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Abstract. Infinite contexts and their corresponding lattices are of the-
oretical and practical interest since they may offer connections with and
insights from other mathematical structures which are normally not re-
stricted to the finite cases. In this paper we establish a systematic connec-
tion between formal concept analysis and domain theory as a categorical
equivalence, enriching the link between the two areas as outlined in [25].
Building on a new notion of approximable concept introduced by Zhang
and Shen [26], this paper provides an appropriate notion of morphisms
on formal contexts and shows that the resulting category is equivalent
to (a) the category of complete algebraic lattices and Scott continuous
functions, and (b) a category of information systems and approximable
mappings. Since the latter categories are cartesian closed, we obtain a
cartesian closed category of formal contexts that respects both the con-
text structures as well as the intrinsic notion of approximable concepts
at the same time.

1 Introduction

Formal concept analyais (FCA [1]) is a powerful lattice-based tool for symbolic
data analysis. In essence, it is based on the extraction of a lattice — called formal
concept lattice — from a binary relation called formal context consisting of a set of
objects, a set of attributes, and an incidence relation. The transformation from
a two-dimensional incidence table to a lattice structure is a crucial paradigm
shift from which FCA derives much of its power and versatility as a modeling
tool. The concept lattices obtained this way turn out to be exactly the complete
lattices, and the particular way in which they structure and represent knowledge
is very appealing and natural from the perspective of many scientific disciplines.
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The successful applications of FCA, however, are mainly restricted to finite
contexts or finite concept lattices, thus neglecting the full power of the theory.
Infinite contexts and their corresponding lattices are of theoretical and practical
interest since they may offer connections with and insights from other mathe-
matical structures which are normally not restricted to the finite cases. In this
paper we establish a systematic connection between formal concept analysis and
domain theory as a categorical equivalence, enriching the link between the two
areas as outlined in [25]. Domain theory is a subject of extensive study in the-
oretical computer science and programming languages. Its basic idea of partial
information and successive approximation suggests that for infinite structures to
be computationally feasible, items of knowledge or information should either be
finitely representable or approximable by such finitely representable items. This
idea motivated the introduction of a new notion called approximable concept,
reported by Zhang and Shen in a separate paper [26]. Approximable concept lat-
tices derived from this new notion are exactly the complete algebraic ones; and
every (classical) formal concept is approximable. Furthermore, in cases where
the formal contexts are finite, approximable concepts and formal concepts coin-
cide. From a categorical viewpoint, this establishes a relation at the object level
as a part of a functor; a main contribution of this paper is the introduction of
an appropriate notion of morphisms on formal contexts and the proof that the
following three categories are equivalent in the categorical sense [13]:

1. the category of formal contexts and context morphisms Cxt introduced here
for the first time,

2. the category of complete algebraic lattices and Scott continuous functions,
and

3. the category of information systems and approximable mappings ISys.

This implies that the category of formal contexts and context morphisms is carte-
sian closed, and as a result a rich collection of constructions including product
and function space is immediately made possible.

Our paper can be viewed as part of a unique research program [8,25,26,
27,19] exploiting the synergies among the following recurring themes in several
independently developing and yet somewhat related areas:

– functional dependency X → Y in databases,
– association rules X ⇒ Y in data-mining,
– consequence relation ∧X |= ∧Y in logic,
– entailment relation X � Y in information systems and domains,
– intention-extension duality Y ⊆ (X)′′ in formal concept analysis.

Note that in both logic as well as in domain theory, X is restricted to finite
sets while in databases and data-mining both X and Y are restricted to finite
cases due to the pragmatic motivations of the areas. In classical formal concept
analysis, there is no size constraint on either X or Y even when the formal
contexts are infinite. These potential mismatches (or, the alignment of them)
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turn out to have important consequences, as will be seen from the rest of this
paper.

The rest of the paper is structured as follows. In Section 2 we introduce
basic notions from formal concept analysis, domain theory, and category theory.
In Section 3, results on approximable concepts are provided. In Section 4 we
introduce an appropriate notion called context morphism on formal contexts
and show that formal contexts with context morphisms constitute a category
Cxt. In Section 5 we recall the category ISys of Scott information systems with
trivial consistency predicate. This category is known to be equivalent to the
category of complete algebraic lattices with Scott continuous functions. We then
introduce the functors which will be used in our equivalence proof, which will be
carried out in Section 6. Some categorical constructions in Section 7 complete
the technical contributions of the paper. The last section gives some concluding
remarks.

2 Background

We review some necessary background in FCA, domain theory, and category
theory in order to fix notations.

Formal Contexts and Concepts

Our main reference for formal concept analysis (FCA) is [1]. In places, we will
follow the notation used in [26], because it is more convenient for our purposes.

Definition 1. A formal context P is a triple (Po, Pa, |=), where Po is a set of
objects, Pa a set of attributes, and |= a binary satisfaction relation |=⊆ Po×Pa.
We also define the following mappings.

αP = α : 2Po → 2Pa with X �→ {a | ∀x ∈ X, x |= a}
ωP = ω : 2Pa → 2Po with Y �→ {o | ∀y ∈ Y, o |= y}

A subset A ⊆ Pa is called an (intent-) concept if α(ω(A)) = A.

