Exercise 6: Trakhtenbrot’s Theorem

Database Theory
2025-05-20
Lukas Gerlach, Maximilian Marx, Markus Krotzsch

1/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

2/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

3/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.
Solution.

4/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.
Solution.

1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).

5/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.
Solution.

1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).
> A BQ g s finitely satisfiable iff ¢ Z .

6/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.
Solution.
1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).
> A BQ g s finitely satisfiable iff ¢ Z .
2. > Aquery ¢ is empty iff M[¢](Z) = 0 for every database instance 7.

7155

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).
> A BQ g s finitely satisfiable iff ¢ Z .
2. > Aquery ¢ is empty iff M[¢](Z) = 0 for every database instance 7.
>

A query ¢ is empty iff it is finitely unsatisfiable.

8/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.

Solution.
1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).
> A BQ g s finitely satisfiable iff ¢ Z .
2. > Aquery ¢ is empty iff M[¢](Z) = 0 for every database instance 7.
> A query ¢ is empty iff it is finitely unsatisfiable.
3. > A query ¢[x] is domain independent iff the answers over a database instance I are independent of the domain A”.

9/55

Exercise 1
Exercise. Use Trakhtenbrot's Theorem to show that the following problems are undecidable by reducing finite
satisfiability to each of them:
1. FO query containment.
2. FO query emptiness.
3. Domain independence of FO queries.

Theorem (Trakhtenbrot’'s Theorem, Lecture 9, Slide 9)
Finite-model reasoning of first-order logic is undecidable.
Solution.

1. > Lety be some unsatisfiable Boolean query, e.g., let ¢ = Ix. A(x) A =A(x).
> A BQ g s finitely satisfiable iff ¢ Z .

2. > Aquery ¢ is empty iff M[¢](Z) = 0 for every database instance 7.
> A query ¢ is empty iff it is finitely unsatisfiable.

3. > A query ¢[x] is domain independent iff the answers over a database instance I are independent of the domain A”.
>

A query ¢[x] is empty iff =R(y) A VX. ¢ is domain independent, where R is a fresh unary relation and y is a fresh variable.

10/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

N o o~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

. No cell can ever reach itself via future, i.e., there is no loop in the future relation.

11/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic

Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the

statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

12/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

1.

False. If the TM does not halt, the formula has an infinite model, but no finite models.

13/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

1.
2.

False. If the TM does not halt, the formula has an infinite model, but no finite models.
True.

ow =3X1,..., Xn. Hggan (X1) A =3z right(2, x1) A Siry (X1) A =3z future(z, xq) A right(xy, x2) A -+~ A

So,(Xn) A —3z. future(z, xp) A VY. (right*(xn,y) - (S.(y) A3z future(z,y)))

14/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

3.

False. Take two isomorphic copies of a model side-by-side.

15/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1. If the formula has a model at all, then this model is finite.

2. Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.
. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

o O~ W

. If the Turing machine halts on the input, then every model of the formula is finite.
7. No cell can ever reach itself via future, i.e., there is no loop in the future relation.
Solution.
3. False. Take two isomorphic copies of a model side-by-side.
4. True.
ot =Yx2, 1. (Axq. right(x1, y1) A future(xy, x2)) < (Jye. future(yy, y2) A right(xz2, y2))
@z =Yx1,y2. (Aya. right(x1, y1) Afuture(ys, y2)) < (Ixe. future(xs, x2) A right(xz, y2))
ow =3X1,..., Xn. Hggo (X1) A 23z, vight(Z, X1) A Siry (X1) A 3z, future(z, xq) A right(x1, x2) A -+ -

16/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5.

True.
or =Vx,y,y . right(x,y) Aright(x,y’) > y = y’ o1 =Vx, X', y. right(x, y) Aright(x’,y) > x =~ x’

o =YX, y,y future(x, y) Afuture(x,y’) > y =y’ ¢p = ¥x, X, y. future(x, y) Afuture(x’,y) —» x =~ x’

17/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the

statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5.

