \mapsto \mathcal{D}(S(\pi) \times M(\pi))$
- A step function $\text{step}(\pi) : S(\pi) \times M(\pi) \mapsto \mathcal{D}(S(\pi) \times M(\pi))$
- A termination predicate $\text{terminate}(\pi) : S(\pi) \times M(\pi) \mapsto \{\bot, \top\}$
Some Notation

- We often write $\text{step}(\pi, s, m)$ instead of $\text{step}(\pi)(s, m)$ and, likewise, for terminate and other functions.
- We omit $M(\pi)$ and the parameter m if no memory is used.
General Outline of a Stochastic Local Search Algorithm

procedure SLSDecision(π)
 input π ∈ Π
 output s ∈ S'(π) or “no solution found”
 \((s, m) = \text{selectRandomly}(S(\pi) \times M(\pi), \text{init}(\pi)) \);
 while not \(\text{terminate}(\pi, s, m) \) do
 \((s, m) = \text{selectRandomly}(S(\pi) \times M(\pi), \text{step}(\pi, s, m)) \);
 end
 if s ∈ S'(π) then
 return s
 else
 return “no solution found”
 end
end

where \text{selectRandomly} gets a pair \((S(\pi) \times M(\pi), D) \) as input
and yields the result of a random experiment selecting an element of
\(S(\pi) \times M(\pi) \) wrt the probability distribution \(D \in D(S(\pi) \times M(\pi)) \)
A Simple SLS Algorithm for SAT: Uninformed Random Walk (URW)

- Let F be a CNF-formula with variables $1, \ldots, n$
- The search space $S(F)$ is the set of all interpretations for F
- The set of solutions $S'(F)$ is the set of models for F
- The neighbourhood relation on $S(F)$ is the one-flip neighbourhood $N(F, I, I')$ iff there exists $A \in \{1, \ldots, n\}$ such that $A^I \neq A'^I$
 and for all $A' \in \{1, \ldots, n\} \setminus \{A\}$ we find $A'^I = A'^I'$
- We will not use memory
- The initialization function yields the uninformed random distribution
 \[\text{init}(F, I) = \frac{1}{|S(F)|} = \frac{1}{2^n} \text{ for all } I \in S(F) \]
- The step function maps any I to the uniform distribution over all its neighbours
 \[\text{step}(F, I, I') = \frac{1}{|\{I' \mid N(F, I, I')\}|} = \frac{1}{n} \text{ for all } I' \text{ with } N(F, I, I') \]
- terminate(F, I) holds iff $I \models F$
Evaluation Functions

- Given a (combinatorial) problem Π and let $\pi \in \Pi$; an evaluation function $g(\pi) : S(\pi) \mapsto \mathbb{R}$ is a function which maps each candidate solution to a real number such that the global optima of $g(\pi)$ correspond to the solutions of π.

- Optima are usually minima or maxima.

- $g(\pi)$ is used to rank candidate solutions.

- Concerning SAT: Let F be a CNF-formula and I an interpretation.

 - Often, $g(F)(I) = g(F, I)$ is the number of clauses of F not satisfied by I, i.e.,

 \[g(F, I) = |\{ C \in F \mid I \not\models C \}| \]

 - Consequently, $g(F, I) = 0$ iff $I \models F$.
Iterative Improvement

- Given Π, $\pi \in \Pi$, $S(\pi)$, $N(\pi)$ and $g(\pi)$
- We assume that the solutions of π correspond to global minima of $g(\pi)$
- Iterative improvement (II) starts from a randomly selected point in the search space and tries to improve the current candidate solution wrt $g(\pi)$

▷ Initialization function

$$\text{init}(\pi, s) = \frac{1}{|S(\pi)|} \text{ for all } s \in S(\pi)$$

▷ Neighbouring candidate solutions

$$N'(s) = \{s' \mid (s, s') \in N(\pi) \text{ and } g(\pi, s') < g(\pi, s)\} \text{ for all } s \in S(\pi)$$

▷ Step function

$$\text{step}(\pi, s, s') = \begin{cases} \frac{1}{|N'(s)|} & \text{if } s' \in N'(s) \\ 0 & \text{otherwise} \end{cases} \text{ for all } s, s' \in S(\pi)$$
Local Minima and Escape Strategies

► The step function in the definition of iterative improvement is ill-defined!

