TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

22. Vorlesung: Datalog

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 7. Juli 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Rackblick

: Formeln als Anfragen

linien:
Linie | Typ
85 Bus
3 Tram
F1 Fahre
verbindung:
Von | Zu Linie
57 42 85
17 789 | 3

haltestellen:
SID | Name Rollstuhl
17 Hauptbahnhof true
42 Helmholtzstr. true
57 Stadtgutstr. true
123 | Gustav-Freytag-Str. | false

Die einfache Aritat der Pradikatenlogik wird durch ein
Schema mit Namen (und oft auch Datentypen) ersetzt:

® linien[Linie:string, Typ:string]
® haltestellen[SID:int, Halt:string, Rollstuhl:bool]
® verbindung[Von:int, Zu:int, Linie:string]

Relationale Algebra: Parameter (Spalten) durch Namen adressiert
Prédikatenlogik: Parameter durch Reihenfolge adressiert

Die Anfrage Jziinie-(verbindung(xvon. Xzu. ZLinie) A linien(ziinie, XTyp)) €ntspricht einer
(nattrrlichen) Join-Operation (A) mit anschlieBender Projektion (3):
Tvon,zu, Typ(Verbindung » linien).

Sebastian Rudolph, TU Dresden

Theoretische Informatik und Logik, VL 22 Folie 2 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Rickblick: Mit Pradikatenlogik kébnnen nur lokale Eigenschaften getestet werden.

Nichtlokale Eigenschaften wie die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdriicken?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 3 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursive Anfragen

Rickblick: Mit Pradikatenlogik kébnnen nur lokale Eigenschaften getestet werden.

Nichtlokale Eigenschaften wie die Erreichbarkeit in Graphen sind praktisch relevant
(speziell in Graphdatenbanken).

Wie kann man solche Anfragen logisch ausdriicken?

Idee: Um beliebig weit zu schauen muss man Rekursion einflhren.

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn
(1) sie die Haltestelle Helmholtzstr. ist, oder
(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 3 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursion in Logik

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn
(1) sie die Haltestelle Helmholtzstr. ist, oder
(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Wie kann man das in Logik ausdriicken?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 4 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Rekursion in Logik

Beispiel: Eine Haltestelle ist von Helmholtzstr. aus erreichbar, wenn
(1) sie die Haltestelle Helmholtzstr. ist, oder
(2) sie neben einer Haltestelle liegt, die von Helmholtzstr. aus erreichbar ist.

Wie kann man das in Logik ausdriicken?

Beispiel: Das Pradikat Erreichbar enthélt alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfiillt sind:

(1) Erreichbar(helmholtzstr)
(2) Vx,y,z.((Erreichbar(x) A verbindung(x, y, z)) — Erreichbar(y))

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 4 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking?

Beispiel: Das Pradikat Erreichbar enthélt alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfiillt sind:

(1) Erreichbar(helmholtzstr)
(2) Vx,y, z.((Erreichbar(x) A verbindung(x, y, 7)) — Erreichbar(y))

Sei Q die Menge der Formeln (1) und (2).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 5 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking?

Beispiel: Das Pradikat Erreichbar enthélt alle von Helmholtzstr. erreichbaren Halte-
stellen, wenn die folgenden Formeln erfiillt sind:

(1) Erreichbar(helmholtzstr)
(2) Vx,y,z.((Erreichbar(x) A verbindung(x, y, 7)) — Erreichbar(y))

Sei Q die Menge der Formeln (1) und (2).
® Die Modelle von @ sind alle Interpretationen, in denen Erreichbar mindestens die
von Helmholtzstr. aus erreichbaren Haltestellen enthalt.

® Eine gegebene Datenbankinstanz, betrachtet als Interpretation, ist normalerweise
kein Modell von @, sofern es nicht schon eine entsprechende Tabelle fiir Erreichbar

gibt.
~> Model Checking fuhrt hier nicht zum gewilnschten Ergebnis.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 5 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Datenbanken als logische Theorien

Wir nehmen daher eine andere Perspektive ein:
e Datenbankinstanzen I werden als endliche Menge von Fakten 7 dargestellt:

7’}:{p(cl,...,cn)|c1,...,cnGCund (c{,...,cf)ep‘r}

(Wie zuvor nimmt man vereinfachend oft an, dass ¢’ = ¢ gilt.)

