
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

22. Vorlesung: Datalog

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 7. Juli 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Rückblick: Formeln als Anfragen
linien:

Linie Typ

85 Bus

3 Tram

F1 Fähre

.

haltestellen:

SID Name Rollstuhl

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

verbindung:

Von Zu Linie

57 42 85

17 789 3

.

Die einfache Arität der Prädikatenlogik wird durch ein
Schema mit Namen (und oft auch Datentypen) ersetzt:
• linien[Linie:string, Typ:string]
• haltestellen[SID:int, Halt:string, Rollstuhl:bool]
• verbindung[Von:int, Zu:int, Linie:string]

Relationale Algebra: Parameter (Spalten) durch Namen adressiert
Prädikatenlogik: Parameter durch Reihenfolge adressiert

Die Anfrage ∃zLinie.(verbindung(xVon, xZu, zLinie) ∧ linien(zLinie, xTyp)) entspricht einer
(natürlichen) Join-Operation (∧) mit anschließender Projektion (∃):
πVon,Zu,Typ(verbindung ▷◁ linien).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 2 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Rückblick: Mit Prädikatenlogik können nur lokale Eigenschaften getestet werden.

Nichtlokale Eigenschaften wie die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdrücken?

Idee: Um beliebig weit zu schauen muss man Rekursion einführen.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 3 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Rückblick: Mit Prädikatenlogik können nur lokale Eigenschaften getestet werden.

Nichtlokale Eigenschaften wie die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdrücken?

Idee: Um beliebig weit zu schauen muss man Rekursion einführen.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 3 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursion in Logik

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Wie kann man das in Logik ausdrücken?

Beispiel: Das Prädikat Erreichbar enthält alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfüllt sind:

(1) Erreichbar(helmholtzstr)

(2) ∀x, y, z.
((

Erreichbar(x) ∧ verbindung(x, y, z)
)
→ Erreichbar(y)

)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 4 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursion in Logik

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn

(1) sie die Haltestelle Helmholtzstr. ist, oder

(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Wie kann man das in Logik ausdrücken?

Beispiel: Das Prädikat Erreichbar enthält alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfüllt sind:

(1) Erreichbar(helmholtzstr)

(2) ∀x, y, z.
((

Erreichbar(x) ∧ verbindung(x, y, z)
)
→ Erreichbar(y)

)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 4 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking?

Beispiel: Das Prädikat Erreichbar enthält alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfüllt sind:

(1) Erreichbar(helmholtzstr)

(2) ∀x, y, z.
((

Erreichbar(x) ∧ verbindung(x, y, z)
)
→ Erreichbar(y)

)
Sei Q die Menge der Formeln (1) und (2).

• Die Modelle von Q sind alle Interpretationen, in denen Erreichbar mindestens die
von Helmholtzstr. aus erreichbaren Haltestellen enthält.

• Eine gegebene Datenbankinstanz, betrachtet als Interpretation, ist normalerweise
kein Modell von Q, sofern es nicht schon eine entsprechende Tabelle für Erreichbar
gibt.

{ Model Checking führt hier nicht zum gewünschten Ergebnis.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 5 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking?

Beispiel: Das Prädikat Erreichbar enthält alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfüllt sind:

(1) Erreichbar(helmholtzstr)

(2) ∀x, y, z.
((

Erreichbar(x) ∧ verbindung(x, y, z)
)
→ Erreichbar(y)

)
Sei Q die Menge der Formeln (1) und (2).

• Die Modelle von Q sind alle Interpretationen, in denen Erreichbar mindestens die
von Helmholtzstr. aus erreichbaren Haltestellen enthält.

• Eine gegebene Datenbankinstanz, betrachtet als Interpretation, ist normalerweise
kein Modell von Q, sofern es nicht schon eine entsprechende Tabelle für Erreichbar
gibt.