For readers from the traditional FCA community, it should be helpful to note
that Po corresponds to G, Pa corresponds to M , and |= to I using the standard
notation of a context (G, M, I). Also note that ( )′ = α and ( )′ = ω since the
standard notation ignores the types of the two operators. One can also regard
( )′ as, informally, an “infix” notation and α, ω as prefix ones.

The following is a central result for FCA, a proof of which can be found in
[1]. Recall that a complete lattice is a partial order in which all (possibly infinite)
suprema (a.k.a. join) and infima (a.k.a. meet) exist.

Theorem 1 (Wille [24]). The set of all (intent-) concepts of a formal context
P , ordered under subset inclusion, is a complete lattice, called the concept lattice
of P . Furthermore, every complete lattice (D,≤) is isomorphic to the concept
lattice L of the formal context (D, D,≤), with isomorphism ι : D → L given by
d �→ α(ω({d})).
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Domain Theory

Domain theory was introduced by Scott in the late 60s for the denotational
semantics of programming languages. It provides a theoretically elegant and
practically useful mathematical foundation for the design, definition, and im-
plementation of programming languages, and for systems for the specification
and verification of programs. The basic idea of domain theory is partial informa-
tion and successive approximation, captured in complete partial orders (cpos).
Functions acting on cpos are those which preserve the limits of directed sets –
this is the so-called continuity property. If one thinks of directed sets as an ap-
proximating schema for infinite objects, then members of a directed set can be
thought of as finite approximations. Continuity makes sure that infinite objects
can be approximated by finite computations. An important property of contin-
uous functions is that when ordered in appropriate ways, they form a complete
partial order again. Thus a continuous function becomes once again an object in
a complete partial order. This seamless and uniform treatment of a higher-order
object just as an ordinary object is the hallmark of domain theory.

Let (D,
) be a partial order. A subset X of D is directed if it is non-empty
and for each pair of elements a, b ∈ X, there is an upper bound x ∈ X for {a, b}.
A complete partial order (cpo) is a partial order (D,
) with a least element (⊥)
and every directed subset X has a least upper bound (or join)

⊔
X. A complete

lattice is a partial order in which any subset has a join (this implies that any
subset will also have a meet – greatest lower bound). Compact elements of a
cpo (D,
) are those inaccessible by directed sets: a ∈ D is compact if for any
directed set X of D, a 


⊔
X implies that there exists x ∈ X with a 
 x. A cpo

is algebraic if every element is the join of a directed set of compact elements. A
set X ⊆ D is bounded if it has an upper bound. A cpo is bounded complete if
every bounded set has a join. Scott domains are, by definition, bounded complete
algebraic cpos.

Category Theory

Category theory provides a unified language for managing conceptual complexity
in mathematics. The importance of category theory to computer science is man-
ifested in its ability in guiding research to the discovery of categorically natural,
but otherwise non-obvious missing entities in a conceptual picture.

Our category-theoretical terminology follows [5]. A category C consists of

(i) a class |C| of objects of the category,
(ii) for all A, B ∈ |C|, a set C(A, B) of morphisms from A to B,
(iii) for all A, B, C ∈ |C|, a composition operation

◦ : C(B, C) × C(A, B) → C(A, C),
(iv) for all A ∈ |C|, an identity morphism idA ∈ C(A, A),

such that for all f ∈ C(A, B), g ∈ C(B, C), h ∈ C(C, D), the associativity
axiom h◦ (g ◦f) = (h◦g)◦f and the identity axioms idB ◦f = f and g ◦ idB = g
are satisfied. As usual, we write f : A → B for morphisms f ∈ C(A, B).
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A functor F from a category A to a category B consists of

(i) a mapping |A| → |B| of objects, where the image of an object A ∈ |A| is
dentoted by FA,

(ii) for all A, A′ ∈ |A|, a mapping A(A, A′) → B(FA,FA′), where the image
of a morphism f ∈ A(A, A′) is denoted by Ff ,

such that for all A, B, C ∈ |A| and all f ∈ A(A, B) and g ∈ A(B, C) we have
F(f ◦ g) = Ff ◦ Fg and FidA = idFA.

3 Approximable Concepts

The defining property of a formal concept given by the equality α(ω(A)) = A
is computationally feasible for finite contexts, but lends itself for alternative
formulation in the infinite case. From a domain-theoretic perspective, a compu-
tationally accessible infinite object is one that can be approximated by partial,
finitary objects. If we replace “object” by formal concept, and “finitary objects”
by finitely generated concepts (i.e., α(ω(A)) for finite A), then we obtain the
following definition, introduced in [26].

Definition 2. Given a set A, let Fin(A) denote the set of finite subsets of A.
With notation fixed in Definition 1, a subset A ⊆ Pa is called an approximable
(intent-) concept if for every X ∈ Fin(A), we have α(ω(X)) ⊆ A.

As a consequence, every approximable concept A is the limit (i.e. least upper
bound) of a directed set of finitely generated concepts below it:

A =
⋃

{α(ω(X)) | X ∈ Fin(A)}.