® Rekursive Anfragen kénnen wie im Beispiel als pradikatenlogische Formelmenge
Q dargestellt werden.

® Ein Fakt p(cy,...,c,) ist genau dann eine Antwort auf die Anfrage Q auf der
Datenbank 7, wenn gilt: ¥ UQ [p(cy, ..., cp).

Das heif3t: Wir fassen nun Anfragebeantwortung als pradikatenlogisches Schlie3en auf
(nicht Model Checking).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 6 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Beispiel: Fir die Anfrage
Q= { Erreichbar(helmholtzstr),
Vx,y, z.((Erreichbar(x) A verbindung(x, y, 2)) — Erreichbar(y)) |

und die Datenbankinstanz 7 mit

F7 = { verbindung(helmholtzstr, stadtgutstr, 85)
verbindung(stadtgutstr, racknitzhohe, 85)
verbindung(racknitzhohe, zellescher_weg, 11)

verbindung(schillerplatz, kornerplatz, 61)}

folgen genau die Antworten Erreichbar(helmholtzstr), Erreichbar(stadtgutstr),
Erreichbar(rdacknitzhohe) und Erreichbar(zellescher_weg).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 7 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Sind rekursive Anfragen praktikabel?

Wir wissen: Pradikatenlogisches SchlieBBen ist unentscheidbar.
Ist die Beantwortung rekursiver Anfragen dann tberhaupt méglich?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 8 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Sind rekursive Anfragen praktikabel?

Wir wissen: Pradikatenlogisches SchlieBen ist unentscheidbar.
Ist die Beantwortung rekursiver Anfragen dann tGberhaupt méglich?
Ja, wenn wir uns auf bestimmte Formen von Anfragen beschranken.

Eine Datalog-Regel ist eine Formel der Form
Vxl,...,Xg.((Bl AL /\Bn) — H)

wobei By, ...,B, und H pradikatenlogische Atome sind und x, ..., x, eine Liste aller in
den Atomen vorkommenden Variablen ist.

® H heiBt Kopf und B; A ... A B, Rumpf der Regel. Wir verlangen, dass jede
Variable im Kopf auch im Rumpf vorkommt.

® Ein Fakt ist eine variablenfreie Regel mit n = 0.
® Ein Datalog-Programm P ist eine Menge von Datalog-Regeln (einschl. Fakten).

Es ist Ublich, eine Regel als H < B; A ... A B, und einen Fakt schlicht als H zu schreiben.
(Die Allguantoren werden weggelassen; das ,Umdrehen” des Implikationspfeils hat historische Griinde.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 8 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Das vorige Beispiel war bereits ein Datalog-Programm:

Erreichbar(helmholtzstr)
Erreichbar(y) < Erreichbar(x) A verbindung(x, y, z)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 9 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Das vorige Beispiel war bereits ein Datalog-Programm:

Erreichbar(helmholtzstr)
Erreichbar(y) < Erreichbar(x) A verbindung(x, y, z)

Ein umfangreicheres Beispiel:

vater(alice, bob) mutter(alice, carla) mutter(evan, carla) vater(carla, david)
Elternteil(x, y) « vater(x,y) Elternteil(x, y) « mutter(x, y)
Vorfahr(x, y) < Elternteil(x, y)
Vorfahr(x, z) < Elternteil(x, y) A Vorfahr(y, z)
GleicheGeneration(x, x) < Vorfahr(x, y)
GleicheGeneration(y, y) < Vorfahr(x, y)
GleicheGeneration(x, y) « Elternteil(x, v) A Elternteil(y, w) A GleicheGeneration(v, w)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 9 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schliisse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

® Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

® Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schliisse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

® Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

® Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Der Konsequenzoperator Tp fir ein Datalog-Programm P bildet endliche Mengen 7
von Fakten auf Mengen von Fakten ab:

Tp(Fr) ={HO| H < By A... A B, € P und es gibt Substitution & mit B16,...,B,0 € ¥}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Auswertung von Datalog

Wie kann man logische Schliisse aus Datalog ziehen?