{ Model Checking führt hier nicht zum gewünschten Ergebnis.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 5 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Datenbanken als logische Theorien

Wir nehmen daher eine andere Perspektive ein:

• Datenbankinstanzen I werden als endliche Menge von Fakten FI dargestellt:

FI =
{
p(c1, . . . , cn)

∣∣∣ c1, . . . , cn ∈ C und ⟨cI1 , . . . , cIn ⟩ ∈ pI
}

(Wie zuvor nimmt man vereinfachend oft an, dass cI = c gilt.)

• Rekursive Anfragen können wie im Beispiel als prädikatenlogische Formelmenge
Q dargestellt werden.

• Ein Fakt p(c1, . . . , cn) ist genau dann eine Antwort auf die Anfrage Q auf der
Datenbank I, wenn gilt: FI ∪ Q |= p(c1, . . . , cn).

Das heißt: Wir fassen nun Anfragebeantwortung als prädikatenlogisches Schließen auf
(nicht Model Checking).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 6 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Beispiel: Für die Anfrage

Q =
{

Erreichbar(helmholtzstr),

∀x, y, z.
((

Erreichbar(x) ∧ verbindung(x, y, z)
)
→ Erreichbar(y)

) }
und die Datenbankinstanz I mit

FI = { verbindung(helmholtzstr, stadtgutstr, 85)

verbindung(stadtgutstr, räcknitzhöhe, 85)

verbindung(räcknitzhöhe, zellescher_weg, 11)

verbindung(schillerplatz, körnerplatz, 61) }

folgen genau die Antworten Erreichbar(helmholtzstr), Erreichbar(stadtgutstr),
Erreichbar(räcknitzhöhe) und Erreichbar(zellescher_weg).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 7 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Sind rekursive Anfragen praktikabel?
Wir wissen: Prädikatenlogisches Schließen ist unentscheidbar.

Ist die Beantwortung rekursiver Anfragen dann überhaupt möglich?

Ja, wenn wir uns auf bestimmte Formen von Anfragen beschränken.

Eine Datalog-Regel ist eine Formel der Form

∀x1, . . . , xℓ.
((

B1 ∧ . . . ∧ Bn
)
→ H

)
wobei B1, . . . , Bn und H prädikatenlogische Atome sind und x1, . . . , xℓ eine Liste aller in
den Atomen vorkommenden Variablen ist.

• H heißt Kopf und B1 ∧ . . . ∧ Bn Rumpf der Regel. Wir verlangen, dass jede
Variable im Kopf auch im Rumpf vorkommt.

• Ein Fakt ist eine variablenfreie Regel mit n = 0.

• Ein Datalog-Programm P ist eine Menge von Datalog-Regeln (einschl. Fakten).

Es ist üblich, eine Regel als H ← B1 ∧ . . . ∧ Bn und einen Fakt schlicht als H zu schreiben.
(Die Allquantoren werden weggelassen; das „Umdrehen“ des Implikationspfeils hat historische Gründe.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 8 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Sind rekursive Anfragen praktikabel?
Wir wissen: Prädikatenlogisches Schließen ist unentscheidbar.

Ist die Beantwortung rekursiver Anfragen dann überhaupt möglich?

Ja, wenn wir uns auf bestimmte Formen von Anfragen beschränken.

Eine Datalog-Regel ist eine Formel der Form

∀x1, . . . , xℓ.
((

B1 ∧ . . . ∧ Bn
)
→ H

)
wobei B1, . . . , Bn und H prädikatenlogische Atome sind und x1, . . . , xℓ eine Liste aller in
den Atomen vorkommenden Variablen ist.

• H heißt Kopf und B1 ∧ . . . ∧ Bn Rumpf der Regel. Wir verlangen, dass jede
Variable im Kopf auch im Rumpf vorkommt.

• Ein Fakt ist eine variablenfreie Regel mit n = 0.

• Ein Datalog-Programm P ist eine Menge von Datalog-Regeln (einschl. Fakten).