6.

True.
or =Vx,y,y . right(x,y) Aright(x,y’) > y = y’ o1 =Vx, X', y. right(x, y) Aright(x’,y) > x =~ x’

o =YX, y,y future(x, y) Afuture(x,y’) > y =y’ ¢p = ¥x, X, y. future(x, y) Afuture(x’,y) —» x =~ x’

False. Recall that, by the Compactness theorem, any FO formula that has arbitrarily large finite models also has
an infinite model.

18/55

Exercise 2

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.

For each of the following statements, decide if it is true or false. Justify your answer in each case by explaining why the
statement does (or does not) follow from the formula.

1.
2.

o O~ W

If the formula has a model at all, then this model is finite.

Every model contains a “start configuration”: a right-sequence of elements (“cells”) that are not reachable from
any other cell via future, and where there is a first element in the chain (i.e., a cell with no element to its left).

. Every model contains exactly one such start configuration.

. If a cell is reachable from the first cell of the start configuration via future, then it does not have a cell on its left.
. The future of a cell’s neighbour is equal to the neighbour of the cell’s future.

. If the Turing machine halts on the input, then every model of the formula is finite.

7.

No cell can ever reach itself via future, i.e., there is no loop in the future relation.

Solution.

5.

6.

7.

True.
or =YX, y,y . right(x,y) Aright(x,y’) > y = y’ o1 =Vx, X', y. right(x, y) Aright(x’,y) > x = x’

or =Vx,y,y' future(x, y) Afuture(x,y’) = y =y ¢p =VYx,x",y. future(x, y) Afuture(x’,y) — x =~ x’
False. Recall that, by the Compactness theorem, any FO formula that has arbitrarily large finite models also has
an infinite model.

False. Take a model, and add a fact future(x, x) with x a fresh domain element.

19/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.

20/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

21/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. > First, we normalise the NTM so that every non-deterministic transition defined by A is non-moving.

22/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. > First, we normalise the NTM so that every non-deterministic transition defined by A is non-moving.
> For every non-deterministic transition {{(q, o, 1,01, S),...,{q, 0, Qn, 0n, S)} € A, we add the following rule:

@s = ¥x. Hg(x) A Sy (x) — Ay. future(x, y) A (\/1g/gn (Hq,(}’) = (J’)))

23/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.
1. > First, we normalise the NTM so that every non-deterministic transition defined by A is non-moving.
> For every non-deterministic transition {{(q, o, 1,01, S),...,{q, 0, Qn, 0n, S)} € A, we add the following rule:

s = YX. Hg(x) A Sy(x) — Ty. future(x, y) A (\/K,S,, (Hq,.(y) A Sg; (y)))
2. > Modify start configuration
¢w = X Hago (1) A Ci(x1) A —3z.right(z, x1) A Sir; (Xi) A ~3z. future(z, x;)

A right(X;, Xix1) AVy. (right*(x,,,y) - (S (y)A-3z. future(z,y)))

24/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. > First, we normalise the NTM so that every non-deterministic transition defined by A is non-moving.
> For every non-deterministic transition {{(q, o, 1,01, S),...,{q, 0, Qn, 0n, S)} € A, we add the following rule:

s = YX. Hg(x) A Sy(x) — Ty. future(x, y) A (\/K,S,, (Hq,.(y) A Sg; (y)))
2. > Modify start configuration
¢w = X Hago (1) A Ci(x1) A —3z.right(z, x1) A Sir; (Xi) A ~3z. future(z, x;)
A right(X;, Xix1) AVy. (right*(x,,,y) - (S (y)A-3z. future(z,y)))

> Forallie{1,...,n}, add ¥x, y. Ci(x) A future(x, y) = Cit1(¥)

25/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. agiven non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

