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Abstract

In this project, we introduce an evaluation method for regions of interest
detectors in images of general 3d-scenes addressing some issues of the frame-
work by Mikolajczyk et al. (2005) and the extension to non-planar scenes
by Fraundorfer and Bischof (2005). By generating more reliable ground
truth and test images from detailed POV-Ray scenes, we were able to take
the influence of discontinuities and occlusion into account. We re-evaluate
the repeatability under viewpoint change of the Harris- and Hessian-Affine
region detectors by Mikolajczyk and Schmid (2004), an edge based (EBR)
and an intensity based (IBR) region detector by Tuytelaars and Van Gool
(2004), the maximally stable extremal region (MSER) detector Matas et al.
(2002) and the Difference of Gaussian (DoG) detector by Lowe (1999). In
contrast to Fraundorfer and Bischof (2005), we regard the scale invariant
DoG detections to be circular regions instead of keypoints. We discuss the
influence of discontinuities in 3d-scenes in general, and evaluate each detec-
tor’s tendency to extract regions on such discontinuities.



Chapter 1

Introduction

For various vision based tasks, it is a promising approach to preselect dis-
tinguished points or regions of interest in camera images at an early stage,
in order to reduce the complexity of further processing. Such points or re-
gions, subsumed as low level visual features, should represent meaningful
properties of the image with respect to the task. In the cases of object
recognition, wide baseline stereo, real time localisation and mapping, align-
ment of overlapping image patches, face recognition and related challenges,
such a meaningful property is the correspondence of a point or region to a
visible 3d-location, regardless of its content on a higher interpretation level.1

That is, a detected feature should match to the same physical ground truth,
not affected by photometric and geometric transformations applied through
capturing the image. Furthermore it should be reliably detected regard-
less of the camera’s pose and illumination conditions, thus providing high
repeatability (Schmid et al., 2000).

In camera images, the most important geometric transformations come
from changing the viewpoint, the camera’s orientation and focal length. The
most important photometric transformations are caused by changing illu-
mination conditions and exposure time. While geometric transformations
change the location and the shape of a feature in the image, photomet-
ric transformations affect its colour or intensity appearance. The detector
should be both covariant to geometric and invariant to—or at least robust
against—photometric transformations. Photometric invariance is a detec-
tor’s ability to detect a feature reliably and unaffected by illumination or
exposure changes. Geometrical covariance for an interest point detector

1For a widespread collection of applications, we refer to the introduction and references
by Mikolajczyk et al. (2005).

1



means that the point will be detected at the transformed location. For a
covariant region detector, in addition to the location, a subset of the applied
transformations has to be extracted. That is, a point or region of interest
should be re-detected reliably, well located and shaped whenever it is visible
in the image.

Having a unique description vector for each of these features, it is possi-
ble to extract 3d-information about a moving scene or camera from pairwise
association of the features in complementary camera images, that is images
of the same scene taken from different viewpoints. Generally, the descrip-
tion vector is extracted from the image texture in the neighbourhood of the
detected point location or inside the detected region. Normalisation of this
texture pattern with respect to the set of transformations expressed by the
detector guarantees the extracted descriptor to be invariant to these trans-
formations. There is a tradeoff between invariance and distinctiveness of
the descriptor. The geometrically normalized image pattern itself provides
the highest possible distinctiveness but is very sensitive to even small local-
isation errors and noise. A descriptor being equal for each feature, would
be perfectly invariant to every transformation, but could not be used for
unique pairwise association of features.

In the computer vision literature, various techniques for extracting such
points or regions of interest were published (see Mikolajczyk et al., 2005).
The set of transformations a detector is covariant to allows a hierarchical
classification of the proposed techniques. We focus on the most advanced
family, region detectors being covariant to affine (Matas et al., 2002; Miko-
lajczyk and Schmid, 2004; Tuytelaars and Van Gool, 2004) or at least simi-
larity transformations (Lowe, 1999).

This work addresses the problem of evaluating the performance of such
region detectors under viewpoint change in general 3d-scenes. We refer
to and use the generally accepted work by Mikolajczyk et al. (2005) and
Fraundorfer and Bischof (2005) and compare our results with theirs. We
introduce a new evaluation criterion, the discontinuity ratio and discuss its
relevance for further research.