Es ist üblich, eine Regel als H ← B1 ∧ . . . ∧ Bn und einen Fakt schlicht als H zu schreiben.
(Die Allquantoren werden weggelassen; das „Umdrehen“ des Implikationspfeils hat historische Gründe.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 8 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Das vorige Beispiel war bereits ein Datalog-Programm:

Erreichbar(helmholtzstr)

Erreichbar(y)← Erreichbar(x) ∧ verbindung(x, y, z)

Ein umfangreicheres Beispiel:

vater(alice, bob) mutter(alice, carla) mutter(evan, carla) vater(carla, david)

Elternteil(x, y)← vater(x, y) Elternteil(x, y)← mutter(x, y)

Vorfahr(x, y)← Elternteil(x, y)

Vorfahr(x, z)← Elternteil(x, y) ∧ Vorfahr(y, z)

GleicheGeneration(x, x)← Vorfahr(x, y)

GleicheGeneration(y, y)← Vorfahr(x, y)

GleicheGeneration(x, y)← Elternteil(x, v) ∧ Elternteil(y, w) ∧GleicheGeneration(v, w)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 9 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Das vorige Beispiel war bereits ein Datalog-Programm:

Erreichbar(helmholtzstr)

Erreichbar(y)← Erreichbar(x) ∧ verbindung(x, y, z)

Ein umfangreicheres Beispiel:

vater(alice, bob) mutter(alice, carla) mutter(evan, carla) vater(carla, david)

Elternteil(x, y)← vater(x, y) Elternteil(x, y)← mutter(x, y)

Vorfahr(x, y)← Elternteil(x, y)

Vorfahr(x, z)← Elternteil(x, y) ∧ Vorfahr(y, z)

GleicheGeneration(x, x)← Vorfahr(x, y)

GleicheGeneration(y, y)← Vorfahr(x, y)

GleicheGeneration(x, y)← Elternteil(x, v) ∧ Elternteil(y, w) ∧GleicheGeneration(v, w)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 9 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schlüsse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

• Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

• Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Der Konsequenzoperator TP für ein Datalog-Programm P bildet endliche Mengen FI
von Fakten auf Mengen von Fakten ab:

TP(FI) = {Hθ | H ← B1 ∧ . . . ∧ Bn ∈ P und es gibt Substitution θ mit B1θ, . . . , Bnθ ∈ FI }

Beobachtungen:

• Substitutionen θ mit B1θ, . . . , Bnθ ∈ FI sind einfach Antworten auf die
Datenbankanfrage B1 ∧ . . . ∧ Bn über Datenbank I, also praktisch berechenbar.

• θ muss alle Variablen in der angewendeten Regel auf Konstanten
(Domänenelemente) aus FI abbilden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schlüsse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

• Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

• Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Der Konsequenzoperator TP für ein Datalog-Programm P bildet endliche Mengen FI
von Fakten auf Mengen von Fakten ab:

TP(FI) = {Hθ | H ← B1 ∧ . . . ∧ Bn ∈ P und es gibt Substitution θ mit B1θ, . . . , Bnθ ∈ FI }

Beobachtungen:

• Substitutionen θ mit B1θ, . . . , Bnθ ∈ FI sind einfach Antworten auf die
Datenbankanfrage B1 ∧ . . . ∧ Bn über Datenbank I, also praktisch berechenbar.

• θ muss alle Variablen in der angewendeten Regel auf Konstanten
(Domänenelemente) aus FI abbilden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schlüsse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

• Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

• Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Der Konsequenzoperator TP für ein Datalog-Programm P bildet endliche Mengen FI
von Fakten auf Mengen von Fakten ab:

TP(FI) = {Hθ | H ← B1 ∧ . . . ∧ Bn ∈ P und es gibt Substitution θ mit B1θ, . . . , Bnθ ∈ FI }

Beobachtungen:

• Substitutionen θ mit B1θ, . . . , Bnθ ∈ FI sind einfach Antworten auf die
Datenbankanfrage B1 ∧ . . . ∧ Bn über Datenbank I, also praktisch berechenbar.

• θ muss alle Variablen in der angewendeten Regel auf Konstanten
(Domänenelemente) aus FI abbilden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TP iterativ anwenden

Zur Ermittlung aller Schlüsse muss man TP iterativ anwenden:

Für ein Datalog-Programm P definieren wir rekursiv:

• T0
P = ∅,

• T i+1
P = TP(T i

P) für alle i ≥ 0.