The notion of approximable concept is a natural one from a logical point of
view, in that approximable concepts correspond to theories. Informally, a (logi-
cal) theory is a set of formulas closed under (a predefined notion) of entailment.
A basic notion of entailment can be extracted from a context by letting X � a
just when a ∈ α(ω(X)). This has been observed by many researchers and investi-
gated at a more systematic level in [25] by relating it to information systems [18].
The relation � corresponds to an association rule in data mining and an instance
of functional dependence in databases. If we build theories by taking attributes
as atomic propositional formulas and the corresponding � as the entailment rela-
tion, then theories coincide with approximable concepts. The distinction is that
in classical formal concept analysis, an infinite set X is allowed in the entail-
ment X � a while in approximable concept analysis, only finite Xs are allowed.
It is well-known in logic that an infinite conjunction p in the antecedent of an
entailment p → q destroys compactness. For readers interested in discussions
along this line, we refer to [23] for general and intuitive examples, and to [10]
for related hardcore theory.

We now summarize relevant results from [26]. Recall that a complete lattice
is called algebraic if each of its element is the supremum of the directed set of
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compact elements below it. Given a complete algebraic lattice (D,≤), let K(D)
denote the set of all compact elements of D.

Theorem 2 (Zhang and Shen [26]). For any formal context P , the set of
its approximable (intent-) concepts AP under set-inclusion forms a complete
algebraic lattice. Conversely, every complete algebraic lattice (D,≤) is order-
isomorphic to AP , where P = (D,K(D),≤). An isomorphism in this case is
given by K �→ supK for any approximable concept K.

The supremum just mentioned exists since approximable concepts in this
case are exactly the ideals (i.e. downward closed directed subsets) of D.

It is easy to see that with respect to finite contexts, approximable concepts
are just the standard ones. In the infinite case, although every standard concept
is approximable, not all approximable concepts are concepts in the standard
sense. This gives the impression that approximable concepts are more general;
but interestingly they are less general in terms of the lattices they represent
collectively: the corresponding lattices built from approximable concepts are of
a restricted kind – the algebraic, complete lattices – instead of complete lattices
in general. This again fits the domain-theoretic paradigm in that a general ap-
proximating scheme should be part of a computable mathematical structure. We
refer to [26] for an example (necessarily infinite) to illustrate the differences.

4 Cxt: A Category of Formal Contexts

We introduce a new notion of morphism on formal contexts.

Definition 3 (context morphism). Given formal contexts P = (Po, Pa, |=P )
and Q = (Qo, Qa, |=Q), a context morphism �PQ = � from P to Q is a relation
� ⊆ Fin(Pa) × Fin(Qa), such that the following conditions are satisfied for all
X, X ′, Y1, Y2 ∈ Fin(Pa) and Y, Y ′ ∈ Fin(Qa):

(cm1) ∅ � ∅,
(cm2) X � Y1 and X � Y2 imply X � Y1 ∪ Y2,
(cm3) X ′ ⊆ αP (ωP (X)) and X ′

� Y ′ and Y ⊆ αQ (ωQ(Y ′)) imply X � Y .

We give some intuition about this notion of morphism. We think of sets of
attributes as carrying knowledge, or information, and morphisms from P to Q
relate this knowledge in the sense that some knowledge in P implies some knowl-
edge in Q. So X � Y should be read as: “If at least X is known, then also at
least Y is known.” Conditions (cm1) and (cm2) are easily understood from this
perspective. Condition (cm3) uses the idea that closure in FCA (i.e. the forma-
tion of αP (ωP (X)) from some X) can be understood as logical consequence, i.e.
X ′ ⊆ αP (ωP (X)) means that X carries more knowledge than X ′, as remarked
in Condition (cm3). Thus it allows us to strenghten on the left-hand side of the
relation, and to weaken on the right-hand side.

We show now that we indeed obtain a category.
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Proposition 1 (identity context morphism). With notation as in Defini-
tion 3, the relation ιP defined by

XιP Y iff Y ⊆ α(ω(X))

defines a context morphism, which we call the identity context morphism.

Proof. Conditions (cm1) and (cm2) are obviously satisfied. Condition (cm3) fol-
lows from monotonicity of α ◦ ω and the fact that α ◦ ω is idempotent. ��

Composition of context morphisms is composition of relations, so there is
nothing to show in this respect.

Theorem 3. Formal contexts together with context morphisms constitute a cat-
egory Cxt.

Proof. We first show that the composition of two context morphisms is a context
morphism. So let �PQ and �QR be context morphisms. Then condition (cm1) is
easily verified for (�QR ◦ �PQ). Concerning (cm2), assume X(�QR ◦ �PQ)Y1
and X(�QR ◦ �PQ)Y2. Then there exist Z1, Z2 ∈ Fin(Qa) with X �PQ Z1,
X �PQ Z2, hence X �PQ Z1 ∪ Z2, as well as Zi � Yi for i = 1, 2. Since Zi ⊆
αQ(ωQ(Z1 ∪ Z2)) and Yi ⊆ αR(ωR(Yi)) for i = 1, 2, we conclude by (cm3)
that Z1 ∪ Z2 �QR Yi for i = 1, 2, and by (cm2) that Z1 ∪ Z2 �QR Y1 ∪ Y2
which suffices. For (cm3), assume X ′ ⊆ αP (ωP (X)), X ′(�QR ◦ �PQ)Y ′, and
Y ⊆ αR(ωR(Y ′)). Then there exists Z ∈ Fin(Qa) with X ′

�PQ Z and Z �QR Y ′.
Since Z ⊆ αQ(ωQ(Z)), we conclude by (cm3) that X �PQ Z and Z �QR Y ,
hence X(�QR ◦ �PQ)Y by definition of composition, as desired.