In Chapter 2, we briefly reference the related work. After introducing
notational conventions and basic concepts, like the pinhole camera model
and homogeneous transformations, we introduce the examined detectors in
Chapter 3. In Chapter 4, we substantiate our decision to evaluate the Dif-
ference of Gaussian (DoG) detector as a region detector instead of a point
detector. We illustrate our evaluation framework and method and compare
it to the related work by Fraundorfer and Bischof (2005). In Chapter 5,
we show and discuss the experimental results and, after all, present our
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conclusions.
Like Fraundorfer and Bischof (2005), we use the publicly available im-

plementations of the MSER, the Harris- and Hessian-Affine and the IBR
and EBR detectors by Mikolajczyk et al. (2005) for our experiments. The
detailed design of the detectors is beyond the scope of this work. For further
information, we refer to the excellent synopses of Mikolajczyk et al. (2005,
Section 2) and Lowe (2004).
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Chapter 2

Related Work

In 2000, Schmid et al. presented their evaluation framework for interest
point detectors. They defined interest points as 2d-locations with a signifi-
cantly changing signal in both dimensions and introduced the repeatability
score as an evaluation criterion for the ‘geometrical stability of the detected
interest points [ . . . ] under varying viewing conditions’ (Schmid et al., 2000,
page 151). A high repeatability score signalises the capability of a detec-
tor to re-detect the same visible 3d-locations independently from mapping
through changing viewpoints and illumination.

They evaluated each examined detector’s repeatability score under im-
age noise, illumination variation, zoom (scale change), image rotation and
viewpoint change. The evaluation is performed on images of two planar
scenes. For each transformation, there is a sequence of images per scene
with progressive transformation rate. For the affine transformations and
viewpoint change, the ground truth projection of a location in image Ii to
image Ij is defined by a priorly determined homography Hij . Furthermore,
the authors discuss the repeatability score depending on localisation error ε.

An improved version of the Harris detector (Harris and Stephens, 1988)
by the authors showed the best results compared to the inspected detectors,
especially in presence of affine and viewpoint changes. Results are very good
for a maximum localisation error ε ≥ 1.5px.

Mikolajczyk et al. (2005) extended this framework for the evaluation of
affine covariant region detectors using a similar repeatability score. This
work is strongly related to the ‘Performance evaluation of local descriptors’
by Mikolajczyk and Schmid (2003), where they reviewed state of the art de-
scriptors for such regions regarding their distinctiveness, robustness and ad-
equacy for the detector-specific image content. The Scale Invariant Feature
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Transform (SIFT) descriptor by Lowe (2004) and an improved SIFT-based
descriptor by the authors showed the best results independently from the
detector.

They published an image data set similar to that of Schmid et al. (2000)
for the following image changes: JPEG-compression, illumination variation,
blur and zoom (scale change), image rotation and viewpoint change. The
evaluation included the Harris- and Hessian-Affine region detector (Miko-
lajczyk and Schmid, 2004), an intensity based (IBR) and an edge based
(EBR) region detector (Tuytelaars and Van Gool, 2004), a maximally stable
extremal region (MSER) detector (Matas et al., 2002) and a salient region
detector (Kadir et al., 2004). The maximally stable extremal region (MSER)
detector showed the highest repeatability score in all test sequences except
for blur and JPEG-compression.

Correspondences are identified by region overlapping instead of localisa-
tion accuracy, thus considering the regions shapes. The maximum overlap
error for a correspondence was fixed to εO = 40% in their experiments.
Introducing a matching score, the authors rated the distinctiveness of the
extracted regions. For each region, they extract the SIFT descriptor from
an intensity pattern, geometrically normalised with respect to the transfor-
mation expressed by the detector. A true match is the nearest neighbour in
SIFT descriptor space if the overlap error of both regions εO is lower than
40%.

While the MSER and IBR detectors showed very good matching scores
but a low absolute number of matches, the Harris- and Hessian-Affine de-
tectors provide a higher absolute number of matches, but also a higher rate
of false positives. The region detectors were found to be complementary.
Thus, the combination of different detectors would necessarily increase the
absolute number of correct detections and matches as well as the required
processing time.

Both, the frameworks of Schmid et al. (2000) and Mikolajczyk et al.
(2005), restrict the evaluation in case of viewpoint change to planar scenes
only. The authors argue this to be no limitation due to the fact that in-
fluences of occlusion, discontinuities and shadows are not modeled by the
detectors (Schmid et al., 2000, see).