Beobachtungen:

• T1
P = TP(∅) ist die Menge aller Fakten in P.

• T i
P enthält nur Fakten, die man bilden kann, indem man einen Regelkopf aus P mit

Konstanten aus P instanziiert.

• Es gibt nur endlich viele solcher Atome (über dem Vokabular von P).

TP erreicht also nach endlich vielen Schritten einen Grenzwert, definiert wie folgt:

T∞P =
⋃
i≥ 0

T i
P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TP iterativ anwenden

Zur Ermittlung aller Schlüsse muss man TP iterativ anwenden:

Für ein Datalog-Programm P definieren wir rekursiv:

• T0
P = ∅,

• T i+1
P = TP(T i

P) für alle i ≥ 0.

Beobachtungen:

• T1
P = TP(∅) ist die Menge aller Fakten in P.

• T i
P enthält nur Fakten, die man bilden kann, indem man einen Regelkopf aus P mit

Konstanten aus P instanziiert.

• Es gibt nur endlich viele solcher Atome (über dem Vokabular von P).

TP erreicht also nach endlich vielen Schritten einen Grenzwert, definiert wie folgt:

T∞P =
⋃
i≥ 0

T i
P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

TP iterativ anwenden

Zur Ermittlung aller Schlüsse muss man TP iterativ anwenden:

Für ein Datalog-Programm P definieren wir rekursiv:

• T0
P = ∅,

• T i+1
P = TP(T i

P) für alle i ≥ 0.

Beobachtungen:

• T1
P = TP(∅) ist die Menge aller Fakten in P.

• T i
P enthält nur Fakten, die man bilden kann, indem man einen Regelkopf aus P mit

Konstanten aus P instanziiert.

• Es gibt nur endlich viele solcher Atome (über dem Vokabular von P).

TP erreicht also nach endlich vielen Schritten einen Grenzwert, definiert wie folgt:

T∞P =
⋃
i≥ 0

T i
P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Für das Programm P mit den Regeln

vater(alice, bob) mutter(alice, carla) mutter(evan, carla) vater(carla, david)

Elternteil(x, y)← vater(x, y) Elternteil(x, y)← mutter(x, y)

GG(x, x)← Elternteil(x, y)

GG(y, y)← Elternteil(x, y)

GG(x, y)← Elternteil(x, v) ∧ Elternteil(y, w) ∧GG(v, w)

(GG = GleicheGeneration) ergibt sich:

T0
P = ∅

T1
P = {vater(alice, bob), mutter(alice, carla), mutter(evan, carla), vater(carla, david)}

T2
P = T1

P∪{Elternteil(alice, bob), Elternteil(alice, carla), Elternteil(evan, carla), Elternteil(carla, david)}

T3
P = T2

P ∪ {GG(alice, alice), GG(bob, bob), GG(carla, carla), GG(david, david), GG(evan, evan)}

T4
P = T3

P ∪ {GG(alice, evan), GG(evan, alice)}

T5
P = T4

P = T∞P

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 12 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: TP-Operator

Sei P ein Datalog-Programm und FI eine endliche Menge von Fakten.
• TP(FI) = {Hθ | H ← B1 ∧ . . . ∧ Bn ∈ P und es gibt eine Substitution θ mit B1θ, . . . , Bnθ ∈ FI }

• T0
P = ∅ und T i+1

P = TP(T i
P) für alle i ≥ 0.

• T∞P =
⋃

i≥ 0 T i
P

Quiz: Wir betrachten das folgende Datalog-Programm: . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 13 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von TP

Beobachtung 1: Jede Datalog-Regel H ← B1 ∧ . . . ∧ Bn entspricht einer Klausel
H ∨ ¬B1 ∨ . . . ∨ ¬Bn, wobei jeweils alle Variablen allquantifiziert sind.

{ Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
{ Für die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschränken.