The remaining conditions are easily verified: associativity of morphisms fol-
lows from the fact that composition of morphisms is composition of relations.
The identity axiom follows from (cm3). ��

5 Information Systems

We show that the category Cxt is equivalent to the cartesian closed category of
complete algebraic lattices with Scott continuous functions. Our proof utilizes
the fact that the latter category is eqivalent to the category of Scott information
systems with trivial consistency predicate and approximable mappings as mor-
phisms. The corresponding definitions are as follows, and can be found in [12,
17,18,22,26,28].

An information system (with trivial consistency predicate) A is a pair (A,�A),
where A is the token set and �A Fin(A) × Fin(A) is the entailment relation, and
furthermore the conditions

(is1) a ∈ X implies X �A {a}
(is2) (∀b ∈ Y.X �A {b}) and Y �A Z imply X �A Z
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are satisfied for all a ∈ A and X, Y, Z ∈ Fin(A). An information state of an
information system is a set X ⊆ A such that {a} ∈ X whenever there is Y ∈
Fin(X) with Y �A {a}. Information states can be characterized as the images of
the operator state : 2A → 2A defined by

state(X) = {a | ∃Y (Y ∈ Fin(X) and Y �A {a})}.

The set of all information states of an information system A is denoted by
states(A).

Let A and B be information systems. An approximable mapping �AB = �

from A to B is a relation � ⊆ Fin(A)×Fin(B), such that the following conditions
are satisfied for all X, X ′, Y1, Y2 ∈ Fin(A) and Y, Y ′ ∈ Fin(B).

(am1) ∅ � ∅
(am2) X � Y1 and X � Y2 imply X � Y1 ∪ Y2

(am3) X �A X ′ and X ′ � Y ′ and Y ′ �B Y imply X � Y

Information systems with trivial consistency predicate together with approx-
imable mappings as morphisms constitute a cartesian closed category, which we
denote by ISys. The identity morphisms in this case are given by XιAY iff
X �A Y , for any information system A. Composition of morphisms is composi-
tion of relations.

The following definition and theorem are taken from [26].

Definition 4. For a given formal context P = (Po, Pa, |=), define a system
IS(P ) = (Pa,�) by setting X � Y iff Y ⊆ α(ω(X)).

Theorem 4. Given a formal context P = (Po, Pa, |=), we have that IS(P ) is an
information system. Furthermore, a subset X ⊆ Pa is an approximable concept
of P if and only if it is a state of the derived information system IS(P ).

The mapping IS will later on turn out to be the object part of a functor.
The object part of the corresponding left adjoint CT will be defined next.

Definition 5. Given an information system A = (A,�), let CT (A) be the for-
mal context (states(A),K(states(A)),⊆), where K(states(A)) stands for the set of
compact elements of (states(A),⊆).

The following is taken from [26].

Theorem 5. The approximable concepts of CT (A) coincide with the downward-
closed directed sets of compact elements of the complete algebraic lattice

(states(A),⊆).

Hence (by ideal completion), A(CT (A)) is isomorphic to (states(A),⊆) via the
isomorphism K �→ supK, where A is defined in Theorem 2.
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We describe the action of IS and CT on morphisms in order to obtain func-
tors between the respective categories.

Let P = (Po, Pa, |=P ) and Q = (Qo, Qa, |=Q) be formal contexts, and let �

be a context morphism. Let IS(P ) = (Pa,�P ) and IS(Q) = (Qa,�Q). Then
define IS(�PQ) = � ⊆ Fin(Pa) × Fin(Qa) by setting X � Y iff X � Y .

Theorem 6. The relation � is an approximable mapping and IS is a functor
from Cxt to ISys.

Proof. Straightforward by inspecting the defining properties of a functor. ��

Concerning CT , let A = (A, �A) and B = (B,�B) be information systems
and let

CT (A) = P = (states(A), K(states(A)),⊆) and
CT (B) = Q = (states(B), K(states(B)),⊆)

be corresponding formal contexts as defined in Definition 5. Furthermore, let �

be an approximable mapping from A to B. Then define

CT (�) = � ⊆ Fin(K(states(A))) × Fin(K(states(B)))

by setting X � Y iff for each Y ′ ∈ Fin(
⋃

Y ) there exists X ′ ∈ Fin(
⋃

X) with
X ′ � Y ′.

Lemma 1. The relation � is a context morphism.

Proof. For (cm1) note that Fin(
⋃

∅) = {∅}.
For (cm2) let X � Y1 and X � Y2, i.e. for each Y ′

1 ∈ Fin(
⋃

Y1) there exists
X ′ ∈ Fin(

⋃
X) with X ′ � Y ′

1 , and for each Y ′
2 ∈ Fin(

⋃
Y2) there exists X ′′ ∈

Fin(
⋃

X) with X ′′ � Y ′
2 . Now let Y ∈ Fin(

⋃
(Y1 ∪ Y2)). Then there exist Y ′

1 ∈
Fin(

⋃
Y1) and Y ′

2 ∈ Fin(
⋃

Y2) with Y ′
1 ∪Y ′

2 = Y . So we also have X ′ ∈ Fin(
⋃

X)
with X ′ � Y ′

1 and X ′′ ∈ Fin(
⋃

X) with X ′′ � Y ′
2 . Since X ′ ∪X ′′ ∈ Fin(

⋃
X) and

X ′ ∪ X ′′ �A X ′ and X ′ ∪ X ′′ �A X ′′, we obtain by (am3) that X ′ ∪ X ′′ � Y ′
i

(for i = 1, 2), and hence X ′ ∪ X ′′ � Y ′
1 ∪ Y ′

2 = Y . By X ′ ∪ X ′′ ∈ Fin(
⋃

X) we
conclude X � Y1 ∪ Y2.