In practice, the discussed interest point and region detectors were suc-
cessfully applied for solving general 3d-reconstruction and -recognition prob-
lems like object recognition and simultaneous localisation and mapping (e. g.
Lowe, 2004; Se et al., 2001) including these non-planar effects. Thus moti-
vated, Fraundorfer and Bischof (2005) proposed to take them into account,
in order to investigate the influence of non-planarity to the specific detectors.
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Instead of image sequences of planar scenes, they recorded two sequences,
a set of textured boxes and an office interior, with a moving camera, such
increasing the viewpoint angle from 0◦up to 90◦. The camera’s parameters
are known, the camera is assumed to be perfectly rectified. From the first
two images of each scene, they created dense disparity maps through stereo
matching. Such they were able to transfer a pixel location from the first
two images of the sequence into each of the other images using the trifo-
cal tensor (see Hartley and Zisserman, 2006, part 3), using the disparity
matches as ground truth. They re-evaluated the Harris, Hessian and Differ-
ence of Gaussian detectors as interest points and the Harris- and Hessian-
Affine (Mikolajczyk and Schmid, 2004), the IBR (Tuytelaars and Van Gool,
2004) and MSER (Matas et al., 2002) detectors as affine covariant regions
for viewpoint changes comparable to Schmid et al. (2000) and Mikolajczyk
et al. (2005). For the interest point detectors, they used the maximum lo-
calisation error ε ≥ 1.5px, introduced by Schmid et al.. For region detectors,
they transferred each pixel location in a region detected in the first image
to the other image. Then the overlapping rate is the ratio of intersection’s
over union’s cardinalities. Regions overlapping more than 50% are counted
as correspondences.

The MSER and the DoG detectors performed best in the box-scene. In
the more complex office-scene, the IBR and the DoG detectors were best
rated. Referencing Mikolajczyk et al., the authors evaluated the matching
score of the detectors using the SIFT descriptor where the MSER detector
performed best. Furthermore, they confirm the result of Mikolajczyk et al.,
that the detectors are complementary.
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Chapter 3

Foundations

3.1 Notation

In the following, we specify notational conventions for a common formal
representation of reference frames, vectors, matrices and transformations.

3.1.1 Reference frames

We distinguish three equally scaled reference frames: The world coordinate
frame W and the camera coordinate frame C in Euclidean 3-space R3 and
the image coordinate frame I in Euclidean 2-space R2. Projective n-spaces
require an additional homogeneous component. As depicted in Figure 3.1,
the coordinate frames are left-handed like in POV-Ray (see Cason et al.,
2006). Rotations are also left-handed, looking into the positive direction of
the rotation axis, the positive rotation direction is counter-clockwise.

For image processing, there is a pixel reference frame P derived from
the image coordinate frame through scale and translation. In contrast to
most current image processing applications, the left-handedness implies the
origin of the frame to be in the lower left corner. In order to transfer a
2d-location in a pixel coordinate frame having its origin in the upper left
corner into the left handed pixel coordinate frame used here, one has to flip
the v-component. (

uPl

vPl

)
=

(
uPr

vP
max − vPr

)
(3.1)
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3.1.2 Vectors and matrices

All vectors in Euclidean n-space Rn are presented as vertical aligned scalar
tuples or bold lower case letters, optionally superscripted by the referenced
frame. We use x, y, z for the axes-components in 3-space and u, v in 2-
space. Using these symbols, the axes of a reference frame A can be denoted
as vectors of another reference frame B with superscript A and subscript B,
e. g.

xW =

x
y
z

 xW = (x, y, z)T xI = (u, v)T

yW
W = (0, 1, 0)T zW

C = (a, b, c)T xC
W =

2xC
C + yC

C

|xC
W|

Matrices are presented as rectangular scalar arrays or as bold uppercase
letters. I denotes the identity matrix. Matrices can be written as combina-
tions of matrices and vectors, e. g.

A =

a b c
d e f
g h i

 P̃CW =
[
R|tW

]
Projective transformation necessitates the introduction of homogeneous

coordinates, denoted by a superscript tilde, e. g. x̃C = P̃CWx̃W. We assume,
the reader is familiar with transformations using homogeneous coordinates
(see Hartley and Zisserman, 2006, part 0), the most common transformation
matrices are collected in Appendix A.

Figure 3.1: Positive rotation direction in left-handed coordinate frames is
counter-clockwise.
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3.2 The pinhole camera

The pinhole camera model simplifies the mapping of 3d-locations in the
world coordinate frame onto a 2d-viewing plane consisting of pixels to a
linear perspective projection PIW without distortion and other perturbation.
We briefly introduce the most important concepts and the parameters used
in this work. For a detailed description, we refer to Hartley and Zisserman
(2006, part 1).