Beobachtung 2: Die Berechnung eines Fakts Hθ durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H ∨ ¬B1 ∨ . . . ∨ ¬Bn mit den
Fakten B1θ, . . . , Bnθ, wobei θ der allgemeinste Unifikator ist.

{ Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten lässt sich zeigen, dass T∞P zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Für ein Datalog-Programm P ist T∞P das kleinste Herbrand-Modell.
Das heißt: Für einen beliebigen Fakt F gilt

F ∈ T∞P gdw. F in jedem Herbrand-Modell vorkommt gdw. P |= F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von TP

Beobachtung 1: Jede Datalog-Regel H ← B1 ∧ . . . ∧ Bn entspricht einer Klausel
H ∨ ¬B1 ∨ . . . ∨ ¬Bn, wobei jeweils alle Variablen allquantifiziert sind.

{ Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
{ Für die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschränken.

Beobachtung 2: Die Berechnung eines Fakts Hθ durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H ∨ ¬B1 ∨ . . . ∨ ¬Bn mit den
Fakten B1θ, . . . , Bnθ, wobei θ der allgemeinste Unifikator ist.

{ Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten lässt sich zeigen, dass T∞P zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Für ein Datalog-Programm P ist T∞P das kleinste Herbrand-Modell.
Das heißt: Für einen beliebigen Fakt F gilt

F ∈ T∞P gdw. F in jedem Herbrand-Modell vorkommt gdw. P |= F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von TP

Beobachtung 1: Jede Datalog-Regel H ← B1 ∧ . . . ∧ Bn entspricht einer Klausel
H ∨ ¬B1 ∨ . . . ∨ ¬Bn, wobei jeweils alle Variablen allquantifiziert sind.

{ Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
{ Für die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschränken.

Beobachtung 2: Die Berechnung eines Fakts Hθ durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H ∨ ¬B1 ∨ . . . ∨ ¬Bn mit den
Fakten B1θ, . . . , Bnθ, wobei θ der allgemeinste Unifikator ist.

{ Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten lässt sich zeigen, dass T∞P zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Für ein Datalog-Programm P ist T∞P das kleinste Herbrand-Modell.
Das heißt: Für einen beliebigen Fakt F gilt

F ∈ T∞P gdw. F in jedem Herbrand-Modell vorkommt gdw. P |= F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von TP

Beobachtung 1: Jede Datalog-Regel H ← B1 ∧ . . . ∧ Bn entspricht einer Klausel
H ∨ ¬B1 ∨ . . . ∨ ¬Bn, wobei jeweils alle Variablen allquantifiziert sind.

{ Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
{ Für die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschränken.

Beobachtung 2: Die Berechnung eines Fakts Hθ durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H ∨ ¬B1 ∨ . . . ∨ ¬Bn mit den
Fakten B1θ, . . . , Bnθ, wobei θ der allgemeinste Unifikator ist.

{ Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten lässt sich zeigen, dass T∞P zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Für ein Datalog-Programm P ist T∞P das kleinste Herbrand-Modell.
Das heißt: Für einen beliebigen Fakt F gilt

F ∈ T∞P gdw. F in jedem Herbrand-Modell vorkommt gdw. P |= F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von TP

Beobachtung 1: Jede Datalog-Regel H ← B1 ∧ . . . ∧ Bn entspricht einer Klausel
H ∨ ¬B1 ∨ . . . ∨ ¬Bn, wobei jeweils alle Variablen allquantifiziert sind.

{ Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
{ Für die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschränken.

Beobachtung 2: Die Berechnung eines Fakts Hθ durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H ∨ ¬B1 ∨ . . . ∨ ¬Bn mit den
Fakten B1θ, . . . , Bnθ, wobei θ der allgemeinste Unifikator ist.

{ Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten lässt sich zeigen, dass T∞P zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Für ein Datalog-Programm P ist T∞P das kleinste Herbrand-Modell.
Das heißt: Für einen beliebigen Fakt F gilt

F ∈ T∞P gdw. F in jedem Herbrand-Modell vorkommt gdw. P |= F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ableitungsbäume

Die Folgerung P |= F lässt sich als endlicher Baum darstellen:

• Jeder Knoten ist ein variablenfreies Atom.