Idee: Wende Regeln iterativ auf gegebene Fakten an, um neue Fakten abzuleiten.

® Wir betrachten hier eine Datenbank (Interpretation) als logische Theorie, d.h.,
Menge von Grundfakten (variablenfreien Atomen).

® Die gegebenen Fakten kann man sich als Teil eines Datalog-Programms vorstellen.

Der Konsequenzoperator Tp fir ein Datalog-Programm P bildet endliche Mengen 7
von Fakten auf Mengen von Fakten ab:

Tp(Fr) ={HO| H < By A... A B, € P und es gibt Substitution & mit B16,...,B,0 € ¥}

Beobachtungen:

® Substitutionen 8 mit B,6, ..., B,8 € ¥7 sind einfach Antworten auf die
Datenbankanfrage B; A ... A B, Uber Datenbank 7, also praktisch berechenbar.

® @ muss alle Variablen in der angewendeten Regel auf Konstanten
(Doméanenelemente) aus 7 abbilden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 10 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Tp iterativ anwenden

Zur Ermittlung aller Schlliisse muss man Tp iterativ anwenden:

Fir ein Datalog-Programm P definieren wir rekursiv:
° Tg =0,

o T = Tp(T}) fir alle i > 0.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22

Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Tp iterativ anwenden

Zur Ermittlung aller Schlliisse muss man Tp iterativ anwenden:

Fir ein Datalog-Programm P definieren wir rekursiv:
° Tg =0,
o Tl = Tp(T%) fir alle i > 0.

Beobachtungen:
* T, = Tp(0) ist die Menge aller Fakten in P.

° Tj;, enthalt nur Fakten, die man bilden kann, indem man einen Regelkopf aus P mit
Konstanten aus P instanziiert.

® Es gibt nur endlich viele solcher Atome (Uber dem Vokabular von P).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Tp iterativ anwenden

Zur Ermittlung aller Schlliisse muss man Tp iterativ anwenden:

Fir ein Datalog-Programm P definieren wir rekursiv:
° Tg =0,
o Tl = Tp(T%) fir alle i > 0.

Beobachtungen:
* T, = Tp(0) ist die Menge aller Fakten in P.

° Tj;, enthalt nur Fakten, die man bilden kann, indem man einen Regelkopf aus P mit
Konstanten aus P instanziiert.

® Es gibt nur endlich viele solcher Atome (Uber dem Vokabular von P).

Tp erreicht also nach endlich vielen Schritten einen Grenzwert, definiert wie folgt:

w2 =|)

i>0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 11 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Far das Programm P mit den Regeln

vater(alice,bob) mutter(alice, carla) mutter(evan,carla) vater(carla, david)
Elternteil(x, y) « vater(x, y) Elternteil(x, y) « mutter(x, y)
GG(x, x) « Elternteil(x, y)
GG(y,y) « Elternteil(x, y)
GG(x,y) « Elternteil(x, v) A Elternteil(y, w) A GG(v, w)
(GG = GleicheGeneration) ergibt sich:
0 =0
T,£ = {vater(alice, bob), mutter(alice, carla), mutter(evan, carla), vater(carla, david)}
T,% = T}U{Elternteil(alice, bob), Elternteil(alice, carla), Elternteil(evan, carla), Elternteil(carla, david)}
Tg = Tf, U {GG(alice, alice), GG(bob, bob), GG(carla, carla), GG(david, david), GG(evan, evan)}
T} = T; U {GG(alice, evan), GG(evan, alice)}

=T =T

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 12 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Tp-Operator

Sei P ein Datalog-Programm und #7 eine endliche Menge von Fakten.
® Tp(Fr)={HO | H<— By A...A\B, € Pund es gibt eine Substitution & mit B9, ...,B,0 € Fr}
® 75 =0 und 75" = Tp(Th) fir alle i > 0.
* T3 =Ui»oTp

Quiz: Wir betrachten das folgende Datalog-Programm: ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 13 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von Tp

Beobachtung 1: Jede Datalog-Regel H < B; A ... A B, entspricht einer Klausel
HV =By V...V =B,, wobei jeweils alle Variablen allquantifiziert sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von Tp

Beobachtung 1: Jede Datalog-Regel H < B; A ... A B, entspricht einer Klausel
HV =By V...V =B,, wobei jeweils alle Variablen allquantifiziert sind.

~» Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.
~> Fir die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschranken.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von Tp

Beobachtung 1: Jede Datalog-Regel H < B; A ... A B, entspricht einer Klausel
HV =By V...V =B,, wobei jeweils alle Variablen allquantifiziert sind.

~» Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.

~> Fir die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschranken.

Beobachtung 2: Die Berechnung eines Fakts H8 durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H V =B; V ... V =B, mit den
Fakten B4, ..., B,6, wobei 6 der allgemeinste Unifikator ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von Tp

Beobachtung 1: Jede Datalog-Regel H < B; A ... A B, entspricht einer Klausel
HV =By V...V =B,, wobei jeweils alle Variablen allquantifiziert sind.

~» Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.

~> Fir die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschranken.

Beobachtung 2: Die Berechnung eines Fakts H8 durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H V =B; V ... V =B, mit den
Fakten B4, ..., B,6, wobei 6 der allgemeinste Unifikator ist.

~» Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Semantische Bedeutung von Tp

Beobachtung 1: Jede Datalog-Regel H < B; A ... A B, entspricht einer Klausel
HV =By V...V =B,, wobei jeweils alle Variablen allquantifiziert sind.

~» Datalog-Programme sind syntaktische Varianten skolemisierter Klauseln.

~> Fir die Inferenz von Fakten kann man sich auf Herbrand-Modelle beschranken.

Beobachtung 2: Die Berechnung eines Fakts H8 durch Anwendung einer solchen
Regel entspricht einer (Hyper)-Resolution der Klausel H V =B; V ... V =B, mit den
Fakten B4, ..., B,6, wobei 6 der allgemeinste Unifikator ist.

~» Abgeleitete Fakten sind logische Konsequenzen (Korrektheit).

Mithilfe dieser Einsichten l&sst sich zeigen, dass T’ zur Berechnung der logischen
Schlussfolgerung geeignet ist:

Satz: Fur ein Datalog-Programm P ist T}’ das kleinste Herbrand-Modell.
Das heif3t: Fur einen beliebigen Fakt F gilt

F € Ty gdw. F in jedem Herbrand-Modell vorkommt gdw. P | F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 14 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ableitungsbdume

Die Folgerung P = F lasst sich als endlicher Baum darstellen:
e Jeder Knoten ist ein variablenfreies Atom.

® Jeder Elternknoten entsteht durch Anwendung einer Regel aus P auf seine
Kindknoten.

e Jeder Blattknoten ist ein gegebener Fakt aus P.

® Jeder Knoten wird zusatzlich mit der Regel und Substitution 6 beschriftet, die zur
Ableitung angewendet wurden.

~» Der Ableitungsbaum stellt die Resolutionsableitung des Fakts an der Wurzel des
Baums grafisch dar.

Beobachtung: Fiir jeden Fakt F' € T}’ gibt es mindestens einen Ableitungsbaum mit
Wurzel F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 15 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Vorfahr(alice, david)

8)
{x — alice, y carla, z — david}

Elternteil(alice, carla) Vorfahr(carla, david)
(6) ©)
{x > alice,y > carla} {x — carla, y — david}
mutter(alice, carla) Elternteil(carla, david)
(©))
)
{x - carla, y — david}
(€)) vater(alice, bob) la. david
(2) mutter(alice, carla) vater(car 2,) avid)

(3) mutter(evan, carla)

(4) vater(carla, david)

5) Elternteil(x, y) < vater(x, y)

(6) Elternteil(x, y) « mutter(x, y)

@) Vorfahr(x, y) < Elternteil(x, y)

8) Vorfahr(x, z) « Elternteil(x, y) A Vorfahr(y, z)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 16 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexitat

Mithilfe von T» kann man logische Konsequenzen berechnen.
Wie aufwéandig ist das?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexitat

Mithilfe von Tp kann man logische Konsequenzen berechnen.
Wie aufwéandig ist das?