3.2.1 Inner parameters

The inner parameter set of a pinhole camera applies the transformation
from a 3d-location xC in the camera coordinate frame to a homogeneous
2d-location x̃I in the image coordinate frame and—furthermore—scale and
translation to a homogeneous 2d-location x̃P in the pixel coordinate frame.

The visible frame is defined by the horizontal angle of view µ and the
vertical over horizontal frame size ratio rv/u. Perspective mapping of a 3d-
location xC from the camera into the image coordinate frame is performed
by the perspective transformation matrix KIC.

x̃I = KICxC (3.2)

KIC =


1

tan µ
2

1
rv/u tan µ

2

1

 (3.3)

The image-to-pixel transformation matrix PPI translates the origin to
the lower left corner of the frame and scales with respect to the horizontal
and vertical pixel resolution umax and vmax. After applying PPI to x̃I, the
coordinates are in the pixel coordinate frame.

x̃P = PPIx̃I (3.4)

PPI =

umax

vmax

1

1 tan µ
2

1 rv/u tan µ
2

1

 (3.5)

Both matrices are finally combined to the camera-to-pixel matrix KPC.

KPC = PPIKIC (3.6)
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Figure 3.2: Camera orientation.

3.2.2 Outer parameters

The camera coordinate frame C preserves angles and scale of the world co-
ordinate frame W. So C must result from rotation RWC and translation tWC

of W. Both, rotation and translation, can be zero.
The translation vector tWC is equal to the cameras location. Its orienta-

tion is indirectly defined by a location lW, the camera looks at, and a sky
vector sW defining its virtual horizon. The principal axis vW (the viewing
direction) of the camera is the difference of lW and tWC.

The columns of the rotation matrix RWC are the axes of the cameras
coordinate frame. Each axis length is 1. The axes can be derived from the
vectors sW and vW due to orthogonality.

Let norm : Rn 7→ Rn be the normalization operator, scaling a vector to unit
length.

norm (x) =
x
|x|

Then the z-axis of C is the principal axis scaled to unit length.

zW
C = norm

(
vW

)
(3.7)

The x-axis of C is per definition perpendicular to the z-axis and the sky
vector sW. Therefore it is the vector product of the sky vector sW and the

10



z-axis zW
C scaled to unit length.

xW
C = norm

(
sW × zW

C

)
(3.8)

The y-axis of C is per definition perpendicular to the z-axis zW
C and the x-

axis xW
C . Such it is the vector product of z-axis zW

C and x-axis xW
C , already

having unit length.

yW
C = norm

(
zW
C × xW

C

)
(3.9)

In order to get the coordinates of a fixed 3d-location in camera coordi-
nates having world coordinates, the transformations defining the cameras
location and orientation have to be applied inversely. For translation this is
easily done by negation.

tCW = −tWC (3.10)

For a rotation matrix the orthogonality condition guarantees that the
inverse of the matrix is equal to its transpose.

RCW =
(
RWC

)−1
=

(
RWC

)T
(3.11)

The 4×3 homogeneous matrix PPW, transferring a homogeneous 4-vector
in W onto a homogeneous 3-vector in P comes from consecutively applying
the aforementioned transformations.

x̃P = PPWx̃W (3.12)

PPW =
[
KPC|0

] [
RCW RCWtCW

0 1

]
(3.13)

3.3 Region detectors

In the following, we give a short introduction in how the inspected region
of interest detectors work, what kind of regions they preferably detect and
what their covariance properties are. For further details, we reference the
authors of each method.
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3.3.1 Difference of Gaussian (DoG) detector

A finite scale space L(σ, u, v) is built from an intensity image I(u, v) by
convolving it with Gaussian kernels G(σ, u, v) with increasing σ. Neighbours
over the finite scale domain σ are separated by a constant factor k.