• Jeder Elternknoten entsteht durch Anwendung einer Regel aus P auf seine
Kindknoten.

• Jeder Blattknoten ist ein gegebener Fakt aus P.

• Jeder Knoten wird zusätzlich mit der Regel und Substitution θ beschriftet, die zur
Ableitung angewendet wurden.

{ Der Ableitungsbaum stellt die Resolutionsableitung des Fakts an der Wurzel des
Baums grafisch dar.

Beobachtung: Für jeden Fakt F ∈ T∞P gibt es mindestens einen Ableitungsbaum mit
Wurzel F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 15 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel
Vorfahr(alice, david)

Elternteil(alice, carla) Vorfahr(carla, david)

Elternteil(carla, david)

vater(carla, david)

mutter(alice, carla)

(8)
{x 7→ alice, y 7→ carla, z 7→ david}

(6)
{x 7→ alice, y 7→ carla}

(7)
{x 7→ carla, y 7→ david}

(5)
{x 7→ carla, y 7→ david}

(2)

(4)

(1) vater(alice, bob)

(2) mutter(alice, carla)

(3) mutter(evan, carla)

(4) vater(carla, david)

(5) Elternteil(x, y)← vater(x, y)

(6) Elternteil(x, y)← mutter(x, y)

(7) Vorfahr(x, y)← Elternteil(x, y)

(8) Vorfahr(x, z)← Elternteil(x, y) ∧ Vorfahr(y, z)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 16 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität
Mithilfe von TP kann man logische Konsequenzen berechnen.
Wie aufwändig ist das?

Worst Case?

• Sei p die Anzahl der Prädikatensmbole, a deren maximale Arität, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

• Dann gibt es insgesamt ≤ p · na variablenfreie Fakten, die abgeleitet werden
könnten.

• Für eine Regel gibt es maximal nx Substitutionen, die bei der Ableitung eine Rolle
spielen könnten.

{ Die Berechnung von T∞P ist in exponentieller Zeit möglich.

Man kann zeigen, dass dies worst-case-optimal ist:

Satz: Das Problem der Schlussfolgerung von Fakten (“P |= F?”) für Datalog ist Exp-
Time-vollständig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität
Mithilfe von TP kann man logische Konsequenzen berechnen.
Wie aufwändig ist das?

Worst Case?

• Sei p die Anzahl der Prädikatensmbole, a deren maximale Arität, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

• Dann gibt es insgesamt ≤ p · na variablenfreie Fakten, die abgeleitet werden
könnten.

• Für eine Regel gibt es maximal nx Substitutionen, die bei der Ableitung eine Rolle
spielen könnten.

{ Die Berechnung von T∞P ist in exponentieller Zeit möglich.

Man kann zeigen, dass dies worst-case-optimal ist:

Satz: Das Problem der Schlussfolgerung von Fakten (“P |= F?”) für Datalog ist Exp-
Time-vollständig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität
Mithilfe von TP kann man logische Konsequenzen berechnen.
Wie aufwändig ist das?

Worst Case?

• Sei p die Anzahl der Prädikatensmbole, a deren maximale Arität, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

• Dann gibt es insgesamt ≤ p · na variablenfreie Fakten, die abgeleitet werden
könnten.

• Für eine Regel gibt es maximal nx Substitutionen, die bei der Ableitung eine Rolle
spielen könnten.

{ Die Berechnung von T∞P ist in exponentieller Zeit möglich.

Man kann zeigen, dass dies worst-case-optimal ist:

Satz: Das Problem der Schlussfolgerung von Fakten (“P |= F?”) für Datalog ist Exp-
Time-vollständig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexität
Mithilfe von TP kann man logische Konsequenzen berechnen.
Wie aufwändig ist das?

Worst Case?

• Sei p die Anzahl der Prädikatensmbole, a deren maximale Arität, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

• Dann gibt es insgesamt ≤ p · na variablenfreie Fakten, die abgeleitet werden
könnten.