Worst Case?

® Sei p die Anzahl der Pradikatensmbole, a deren maximale Aritat, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

® Dann gibt es insgesamt < p - n“ variablenfreie Fakten, die abgeleitet werden
kénnten.

® Fir eine Regel gibt es maximal n* Substitutionen, die bei der Ableitung eine Rolle
spielen kdnnten.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexitat

Mithilfe von Tp kann man logische Konsequenzen berechnen.
Wie aufwéandig ist das?

Worst Case?

® Sei p die Anzahl der Pradikatensmbole, a deren maximale Aritat, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

® Dann gibt es insgesamt < p - n“ variablenfreie Fakten, die abgeleitet werden
kénnten.

® Fir eine Regel gibt es maximal n* Substitutionen, die bei der Ableitung eine Rolle
spielen kdnnten.

~> Die Berechnung von T’ ist in exponentieller Zeit méglich.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Komplexitat

Mithilfe von Tp kann man logische Konsequenzen berechnen.
Wie aufwéandig ist das?

Worst Case?

® Sei p die Anzahl der Pradikatensmbole, a deren maximale Aritat, x die maximale
Zahl an Variablen pro Regel und n die Zahl der Konstanten.

® Dann gibt es insgesamt < p - n“ variablenfreie Fakten, die abgeleitet werden
kénnten.

® Fir eine Regel gibt es maximal n* Substitutionen, die bei der Ableitung eine Rolle
spielen kdnnten.

~> Die Berechnung von T’ ist in exponentieller Zeit méglich.

Man kann zeigen, dass dies worst-case-optimal ist:

Satz: Das Problem der Schlussfolgerung von Fakten (“P = F?”) fiir Datalog ist Exp-
Time-vollstandig.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 17 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Datalog praktisch?

ExpTime ist eine ziemlich hohe Komplexitét — ist Datalog praktisch implementierbar?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 18 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Datalog praktisch?
ExpTime ist eine ziemlich hohe Komplexitat — ist Datalog praktisch implementierbar?

Jal

* Die Worst-Case-Komplexitat erfordert, dass die Stelligkeit von Pradikaten
unbeschrankt wachsen kann.
~» In Anwendungen sind sehr groBe Stelligkeiten jedoch untypisch.

® |n Abhangigkeit von der GréBe der Datenbank (der Zahl der Fakten) wéachst die
Laufzeit lediglich polynomiell.
~> Gutes Skalierungsverhalten fir gro3e Datenmengen.

® Es gibt inzwischen eine Reihe sehr effizienter Implementierungen, z.B.:

— hochskalierbare speicherbasierte Systeme: z.B. VLog/Rulewerk (VU
Amsterdam, TU Dresden), RDFox (Oxford)

— Systeme basierend auf relationalen Datenbanken: z.B. Llunatic

— Systeme flr komplexere Logiken, die Datalog als Sonderfall unterstiitzen: z.B.
clingo, DLV (Answer Set Programming), E (Theorembeweiser)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 18 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik héherer Ordnung

Prédikatenlogik ist genau genommen Pradikatenlogik erster Stufe.

Hintergrund:
e Erste Stufe: Quantoren beziehen sich auf Domanenelemente.

Beispiel: ,Jede natiirliche Zahl n hat einen Nachfolger s(n).”

® Zweite Stufe: Quantoren beziehen sich auf Relationen (Uber Domé&nenelementen).

Beispiel: ,Fir jede Menge M qilt: Enthélt M die Zahl 0 und mit jeder naturlichen
Zahl n auch stets deren Nachfolger s(n), so enthalt M alle natlrlichen Zahlen.”

Logik zweiter Stufe (zweiter Ordnung):
® Ausdrucksstarker: kann z.B. die natirlichen Zahlen exakt charakterisieren.
e Schwieriger: hat kein korrektes und vollstédndiges Beweisverfahren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 19 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik héherer Ordnung: Syntax und Semantik

Syntax: Wie in Pradikatenlogik, aber mit quantifizierten Pradikaten-Variablen.
(Die Stelligkeit einer Pradikaten-Variablen muss jeweils klar festgelegt werden.)