1. > First, we normalise the NTM so that every non-deterministic transition defined by A is non-moving.
> For every non-deterministic transition {{(q, o, 1,01, S),...,{q, 0, Qn, 0n, S)} € A, we add the following rule:

s = YX. Hg(x) A Sy(x) — Ty. future(x, y) A (\/K,S,, (Hq,.(y) A Sg; (y)))
2. > Modify start configuration
¢w = X Hago (1) A Ci(x1) A —3z.right(z, x1) A Sir; (Xi) A ~3z. future(z, x;)
A right(X;, Xix1) AVy. (right*(x,,,y) - (S (y)A-3z. future(z,y)))

> Forallie{1,...,n}, add ¥x, y. Ci(x) A future(x, y) = Cit1(¥)
> Add ¥x. <Cpy1(x)

26/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

3. > Modify start configuration
ow = X Hogo (1) A =Bi(x4) A=+ A=By(x1) A =3z right(z, x1) A S (xi) A =3z. future(z, x;)

A right(x;, Xip1) AVy. (right*(x,,,y) - (S (y)A—3z. future(z,y)))

27/55

Exercise 3

Exercise. In the lecture, we have seen a logical formula that is finitely satisfiable if and only if the given deterministic
Turing machine (DTM) halts after finitely many steps on the given input.
Extend this definition so that the resulting formula is finitely satisfiable if and only if:

1. a given non-deterministic TM halts after finitely many steps on a given input.
2. agiven DTM halts after at most n steps (for a given number n).
3. agiven DTM halts after at most 2" steps (for a given number n).

Make sure that your encoding is polynomial in n.
Solution.

3. > Modify start configuration
ow = X Hogo (1) A =Bi(x4) A=+ A=By(x1) A =3z right(z, x1) A S (xi) A =3z. future(z, x;)
A right(x;, Xip1) AVy. (right*(x,,,y) - (S (y)A—3z. future(z,y)))
> Add the following rules:

=Bn(x) Afuture(x, y) = Ba(y)
=Bn_1(x) A Ba(x) Afuture(x, y) = Bp_1(y) A ~Bu(y)
—Bpa(X) A Bt (X) A Ba(x) Afuture(x, y) = Bra(y) A ~Bn1(¥) A ~Bn(y)

'—\(HX.B1 (X) A ... A Ba(x))

28/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:
1. 3Ax, y,z. R(x,¥) AR(x, 2).
2. Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).
3. Ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).
4. Av,w.S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).

29/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:
1. 3Ax, y,z. R(x,¥) AR(x, 2).
2. Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).
3. Ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).
4. Av,w.S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).
Solution.

30/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:
1. 3Ax, y,z. R(x,¥) AR(x, 2).
2. Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).
3. Ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).
4. Av,w.S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).
Solution.
1. 3x,y. R(x,y).

31/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. 3Ax, y,z. R(x,¥) AR(x, 2).

2. Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).

3. Ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).

4. Av,w.S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).
Solution.

1. 3x,y. R(x,y).

2. Ax,y,z. R(x,y) AR(x,z) AR(y, 2).

32/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:

1. 3Ax, y,z. R(x,¥) AR(x, 2).

2. Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).

3. Ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).

4. Av,w.S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).
Solution.

1. 3x,y. R(x,y).

2. Ax,y,z. R(x,y) AR(x,z) AR(y, 2).

3. 3x. R(x, x).

33/55

Exercise 4

Exercise. Apply the CQ minimisation algorithm to find a core of the following CQs:
1.
2.
3.
4.

Ax,y,z. R(x,y) AR(x, 2).

Ax,y,z. R(x,y) AR(x,2) AR(Y, 2).

ax,y,z. R(x,y) AR(x,2) AR(Y, z) AR(x, x).

v, w. S(x,a,¥) AS(x,v,y) AS(x,w,y) A S(x, X, X).

Solution.

1.

ax,y. R(x,y).

2. Ax,y,z. R(x,y) AR(x,z) AR(y, 2).
3.
4. Av,w.S(x,a,y) A S(x, x, X).

Ix. R(x, x).

34/55

Exercise 5

Exercise. Consider a fixed set of relation names R = { Ry, ..., Rp}, each with a given arity ar(R;).
1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?