For (cm3), note that for X, Y ∈ Fin(K(state(A))) we have X ⊆ αP (ωP (Y ))
if and only if

⋃
X ⊆

⋃
Y . Now assume that X ′ ⊆ αP (ωP (X)) and X ′

� Y ′

and Y ⊆ αQ(ωQ(Y ′)). Then
⋃

X ′ ⊆
⋃

X and
⋃

Y ⊆
⋃

Y ′ and for each Y ′′ ∈
Fin(

⋃
Y ′) there exists X ′′ ∈ Fin(

⋃
X ′) with X ′′ � Y ′′. But then in particular,

for each Y ′′ ∈ Fin(
⋃

Y ) there exists X ′′ ∈ Fin(
⋃

X) with X ′′ � Y ′′. So X � Y .
��

Theorem 7. CT is a functor from ISys to Cxt.

Proof. Concerning the identity condition, we have X CT (idA)Y iff for each Y ′ ∈
Fin(

⋃
Y ) there exists X ′ ∈ Fin(

⋃
X) with X ′ �A Y ′. Or in other words, we have

X CT (idA)Y iff for each Y ′ ∈ Fin(
⋃

Y ) with state(Y ′) ⊆ state(
⋃

Y ) there exists
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X ′ ∈ Fin(
⋃

X) with state(X ′) ⊆ state(
⋃

X) and state(Y ′) ⊆ (X ′). Since finitely
generated states are compact in the complete algebraic lattice (states(A),⊆),
this is equivalent to the statement state(

⋃
Y ) ⊆ state(

⋃
X), or in other words,

Y ⊆ α(ω(X)).
It remains to show that CT (�BC ◦ �AB) = CT (�BC)◦CT (�AB). Let first

X CT (�BC)◦CT (�AB)Y , i.e. there is Z with X CT (�BC)Z and Z CT (�AB)Y .
This means that for all Y ′ ∈ Fin(

⋃
Y ) there exists Z ′ ∈ Fin(

⋃
Z) with Z ′ �BC Y ′

and for all Z ′ ∈ Fin(
⋃

Z) there exists X ′ ∈ Fin(
⋃

X) with X ′ �AB Z ′. Conse-
quently, for all Y ′ ∈ Fin(

⋃
Y ) there is X ′ ∈ Fin(

⋃
X) with X ′(�BC ◦ �AB)Y ′,

i.e. X CT (�BC ◦ �AB)Y .
Conversely, let X CT (�BC ◦ �AB)Y , i.e. for all Y ′ ∈ Fin(

⋃
Y ) there ex-

ists X ′ ∈ Fin(
⋃

X) with X ′(�BC ◦ �AB)Y ′. Hence, for all Y ′ ∈ Fin(
⋃

Y )
there exist X ′ ∈ Fin(

⋃
X) and Z ′ ∈ Fin(Qa) with X ′ �AB Z ′ and Z ′ �BC Y ′.

Let Y = {Y1, . . . , Yn}. Then each Yi is a compact state, hence for each i
there is Y ′

i ∈ Fin(
⋃

Y ) with state(Y ′
i ) = state(Yi). For each such Y ′

i there
exist Z ′

i ∈ Fin(Qa) and X ′
i ∈ Fin(

⋃
X) with X ′

i �AB Z ′
i and Z ′

i �BC Y ′
i .

Let Z = {state(Z ′
1), . . . , state(Z

′
n)}. Now, given Y ′ ∈ Fin(

⋃
Y ) we obtain⋃

Y ′
i �C Y ′. By (am2) and (am3) we have

⋃
i Z ′

i �BC

⋃
Y ′

i , and by (am3) we
obtain

⋃
i Z ′

i �BC Y ′. Since
⋃

i Z ′
i ∈ Fin(

⋃
Z), we obtain Z CT (�BC)Y . The

same kind of argument along �AB yields X CT (�BC)Z, which completes the
proof. ��

6 Categorical Equivalence and Cartesian Closedness

In this section we establish the fact that IS and CT provide equivalences between
categories.

Recall that a morphism f ∈ C(A, B) is called an isomorphism if there is a
(necessarily unique) morphism g ∈ C(B, A) such that g ◦ f = idA and f ◦ g =
idB . The identity functor on a category C maps all objects and morphisms to
themselves, and is denoted by idC. A natural transformation η : F ⇒ G between
functors F,G : A → B is a class of morphisms ηA ∈ B(FA,GA)A∈|A| such that
for every f ∈ A(A, A′) we have ηA′ ◦Ff = Gf ◦ ηA. A natural transformation is
called a natural isomorphism if all of its morphisms are isomorphisms. A functor
F from A to B is called an equivalence of categories iff there is a functor G from
B to A and two natural isomorphisms idB ⇒ FG and GF ⇒ idA. G is then
also an equivalence of categories, and is left adjoint to F.