• Für eine Regel gibt es maximal nx Substitutionen, die bei der Ableitung eine Rolle
spielen könnten.

{ Die Berechnung von T∞P ist in exponentieller Zeit möglich.

Man kann zeigen, dass dies worst-case-optimal ist:

Satz: Das Problem der Schlussfolgerung von Fakten (“P |= F?”) für Datalog ist Exp-
Time-vollständig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Datalog praktisch?

ExpTime ist eine ziemlich hohe Komplexität – ist Datalog praktisch implementierbar?

Ja!

• Die Worst-Case-Komplexität erfordert, dass die Stelligkeit von Prädikaten
unbeschränkt wachsen kann.
{ In Anwendungen sind sehr große Stelligkeiten jedoch untypisch.

• In Abhängigkeit von der Größe der Datenbank (der Zahl der Fakten) wächst die
Laufzeit lediglich polynomiell.
{ Gutes Skalierungsverhalten für große Datenmengen.

• Es gibt inzwischen eine Reihe sehr effizienter Implementierungen, z.B.:
– hochskalierbare speicherbasierte Systeme: z.B. VLog/Rulewerk (VU

Amsterdam, TU Dresden), RDFox (Oxford)
– Systeme basierend auf relationalen Datenbanken: z.B. Llunatic
– Systeme für komplexere Logiken, die Datalog als Sonderfall unterstützen: z.B.

clingo, DLV (Answer Set Programming), E (Theorembeweiser)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 18 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Datalog praktisch?

ExpTime ist eine ziemlich hohe Komplexität – ist Datalog praktisch implementierbar?

Ja!

• Die Worst-Case-Komplexität erfordert, dass die Stelligkeit von Prädikaten
unbeschränkt wachsen kann.
{ In Anwendungen sind sehr große Stelligkeiten jedoch untypisch.

• In Abhängigkeit von der Größe der Datenbank (der Zahl der Fakten) wächst die
Laufzeit lediglich polynomiell.
{ Gutes Skalierungsverhalten für große Datenmengen.

• Es gibt inzwischen eine Reihe sehr effizienter Implementierungen, z.B.:
– hochskalierbare speicherbasierte Systeme: z.B. VLog/Rulewerk (VU

Amsterdam, TU Dresden), RDFox (Oxford)
– Systeme basierend auf relationalen Datenbanken: z.B. Llunatic
– Systeme für komplexere Logiken, die Datalog als Sonderfall unterstützen: z.B.

clingo, DLV (Answer Set Programming), E (Theorembeweiser)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 18 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik höherer Ordnung

Prädikatenlogik ist genau genommen Prädikatenlogik erster Stufe.

Hintergrund:

• Erste Stufe: Quantoren beziehen sich auf Domänenelemente.

Beispiel: „Jede natürliche Zahl n hat einen Nachfolger s(n).“

• Zweite Stufe: Quantoren beziehen sich auf Relationen (über Domänenelementen).

Beispiel: „Für jede Menge M gilt: Enthält M die Zahl 0 und mit jeder natürlichen
Zahl n auch stets deren Nachfolger s(n), so enthält M alle natürlichen Zahlen.“

Logik zweiter Stufe (zweiter Ordnung):

• Ausdrucksstärker: kann z.B. die natürlichen Zahlen exakt charakterisieren.

• Schwieriger: hat kein korrektes und vollständiges Beweisverfahren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 19 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik höherer Ordnung: Syntax und Semantik

Syntax: Wie in Prädikatenlogik, aber mit quantifizierten Prädikaten-Variablen.
(Die Stelligkeit einer Prädikaten-Variablen muss jeweils klar festgelegt werden.)

Beispiel: “Für jede Menge M gilt: Enthält M die Zahl 0 und mit jeder natürlichen Zahl
n auch stets deren Nachfolger s(n), so enthält M alle natürlichen Zahlen.”

∀M.
((

M(0) ∧ ∀x.(M(x)→ M(s(x)))
)
→ ∀y.M(y)

)
Wir verwenden hier ein Funktionssymbol s zur Darstellung von Nachfolgern.