35/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).
1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?
Solution.

36/55

Exercise 5

Exercise. Consider a fixed set of relation names R = { Ry, ..., Rp}, each with a given arity ar(R;).
1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?
Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).

37/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).
1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?

3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?

Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).

> _) i iy .) ir ip - .
2. Assume that some gmax = Ix. Ry, (X, ""’Xar(R,-1)) A ARy (X ,...,xa,m,[)) is indeed maximal.

38/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).
1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?

Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).
2. > Assume that some Gmax = 3X. R, (x1'1 ""’X:r(R-)) Ao A R,-[(x;‘, ... ,x;",m)) is indeed maximal.
bl e

> Then R,/. C Qmax, and hence R,/. = Qgmax forall1 <j<¢.

39/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).

1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without
constant symbols, we have gmin C q.

2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?
Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).
2. > Assume that SOMe Gmax = 3X. Rj, (X;' ""’X:r(R,-1) A ARy (xi‘, .. ’X;E'(R,[)) is indeed maximal.

> Then R,/. C Qmax, and hence R,/. = Qgmax forall1 <j<¢.
> Therefore, unless n = 1, no such gmax exists.

40/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).

1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without

constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?
Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).
)A--<AR;[(x1f‘,...

2. » Assume that some gmax = IX. Rj, (x1'1 is indeed maximal.

i e
’Xar(R,-1) ’Xa/(R,[))
> Then R,/. C Qmax, and hence R,/. = Qgmax forall1 <j<¢.

> Therefore, unless n = 1, no such gmax exists.

3. gmin is @ conjunction of every fact in the database instance, and gmax doesn'’t exist in general.

41/55

Exercise 5

Exercise. Consider a fixed set of relation names R = {Ry,...,Rp}, each with a given arity ar(R;).

1. Show that there is a BCQ gmin Without constant symbols that is most specific, i.e., such that for any BCQ q without

constant symbols, we have gmin C q.
2. Is there also a most general BCQ gmax that contains all BCQs without constant names?
3. What if the considered BCQs may use constant names?
4. What if we consider FO queries instead?
Solution.
1. Qmin = IX. R1(X,...,x) A=+ ARp(X, ..., X).
)A--<AR;[(x1f‘,...

2. » Assume that some gmax = IX. Rj, (x1'1 is indeed maximal.

i e
’Xar(R,-1) ’Xa/(R,[))
> Then R,/. C Qmax, and hence R,/. = Qgmax forall1 <j<¢.

> Therefore, unless n = 1, no such gmax exists.
3. gmin is @ conjunction of every fact in the database instance, and gmax doesn'’t exist in general.
4. We could set gmin = L, and Qmax = T.

42/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

43/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

44/55

Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.

45/55

Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.

46/55

Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.

1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.
> Then there is some atom R(x) in g’ that was kept, but is redundant; let g be g’ without this atom.

47/55

Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.
> Then there is some atom R(x) in g’ that was kept, but is redundant; let g be g’ without this atom.
> Then q@” = ¢’ = g; in particular, there is a homomorphism ¢ from g to q”.

48/55

Exercise 6
Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.
> Then there is some atom R(x) in g’ that was kept, but is redundant; let g be g’ without this atom.
> Then q@” = ¢’ = g; in particular, there is a homomorphism ¢ from g to q”.
> Let g’ be g without the atom R(x). Then there is a homomorphism ¢ from q” to q’”’.

49/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.
> Then there is some atom R(x) in g’ that was kept, but is redundant; let g be g’ without this atom.
> Then q@” = ¢’ = g; in particular, there is a homomorphism ¢ from g to q”.
> Let g’ be g without the atom R(x). Then there is a homomorphism ¢ from q” to q’”’.
> But then ¢ o ¢ is @ homomorphism from g to g/, so ¢’ C q. Contradiction, since R(x) was kept.