► Given \(\Pi, \pi \in \Pi, S(\pi), N(\pi) \) and \(g(\pi) \)

► A local minimum is a candidate solution \(s \in S(\pi) \)
such that for all \((s, s') \in N(\pi) \) we find \(g(\pi, s) \leq g(\pi, s') \)

► A local minimum \(s \in S(\pi) \) is strict if for all \((s, s') \in N(\pi) \)
we find \(g(\pi, s) < g(\pi, s') \)

▷ If II encounters a local minimum which does not correspond to a solution,
then it “gets stuck”; step(\(\pi, s \)) is not a probability distribution!

► Escape Strategies

▷ Restart re-initialize the search whenever a local minimum is encountered

▷ Random Walk perform a randomly chosen non-improving step

▷ Tabu List forbid steps to recently visited candidate solutions

► Even with these escape strategies there is no guarantee that
an SLS-algorithm does eventually find a solution
Randomized Iterative Improvement – Preliminaries

- We want to escape local minima by selecting non-improving steps
- Walk Probability $wp \in [0, 1]$
- stepURW the step function of uninformed random walk
- stepII a variant of the step function used in the iterative improvement algorithm, which differs only in that a minimally worsening neighbour is selected if $N'(s) = \emptyset$
The Step Function of Randomized Iterative Improvement

procedure \texttt{stepRII}(\pi, s, wp) \\
\text{input} \ \pi \in \Pi, \ s \in S(\pi), \ wp \in [0, 1] \\
\text{output} \ s' \in S(\pi) \\
\begin{align*}
 u &= \text{random}([0, 1]); \\
 \text{if} \ u \leq wp \ \text{then} \\
 \hspace{1cm} s' &= \text{stepURW}(\pi, s); \\
 \text{else} \\
 \hspace{1cm} s' &= \text{stepII}(\pi, s); \\
 \text{end}
\end{align*} \\
\text{return} \ s' \\
\text{end}
The Randomized Iterative Improvement Algorithm

► Termination
 ▶ after limit on the CPU time
 ▶ after limit on the number of search steps, i.e., iterations of the while loop or
 ▶ after a number of search steps have been performed without improvement

► Properties
 ▶ Arbitrarily long sequences of random walk steps may occur
 ▶ The algorithm can escape from any local minimum
 ▶ Solutions can be (provably) found with arbitrarily high probability
Randomized iterative improvement algorithm for SAT, but
- instead of stepII
- a best improvement local search algorithm is applied, i.e.,
 - in each step a variable is flipped that leads to a maximal increase in the evaluation function

The algorithm does not terminate in a local minima
- The maximally improving variable flip is a least worsening step in this case

The search in stepURW is still uninformed
Tabu Search

- Iterative improvement algorithm using a form of short-term memory
- It uses a best improvement strategy
- Forbids steps to recently visited candidate solutions
 - by memorizing recently visited solutions explicitly or
 - by using a parameter tt called tabu tenure
The Step Function of Tabu Search

procedure stepTS(\(\pi, s, tt\))
input \(\pi \in \Pi, s \in S(\pi), tt\)
output \(s' \in S(\pi)\)
\(N' = \text{admissibleNeighbours}(\pi, s, tt)\);
\(s' = \text{selectBest}(N')\);
return \(s'\)
end
The GSAT Architecture

- GSAT was one of the first SLS algorithms for SAT
 Selman, Levesque, Mitchell:
 A New Method for Solving Hard Satisfiability Problems
 In: Proc. AAAI National Conference on Artificial Intelligence, 440-446: 1992

- Given CNF-formula F and interpretation I, GSAT uses
 - the one-flip neighbourhood relation
 - the evaluation function

 $$ g(F, I) = |\{C \in F \mid I \not\models C\}| $$

 - the score $g(F, I) - g(F, I')$ of a variable A under I
 where I' is obtained from I by flipping A