Semantik: „Wie zu erwarten.“ (Gleiche Interpretationen wie in erster Stufe;
Interpretation von Prädikaten-Variablen mit Zuweisungen wie bei Objektvariablen in
erster Stufe.)

(Intuition: Erste Stufe verhält sich zur zweiten Stufe wie Aussagenlogik zu QBFs.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 20 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik höherer Ordnung: Syntax und Semantik

Syntax: Wie in Prädikatenlogik, aber mit quantifizierten Prädikaten-Variablen.
(Die Stelligkeit einer Prädikaten-Variablen muss jeweils klar festgelegt werden.)

Beispiel: “Für jede Menge M gilt: Enthält M die Zahl 0 und mit jeder natürlichen Zahl
n auch stets deren Nachfolger s(n), so enthält M alle natürlichen Zahlen.”

∀M.
((

M(0) ∧ ∀x.(M(x)→ M(s(x)))
)
→ ∀y.M(y)

)
Wir verwenden hier ein Funktionssymbol s zur Darstellung von Nachfolgern.

Semantik: „Wie zu erwarten.“ (Gleiche Interpretationen wie in erster Stufe;
Interpretation von Prädikaten-Variablen mit Zuweisungen wie bei Objektvariablen in
erster Stufe.)

(Intuition: Erste Stufe verhält sich zur zweiten Stufe wie Aussagenlogik zu QBFs.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 20 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik höherer Ordnung: logisches Schließen

Offenbar ist Schließen in Logik zweiter Stufe mindestens genauso schwer wie in Logik
erster Stufe. Tatsächlich ist es noch deutlich schwerer:

Fakt: Logisches Schließen in Logik höherer Ordnung ist nicht semi-entscheidbar und
insbesondere gibt es kein korrektes und vollständiges Ableitungsverfahren für diese
Logik.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 21 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik höherer Ordnung und Datalog
Idee: Die Fakten, die in allen Modellen (eines Datalog-Programms) gefolgert werden
können, sind genau diejenigen, die in jeder erfüllenden Interpretation (in Logik zweiter
Ordnung) der Datalog-Prädikate gelten.

Beispiel: Das Datalog-Programm

Erreichbar(helmholtzstr)

Erreichbar(y)← Erreichbar(x) ∧ verbindung(x, y, z)

kann als Formel der Logik zweiter Stufe wie folgt dargestellt werden:

∀Erreichbar.
((

Erreichbar(helmholtzstr) ∧

∀x, y, z.((Erreichbar(x) ∧ verbindung(x, y, z))→ Erreichbar(y))
)
→ Erreichbar(v)

)
Die Formel hat eine freie Variable v und stellt Erreichbar als Prädikaten-Variable dar.
Ein Fakt Erreichbar(a) folgt aus dem ursprünglichen Programm über einer Datenbank
FI genau dann, wenn FI die Formel mit Variablenbelegung v 7→ a erfüllt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 22 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking!

Das vorige Beispiel zeigt:

Die Beantwortung von Anfragen in Datalog entspricht einem Auswertungsproblem
(Model Checking) für spezielle Formeln zweiter Ordnung über endlichen Interpreta-
tionen.

Diese Sicht wird gegenüber der Betrachtung als Logik erster Stufe bevorzugt, weil
dadurch abgeleitete Prädikate zu lokalen Variablen des Programms werden, anstatt
globaler Teil von Interpretationen (Datenbanken) zu sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 23 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick
Datalog erlaubt die Darstellung rekursiver Anfragen in Logik.

Anfragebeantwortung in Datalog:

= logisches Schließen in Prädikatenlogik;

= Auswertungsproblem in Logik zweiter Stufe.

(ExpTime-vollständig, aber polynomiell bezüglich der Datenbankgröße.)

Ableitungen in Datalog können berechnet und dargestellt werden:
• mit dem TP-Operator,
• durch Ableitungsbäume.

Was erwartet uns als nächstes?

• Gödel

• Prüfung

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 24 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