L(σ, u, v) = G(σ, u, v) ∗ I(u, v) (3.14)

G(σ, u, v) =
1

2πσ2
e(u2+v2)/2σ2

σi+1 = kσi

The difference of two adjacent scales D(σ, u, v) = L(kσ, u, v)−L(σ, u, v)
is a constantly scaled approximation of the scale normalised Laplacian of
Gaussian σ2∇2G(σ, u, v) (Lindeberg, 1994). Extrema of the Laplacian—
and so the Laplacian of Gaussian as well—denote locations, where the sig-
nal changes significantly in at least one direction. The characteristic size
of a local structure is indicated by a local extremum over scale of the scale
normalised Laplacian (Mikolajczyk and Schmid, 2004). Such a local ex-
tremum D at x = (σ, u, v)T is either greater or lower than each of its
26 neighbours D(σi+a, u+b, v+c) with a, b, c = {1, 0,−1}. Each detected ex-
tremum x̂ is located with subpixel-accuracy by interpolation through fitting
a 3d-quadric function to D(x) and its local neighbourhood. The interpolated
value D(x̂) is used to reject detections with low contrast.

The Difference of Gaussian—and so the Laplacian of Gaussian as well—
have strong responses alongside edges. These detections are rejected by
evaluating its cornerness using the approach by Harris and Stephens (1988).
The eigenvalues α and β of the Hessian matrix H(x̂) of D(x̂) are propor-
tional to the principal curvatures of D(x̂). Homogeneous areas are indicated
by two low principal curvatures, edges by one high and one low curvature
and corners by two high curvatures. Because the detection process responds
on edges and corners only, it is sufficient to estimate the ratio r of the two
eigenvalues α = rβ, which is related to the trace Tr(H) and the determi-
nant Det(H).

H =
[
Duu Duv

Duv Dvv

]
(3.15)

Tr(H)2

Det(H)
=

(r + 1)2

r
(3.16)
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The image gradients in a region around x̂ are gathered in an orientation
histogram. Each value is weighted by the gradients amplitude and a Gaus-
sian window with σI = 1.5σ̂. The dominant orientation is then interpolated
from the highest histogram bin and its neighbours. If there is more than
one dominant orientation, the detection is duplicated for each of them.

The selected regions are blobs in characteristic scales. The detection
process is covariant to translation, rotation and isotropic scale. Furthermore
it is robust against significant arbitrary transformations and illumination
changes. Due to the covariance restriction to similarity transformations, an
extracted region descriptor for one of these detections can not be invariant
to projective transformations introduced by large viewpoint changes.

For further details, see Lowe (2004).

3.3.2 Harris- and Hessian-Affine detectors

Both approaches are quite similar and differ in the initial keypoint selection
technique only. The Harris-Affine detector uses the second moment ma-
trix M, the Hessian-Affine detector the Hessian matrix H. Locations with
a local maximum of both of the matrix’ principal curvatures are detected
over a finite differentiation scale space σD with σI being an integration scale
slightly greater than σD for noise reduction.

M = M(σI , σD, u, v)

= σ2
DG(σI , u, v) ∗

[
I2
u(σD, u, v) IuIv(σD, u, v)

IuIv(σD, u, v) I2
v (σD, u, v)

]
(3.17)

H = H(σD, u, v) =
[
Iuu(σD, u, v) Iuv(σD, u, v)
Iuv(σD, u, v) Ivv(σD, u, v)

]
(3.18)

Both approaches detect one local structure over continuous scales. The
characteristic scale of the structure is identified by an extremum of the
Laplacian over scale. That is, for the Hessian-Affine detector, keypoint
detection and scale selection are almost equivalent to those of the DoG
detector in reversed order.

The affine shape of each keypoint is defined by a transformation, that
projects the anisotropic pattern of the points neighbourhood to an isotropic
one, having equal eigenvalues. ‘This transformation is given by the square
root of the second moment matrix M1/2’ (Mikolajczyk et al., 2005, page 50),
up to a rotation factor. The rotation factor can be identified with a method
similar to the orientation assignment of the DoG detector.
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The Harris-Affine detector detects regions on local structures being cor-
ners, junctions and spots at a characteristic scale. The Hessian-Affine de-
tector detects blobs at characteristic scales. Both detectors are covariant to
translation, rotation and anisotropic scale, thus being invariant to signifi-
cant viewpoint changes. One disadvantage of the detection of regions around
corners is the increased probability to handle regions covering discontinu-
ities in 3d-space (see Section 4.2 for a detailed discussion). Especially the
Harris-Affine detector’s applicability is affected by this drawback.

For further details, see Mikolajczyk and Schmid (2004).