Lemma 2. There exists a natural transformation η : CT ◦ IS ⇒ idCxt, i.e. a
class of context morphism (ηP )P from CT (IS(P )) to P , where P ranges over
all formal contexts, such that for every context morphism � between formal
contexts P and Q we have ηQ◦CT (IS(�)) = � ◦ηP . Furthermore, η is a natural
isomorphism, i.e. all ηP are isomorphisms – in other words, for each ηP there
exists a context morphism �P from P to CT (IS(P )) such that �P ◦ηP = ιP
and ηP ◦ �P = ιCT (IS(P )).
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Proof. Let P = (Po, Pa, |=P ) be some formal context. We define ηP by setting
SηP X, for S ∈ Fin(K(states(IS(P )))) and X ∈ Fin(Pa), whenever X ∈ Fin(

⋃
S).

It is easily verified that ηP is a context morphism.
Now let T (ηQ ◦ CT (IS(�)))X. This is equivalent to saying that there ex-

ists some S ∈ Fin(K(states(IS(P )))) such that X ∈ Fin(
⋃

S) and for all
s ∈ Fin(

⋃
S) there exists some t ∈ Fin(

⋃
T ) with t � s. This implies that there

is t ∈ Fin(
⋃

T ) with t � X, which in turn is equivalent to T (� ◦ηP )X. Con-
versely, let T (� ◦ηP )X, which is equivalent to saying that there is t ∈ Fin(

⋃
T )

with t � X. Now with S = {state(X)} ∈ Fin(K(states(IS(P )))) this implies that
X ∈ Fin(

⋃
S) and (by (cm3)) for all s ∈ Fin(

⋃
S) there exists t ∈ Fin(

⋃
T ) with

t � s. This is in turn equivalent to T (ηQ ◦ CT (IS(�)))X, as noted earlier in
this paragraph.

To show that all ηP are isomorphisms, let �P be the context morphism
from P to CT (IS(P )) which is defined by X �P S, for X ∈ Fin(Pa) and S ∈
Fin(K(states(IS(P )))), whenever

⋃
S ⊆ αP (ωP (X)). It is easily verified that �P

is indeed a context morphism. Now X(ηP ◦�P )Y iff there exists S with X �P S
and SηP Y , i.e. iff there exists S with

⋃
S ⊆ αP (ωP (X)) and Y ∈ Fin(

⋃
S). This

in turn is equivalent to Y ∈ Fin(αP (ωP (X))), i.e. to XιP Y as desired. Likewise,
let T, S ∈ Fin(K(state(IS(P )))). Then S(�P ◦ηP )T iff there exists Y with SηP Y
and Y �P T , i.e. iff Y ∈ Fin(

⋃
S) and

⋃
T ⊆ αP (ωP (Y )). Since S and T are sets

of compact states, this in turn is equivalent to
⋃

T ⊆
⋃

S, i.e. to TιCT (IS(P ))S.
��

Lemma 3. There exists a natural transformation η : idISys ⇒ IS ◦ CT , i.e. a
class of approximable mappings (ηA)A from A to IS(CT (A)), where A ranges
over all information systems (with trivial consistency predicate), such that for
every approximable mapping � between information systems A and B we have
ηB ◦ � = IS(CT (�)) ◦ ηA. Furthermore, η is a natural isomorphism, i.e. all
ηA are isomorphisms — or in other words, for each ηA there exists a context
morphism �A from IS(CT (A))) to A such that �A ◦ηA = ιA and ηA ◦ �A =
ιIS(CT (A)).

Proof. Let A = (A,�) be some information system. We define ηA by setting
XηAS, for X ∈ Fin(A) and S ∈ Fin(K(states(A))), whenever X �A s for all
s ∈ Fin(

⋃
S). It is easily verified that ηA is an approximable mapping.

We have X(ηB ◦ �)T iff there exists Y ∈ Fin(B) such that X � Y and for
all t ∈ Fin(

⋃
T ) we have Y �B t. This is equivalent to the statement that

(�) for all t ∈ Fin(
⋃

T ) we have X � t.

On the other hand, we have X(IS(CT (�)) ◦ ηA)T if and only if

(∗) there exists S ∈ Fin(K(states(A))) such that for all s ∈ Fin(
⋃

S) we have
X �A s and for all t ∈ Fin(

⋃
T ) there exists u ∈ Fin(

⋃
S) with u � t.

Statement (�) implies (∗) via S = {state(X)}. Statement (∗) implies that for all
t ∈ Fin(

⋃
T ) there exists u ∈ Fin(

⋃
S) with X �A u and u � t, which by (am3)

implies (�).
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To show that all ηA are isomorphisms, let �A be the approximable mapping
from IS(CT (A)) to A defined by S �A X, for all S ∈ Fin(K(states(A))) and X ∈
Fin(A), whenever X ∈ Fin(

⋃
S). It is easily verified that �A is an approximable

mapping. Now X(�A ◦ηA)Y if and only if there exists S ∈ Fin(K(states(A)))
with XηAS and S �A Y , i.e. X �A s for all s ∈ Fin(

⋃
S) and Y ∈ Fin(

⋃
S). This

in turn is equivalent to X �A Y , i.e. to XιAY as desired. Likewise, S(ηA ◦�A)T
if and only if there exists X ∈ Fin(A) with S �A X and XηAT . This in turn
is equivalent to saying that there exists X ∈ Fin(

⋃
S) such that X �A t for all

t ∈ Fin(
⋃

T ). Since S and T are sets of compact states, this is equivalent to the
statement

⋃
T ⊆

⋃
S, i.e. to SιIS(CT (A))T . ��

Theorem 8. Both CT and IS are equivalences of categories, i.e. the categories
Cxt and ISys are equivalent, and Cxt is cartesian closed.