Beispiel: “Fiir jede Menge M qilt: Enthalt M die Zahl 0 und mit jeder natirlichen Zahl
n auch stets deren Nachfolger s(n), so enthalt M alle natlrrlichen Zahlen.”

VM.((M(0) A Vx.(M(x) = M(s(x)))) = Vy.M(y))

Wir verwenden hier ein Funktionssymbol s zur Darstellung von Nachfolgern.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 20 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik héherer Ordnung: Syntax und Semantik

Syntax: Wie in Pradikatenlogik, aber mit quantifizierten Pradikaten-Variablen.
(Die Stelligkeit einer Pradikaten-Variablen muss jeweils klar festgelegt werden.)

Beispiel: “Fiir jede Menge M qilt: Enthalt M die Zahl 0 und mit jeder natirlichen Zahl
n auch stets deren Nachfolger s(n), so enthalt M alle natlrrlichen Zahlen.”

VM.((M(0) A Vx.(M(x) = M(s(x)))) = Vy.M(y))

Wir verwenden hier ein Funktionssymbol s zur Darstellung von Nachfolgern.

Semantik: ,Wie zu erwarten.” (Gleiche Interpretationen wie in erster Stufe;
Interpretation von Préadikaten-Variablen mit Zuweisungen wie bei Objektvariablen in
erster Stufe.)

(Intuition: Erste Stufe verhalt sich zur zweiten Stufe wie Aussagenlogik zu QBFs.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 20 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik héherer Ordnung: logisches Schlief3en

Offenbar ist SchlieBen in Logik zweiter Stufe mindestens genauso schwer wie in Logik
erster Stufe. Tatsachlich ist es noch deutlich schwerer:

Fakt: Logisches SchlieBen in Logik héherer Ordnung ist nicht semi-entscheidbar und
insbesondere gibt es kein korrektes und vollstéandiges Ableitungsverfahren flr diese
Logik.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 21 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Logik héherer Ordnung und Datalog

Idee: Die Fakten, die in allen Modellen (eines Datalog-Programms) gefolgert werden
kénnen, sind genau diejenigen, die in jeder erflllenden Interpretation (in Logik zweiter
Ordnung) der Datalog-Pradikate gelten.

Beispiel: Das Datalog-Programm

Erreichbar(helmholtzstr)
Erreichbar(y) « Erreichbar(x) A verbindung(x, y, z)

kann als Formel der Logik zweiter Stufe wie folgt dargestellt werden:

VErreichbar.((Erreichbar(helmholtzstr) A
Yx, y, z.((Erreichbar(x) A verbindung(x, y, z)) — Erreichbar(y))) — Erreichbar(v))
Die Formel hat eine freie Variable v und stellt Erreichbar als Pradikaten-Variable dar.

Ein Fakt Erreichbar(a) folgt aus dem urspriinglichen Programm Uber einer Datenbank
F7 genau dann, wenn ¥ die Formel mit Variablenbelegung v — a erflllt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 22 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Model Checking!

Das vorige Beispiel zeigt:

Die Beantwortung von Anfragen in Datalog entspricht einem Auswertungsproblem
(Model Checking) firr spezielle Formeln zweiter Ordnung Uber endlichen Interpreta-
tionen.

Diese Sicht wird gegenlber der Betrachtung als Logik erster Stufe bevorzugt, weil
dadurch abgeleitete Pradikate zu lokalen Variablen des Programms werden, anstatt
globaler Teil von Interpretationen (Datenbanken) zu sein.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 23 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Datalog erlaubt die Darstellung rekursiver Anfragen in Logik.

Anfragebeantwortung in Datalog:

logisches SchlieBen in Pradikatenlogik;

Auswertungsproblem in Logik zweiter Stufe.
(ExpTime-vollstandig, aber polynomiell beziiglich der Datenbankgréfie.)

Ableitungen in Datalog kénnen berechnet und dargestellt werden:
® mit dem Tp-Operator,
® durch Ableitungsbaume.

Was erwartet uns als nachstes?
e Godel
® Prifung

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 22 Folie 24 von 24

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