50/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. > Suppose that the algorithm terminates with non-minimal g’ for input CQ q.
> Then there is some atom R(x) in g’ that was kept, but is redundant; let g be g’ without this atom.
> Then q@” = ¢’ = g; in particular, there is a homomorphism ¢ from g to q”.
> Let g’ be g without the atom R(x). Then there is a homomorphism ¢ from q” to q’”’.
> But then ¢ o ¢ is @ homomorphism from g to g/, so ¢’ C q. Contradiction, since R(x) was kept.
2. > Suppose that g1, > are cores of a CQ q.

51/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:

1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),

> we find that ¢’ # g.
A minimal CQ is also called a core.

Solution.

1.

YY YVYVYVYY

Suppose that the algorithm terminates with non-minimal g’ for input CQ q.

Then there is some atom R(x) in g’ that was kept, but is redundant; let g”” be g’ without this atom.
Then q” = g’ = g; in particular, there is a homomorphism ¢ from g to q”.

Let g””” be q without the atom R(x). Then there is a homomorphism y from g to ¢””".

But then y o ¢ is @ homomorphism from g to g”’, so g’ C q. Contradiction, since R(x) was kept.

Suppose that g1, g2 are cores of a CQ q.
Then g1 = g = qo.

52/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.

1.

VVYY YVYVYYY

Suppose that the algorithm terminates with non-minimal g’ for input CQ q.

Then there is some atom R(x) in g’ that was kept, but is redundant; let g”” be g’ without this atom.
Then q” = g’ = g; in particular, there is a homomorphism ¢ from g to q”.

Let g””” be q without the atom R(x). Then there is a homomorphism y from g to ¢””".

But then y o ¢ is @ homomorphism from g to g”’, so g’ C q. Contradiction, since R(x) was kept.

Suppose that g1, g2 are cores of a CQ q.
Then g1 = g = qo.
Hence, there are homomorphisms ¢4 from g to g1 and ¢, from q to go.

53/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)
A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),

> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. >

>

| 2

| 2

»

2. >

>

»>

>

Suppose that the algorithm terminates with non-minimal g’ for input CQ q.

Then there is some atom R(x) in g’ that was kept, but is redundant; let g”” be g’ without this atom.
Then q” = g’ = g; in particular, there is a homomorphism ¢ from g to q”.

Let g””” be q without the atom R(x). Then there is a homomorphism y from g to ¢””".

But then y o ¢ is @ homomorphism from g to g”’, so g’ C q. Contradiction, since R(x) was kept.

Suppose that g1, g2 are cores of a CQ q.

Then g1 = g = qo.

Hence, there are homomorphisms ¢4 from g to g1 and ¢, from q to go.
Let i1 be the restriction of ¢1 to g2, and ¥ be the restriction of ¢, to gy.

54/55

Exercise 6

Exercise. Explain why the CQ minimisation algorithm is correct:
1. Why is the result guaranteed to be a minimal CQ?
2. Why is the result guaranteed to be unique up to bijective renaming of variables?

Definition (Lecture 10, Slide 10)

A conjunctive query q is minimal if:
> for all subqueries g’ of g (that is, queries g’ that are obtained by dropping one or more atoms from q),
> we find that ¢’ # g.

A minimal CQ is also called a core.

Solution.
1. »
>

| 2

| 2

»

2 >
>

»>

>

>

Suppose that the algorithm terminates with non-minimal g’ for input CQ q.

Then there is some atom R(x) in g’ that was kept, but is redundant; let g”” be g’ without this atom.
Then q” = g’ = g; in particular, there is a homomorphism ¢ from g to q”.

Let g””” be q without the atom R(x). Then there is a homomorphism y from g to ¢””".

But then y o ¢ is @ homomorphism from g to g”’, so g’ C q. Contradiction, since R(x) was kept.

Suppose that g1, g2 are cores of a CQ q.

Then g1 = g = qo.

Hence, there are homomorphisms ¢4 from g to g1 and ¢, from q to go.
Let i1 be the restriction of ¢1 to g2, and ¥ be the restriction of ¢, to gy.
Then ¢4 and y» are surjective, so gy and g must be isomorphic.

55/55