Proof. It suffices to show that there are natural isomorphisms CT ◦ IS ⇒ idCxt

and idISys ⇒ IS ◦ CT , which were provided by Lemmata 2 and 3. The last
statement follows from the well-known fact that ISys is cartesian closed. ��

7 Constructions

We have established our main result in Theorem 8 and shown that Cxt is carte-
sian closed. We now study what the corresponding categorical constructions, i.e.
product and function space, look like. Although the existence of these construc-
tions has been justified in previous sections, carrying out the actual constructions
in full detail can be an engineering endeavor [22,28].

Terminal Object

The unit or terminal object in Cxt is the context 1 = (∅, ∅, ∅), and for each
context P = (Po, Pa, |=) the unique context morphism � from P to 1 is given
by X � ∅ for all X ∈ Fin(Pa).

Product

For a formal context P = (Po, Pa, |=P ) let P ′ = (P ′
o, P

′
a, |=P ′), where P ′

o =
Po ∪ {g}, P ′

a = Pa ∪ {m}, and g, m are some elements not in Po respectively
Pa. |=P ′ coincides with |=P on Pa × Po and g |=P ′ a for all a ∈ Pa ∪ {m} and
h |=P ′ m for all h ∈ Po ∪ {g}. Informally, P ′ is obtained from P by “adding a
full row and a full column”.

Let P = (Po, Pa, |=P ) and Q = (Qo, Qa, |=Q) be formal contexts. Define the
product

P × Q = (P ′
o × Q′

o, P
′
a × Q′

a, |=P×Q)

of P and Q by setting (g1, g2) |=P×Q (m1, m2) iff g1 |=P ′ m1 and g2 |=Q′ m2.
Obviously, P × Q is a formal context.
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Theorem 9. Let P = (Po, Pa, |=P ) and Q = (Qo, Qa, |=Q) be formal contexts.
Then there exist context morphisms πP : P × Q → P and πQ : P × Q → Q such
that for all context morphisms �P from R to P and �Q from R to Q there
exists exactly one context morphism 〈�P ,�Q〉 from R to P × Q such that

πP ◦ 〈�P ,�Q〉 = �P and πQ ◦ 〈�P ,�Q〉 = �Q .

Proof. We define πP by setting {(mi, m
′
i) | i = 1, . . . , k}πP {nj | j = 1, . . . , l} iff

{nj | j = 1, . . . , l} ⊆ αP (ωP ({mi | i = 1, . . . , k})). This is equivalent to saying
that MπP N iff (π1(M) ∩ Pa)ιP N , where π1(M) denotes the projection of the
set of pairs M to the set of the first components of its elements. The context
morphism πQ is defined analogously. Define X〈�P ,�Q〉Y iff X �P (π1(Y )∩Pa)
and X �Q(π2(Y )∩Qa), where π2 is the corresponding projection on the second
component.

We next show πP ◦〈�P ,�Q〉 = �P . Denoting 〈�P ,�Q〉 by �, we then ob-
tain X(πP ◦�)Y iff there exists some Z ∈ Fin(P ′

a ×Q′
a) with X � Z and ZπP Y ,

which is the case iff (∗) there exists Z with X �P (π1(Z)∩Pa), X �Q(π2(Z)∩Qa)
and (π1(Z) ∩ Pa)ιP Y . This in turn implies that there is Z ∈ Fin(P ′

a × Q′
a)

with X �P Y and X �Q(π2(Z) ∩ Qa). Such a Z trivially exists: every Z with
π2(Z) = ∅ satisfies the condition. So this condition reduces to X �P Y as re-
quired. Conversely, assume X �P Y . Let Z = Y × (Q′

a \ Qa). Then this implies
condition (∗) which was shown above to be equivalent to X(πP ◦ �)Y . The
equation πQ ◦ 〈�P ,�Q〉 = �Q is shown similarly.

For uniqueness assume that there is � : R → P ×Q which satisfies πP ◦� =
�P and πQ ◦ � = �Q. Then we obtain

X � Z iff X � Z, (π1(Z) ∩ Pa) ιP (π1(Z) ∩ Pa),
and (π2(Z) ∩ Qa) ιQ (π2(Z) ∩ Qa)

iff X � Z, Z πP (π1(Z) ∩ Pa), and Z πQ (π2(Z) ∩ Qa)
iff X(πP ◦ �)(π1(Z) ∩ Pa) and X(πQ ◦ �)(π2(Z) ∩ Qa)
iff X �P (π1(Z) ∩ Pa) and X �Q(π2(Z) ∩ Qa)

which shows � = 〈�P ,�Q〉. ��

Function Space

Given formal contexts P = (Po, Pa, |=P ) and Q = (Qo, Qa, |=Q), we define the
function space P → Q as follows. Consider the set M = Fin(Pa) × Fin(Qa). We
define a Scott information system on M . For all collections {(ui, u