- At the time of its introduction GSAT outperformed the best systematic search algorithms for SAT
The Basic GSAT Algorithm

procedure \textit{gsat}(F, \textit{maxtries}, \textit{maxsteps})
\begin{align*}
\text{input } & F \in \mathcal{L}(\mathcal{R}), \text{ \textit{maxtries}, \textit{maxsteps} } \in \mathbb{N}^+ \\
\text{output } & \text{model of } F \text{ or } "\text{no solution found}" \\
\text{for } & \text{\textit{try} } = 1 \text{ to } \textit{maxtries} \text{ do} \\
& I = \text{randomly chosen interpretation of } F; \\
& \text{for } \textit{step} = 1 \text{ to } \textit{maxsteps} \text{ do} \\
& \quad \text{if } I \models F \text{ then} \\
& \quad \quad \text{return } I \\
& \quad \text{end} \\
& \quad A = \text{randomly selected variable with maximal score}; \\
& \quad I = I \text{ with } A \text{ flipped;} \\
& \text{end} \\
& \text{end} \\
& \text{return } "\text{no solution found}"
\end{align*}
end
GSAT with Random Walk (GWSAT)

► Consider GSAT, but use a randomised best-improvement search method

► **Conflict-directed random walk steps** In a random walk step do
 ▶ randomly select a currently unsatisfied clause \(C \)
 ▶ randomly select a variable \(A \) occurring in \(C \)
 ▶ Flip \(A \)

► **GWSAT**
 ▶ Use the basic GSAT algorithm
 ▶ At each local step decide with fixed walk probability \(wp \) whether to do
 ▶ a standard GSAT step or
 ▶ a conflict-directed random walk step

► In contrast to GUWSAT, GWSAT performs informed random walk steps

► GWSAT achieves substantially better performance than basic GSAT
Consider GSAT, but after A has been flipped, it cannot be flipped back within the next tt steps.

With each variable A a tabu status is associated as follows:

- Let t be the current search step number.
- Let $tt \in \mathbb{N}$.
- Let t_A be the search step number, when A was flipped for the last time.
- Initialize $t_A = -tt$.
- Every time variable A is flipped set $t_A = t$.
- Variable A is tabu iff $t - t_A \leq tt$.
The WalkSAT Architecture

procedure $\text{WalkSAT}(F, \text{maxtries}, \text{maxsteps}, \text{select})$

input $F \in \mathcal{L}(\mathcal{R})$, $\text{maxtries}, \text{maxsteps} \in \mathbb{N}^+$
heuristic function select
output model of F or "no solution found"

for $\text{try} = 1$ to maxtries do
 $I =$ randomly chosen interpretation of F;
 for $\text{step} = 1$ to maxsteps do
 if $I \models F$ then
 return I
 end
 $C =$ randomly selected clause unsatisfied under I;
 $A =$ variable selected from C according to select;
 $I =$ I with A flipped;
 end
 return "no solution found"
end
Application of a Solver

► Consider walksat
 ▶ Check out the internet for walksat
 ▶ Walksat accepts .cnf-files and attempts to find a model
 ▶ E.g., walksat -sol < axioms.cnf

► WalkSAT as well as GSAT and GWSAT are sound but incomplete
Novelty

- Considers variables in the selected clauses sorted according to their score
- If the best variable is not the most recently flipped one, it is flipped, otherwise, it is flipped with a probability $1 - p$,
 while in the remaining cases, the second-best variable is flipped,
 where $p \in [0, 1]$ is a parameter called noise setting
- Is in many cases substantially better than WalkSAT
- It suffers from essential incompleteness
- McAllester, Selman, Kautz: Evidence for Invariants in Local Search
Novelty+

- In each search step, with a user-specified probability wp, the variable to be flipped is randomly selected from the selected clause, otherwise, the variable is selected according to the heuristics from Novelty
- Is probabilistically approximately complete
- In practice, $wp = 0.01$ is sufficient
- Hoos: On the run-time behavior of stochastic local search algorithms for SAT Proc. 16th National Conference on Artificial Intelligence (AAAI), 661-666: 1999
Adaptive Novelty

- Optimal value for noise p varies significantly between problem instances

- **Idea** Adapt p
 - Initially $p = 0$
 - Rapid improvement typically leading to stagnation
 - Increase the value of p until escape from stagnation
 - Gradually decrease the value of p
 - Repeat this process until solution is found

- Hoos: An Adaptive Noise Mechanism for WalkSAT
 Proc. 18th National Conference on Artificial Intelligence (AAAI), 655-660: 2004

- Implemented in the UBCSAT framework
Final Remarks

- This section is based on
 Hoos, Stützle: Stochastic Local Search

- So far: stochastic local search
 ▶ Sound but usually incomplete
 ▶ Often quite fast

- Alternative: systematic search
 ▶ Decides SAT problems
 ▶ Sound and complete
 ▶ May be too slow
 ▶ In real applications it is often known that the problem is solvable