′
i)} ∈ Fin(M)

and {(v′
j , v

′
j)} ∈ Fin(M), let {(ui, u

′
i)} �M {(vj , v

′
j)} iff

v′
j ⊆ αQ

(
ωQ

(⋃
{u′

i | ui ⊆ αP (ωP (vj))}
))

for all j. It is easily verified that (M, �M ) is a Scott information system: In
order to show condition (is2), assume that we have {(yi, y

′
i)} �M {(z, z′)} and
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{(xj , x
′
j)} �M (yi, y

′
i) for all i. Then z′ ⊆ αQ (ωQ (

⋃
{y′

i | yi ⊆ αP (ωP (z))})) and
y′

i ⊆ αQ

(
ωQ

(⋃
{x′

j | xj ⊆ αP (ωP (yi))}
))

for all i. So

z′ ⊆ αQ

(
ωQ

(⋃

i

{
αQ

(
ωQ

(⋃

j
{x′

j | xj ⊆ αP (ωP (yi))}
))

| yi ⊆ αP (ωP (z))
}))

⊆ αQ

(
ωQ

(⋃

i

{
αQ

(
ωQ

(⋃

j
{x′

j | xj ⊆ αP (ωP (z))}
))

| yi ⊆ αP (ωP (z))
}))

⊆ αQ

(
ωQ

(
αQ

(
ωQ

(⋃

j
{x′

j | xj ⊆ αP (ωP (z))}
))))

= αQ

(
ωQ

(⋃
{x′

j | xj ⊆ αP (ωP (z))}
))

as required. The function space P → Q is then defined as the context

CT (M) = (states(M), K(states(M)),⊆).

Theorem 10. Let P = (Po, Pa, |=P ) and Q = (Qo, Qa, |=Q) be formal contexts.
Then the context morphisms from P to Q are exactly the approximable concepts
in P → Q.

Proof. Let A be an approximable concept in P → Q. Then A ∈ states(M) by
Theorem 5, and we have to show that A is a context morphism. Conditions (cm1)
and (cm2) are easily verified. Condition (cm3) follows from the monotonicity of
αP ◦ ωP and αQ ◦ ωQ.

Conversely, let A be a context morphism from P to Q. By Theorem 5, we
have to show that A ∈ states(M). So let {(xi, x

′
i)} ∈ Fin(A) and {(xi, x

′
i)} �M

{(a, a′)}. We have to show that (a, a′) ∈ A. From {(xi, x
′
i)} �M {(a, a′)} we

obtain
a′ ⊆ αQ

(
ωQ

(⋃
{x′

i | xi ⊆ αP (ωP (a))}
))

.

Setting X =
⋃

{xi | xi ⊆ αP (ωP (a))} and X ′ =
⋃

{x′
i | xi ⊆ αP (ωP (a))}, we

obtain a′ ⊆ αQ(ωQ(X ′)) and X ⊆ αP (ωP (a)). By (cm2) and (cm3) we also have
(X, X ′) ∈ A, and so by (cm3) again we have (a, a′) ∈ A. ��

8 Concluding Remarks

We have proposed a notion of morphism for formal contexts which results in
a cartesian closed category. Our work is in the spirit of both formal concept
analysis and domain theory, and makes way for the cross-transfer of methods
and results between these areas. Our work builds on a domain-theoretic perspec-
tive on formal concepts, which results in complete algebraic lattices instead of
complete lattices as the corresponding concept hierarchies.

Technically, our contribution uses Scott information systems in order to cap-
ture the logical content of formal contexts. The general connection between in-
formation systems and formal contexts was explicitly outlined in [25]. Such a
connection breaks down with classical formal concepts for a certain “discontin-
uous” class of infinite contexts. This lead to the work reported in [26] in which
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the notion of approximable concept was introduced and the connection between
information systems and formal contexts was established in full generality with
the corresponding structure being the complete algebraic lattices. Work along
a similar line for the finite case was spelled out in [8] in a different guise us-
ing the logic RZ due to [16]. The latter work has also led to the proposal of
a non-monotonic reasoning paradigm on (possibly infinite) formal contexts [9],
which is in the spirit of the recent evolving answer set programming paradigm
[6,20]. Also worth noting are potential connections between our work and that
of Lamarche [11] and Plotkin [14].

The work reported here can be viewed as part of a unique research program
[8,25,26,27,19] exploiting the synergies among some recurring themes in several
independently developing and yet somewhat related areas, such as databases,
data-mining, domain theory, logic, and formal concept analysis. Additional in-
teresting connections could be profitably explored with ontological engineering
and semantic web. For example, in [27], formal concept analysis has been applied
as a formal method for automated web-menu design, where the top layers of the
concept lattice naturally provide a menu hierarchy for the navigation of a web-
site. In ontological engineering (e.g. [7,21]), although lattices have been proposed
as mathematical structures for representing ontology, FCA provides a scientific
and algorithmic basis for it, as well as an understanding that lattice structures
are both necessary and sufficient for expressing ontological hierarchies.

Acknowledgment. The first author thanks Markus Krötzsch for some first aid
in category theory. We thank the anonymous referees for valuable feedback.
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