3.3.3 Maximally Stable Extremal Regions (MSER)

Binary thresholding an intensity image means, that all pixels with an inten-
sity below the threshold are marked as black and those above or equal as
white. Black regions represent local minima, white regions local maxima,
both are extremal regions. A threshold space is built by thresholding the
image at all available intensities. For a typical 8-bit-grey-value image this
is S = {0, . . . , 255}. Depending on whether starting from the lowest or the
highest threshold, black or white regions appear and grow when traversing
through the space alongside the threshold axis. In each thresholded image,
the extremal regions are marked as connected components, thus building a
nested stack for each of the components. At some thresholds two or more
components join to one. These thresholds and those where the shape of the
component changes significantly are unstable and poorly located, especially
in case of intensity changes and introduction of noise. The maximally stable
extremal regions are extracted from the stacked components at a threshold
representing a local minimum in the difference of the component’s area at its
predecessor and its successor in threshold space. Predecessor and successor
do not have to be adjacent to the inspected threshold, the differentiation
width is a parameter of the method. Increasing this parameter decreases
the number of detected regions by rejecting less stable ones.

The selected regions are intensity maxima or minima with significant
boundary contrast of arbitrary shape covering a wide variety of region size.
They are invariant to affine intensity changes and covariant to adjacency
preserving transformations, including rotation, scale change and perspective
transformation. The algorithm necessarily fails on significantly smoothed
images.

For further details, see Matas et al. (2002, Section 2).
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IBR EBR

Figure 3.3: Construction of the IBR and EBR detectors (Tuytelaars and
Van Gool, 2004).

3.3.4 Intensity based region (IBR) detector

The detection method begins with detecting local intensity maxima and
minima in an intensity image. To avoid the influence of noise, the image is
priorly smoothed. Starting from each extremal point, a number of rays is
emitted equally covering all directions D = {0◦, . . . , 360◦}. Alongside each
ray, a significant change of the pixel intensities is located by finding a local
maximum evaluating the function

f(t) =
abs (I(t)− I(0))

max
(

t∫
0

abs (I(t)− I(0)) dt/t, d

) (3.19)

with I(t) being the pixel intensity at position t, and d being a small number
to prevent division by zero. The maxima of all rays are linked to each other
and an ellipse is fitted to the resulting shape. Like depicted in Figure 3.3,
the area of this ellipse is finally doubled.

The selected regions are intensity extrema comparable to those detected
by the MSER detector. In contrast to those, the IBRs do not necessarily
have a high contrast boundary. Thus, the IBR detector is less sensitive to
smoothing.

It must fail, if scale change introduces additional local extrema inside the
prior detection. Thus, the variety of detectable region sizes is significantly
lower than those of the MSER, limiting the scale covariance. Neverthe-
less, the detector is invariant to illumination changes and covariant to affine
transformations.

For further details, see Tuytelaars and Van Gool (2004, Section 5).
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3.3.5 Edge based region (EBR) detector

This geometry-based method relies on the presence of corners and edges.
Starting from a Harris corner point p = (up, vp)T (Harris and Stephens,
1988), two points p1 and p2 are sent out along the two nearby Canny edges
(Canny, 1986). Moving p1 with constant speed, at each time t its actual
position on the edge is defined by an arbitrary curve-parameter s1. For
each p1(s1), p2(s2) is uniquely defined by equalizing the relative invariant
parameters l1 and l2.

li =

si∫
0

abs (|Ai|) dsi

Ai =
[
p′i(si) p− pi(si)

]
 i = 1, 2 (3.20)

That is, the area between the edges and the lines 〈p,p1(l1 = l2)〉 and
〈p,p2(l1 = l2)〉 are equal, like depicted in Figure 3.3. This criterion is
invariant to affine transformations. The points p, p1(l1 = l2) and p2(l1 = l2)
define a parallelogram Ω(s1, s2) = Ω(l1 = l2). In a finite range of (l1 = l2),
the photometric functions f1(Ω) and f2(Ω) are evaluated.1 p1 and p2 are
stopped at a point where one of these functions runs through an extremum.

f1(Ω) = abs
(
|p1 − pg p2 − pg|
|p− p1 p− p2|

)
M1

00√
M2

00M
0
00 −

(
M1

00

)2
(3.21)

f2(Ω) = abs
(
|p− pg q− pg|
|p− p1 p− p2|

)
M1

00√
M2

00M
0
00 −

(
M1

00

)2
(3.22)

with Mn
pq =

∫
Ω

In(u, v)upvqdudv and pg =
(

M1
10

M1
00

,
M1

10

M1
00

)T

In the case of straight lines, s1 and s2 are decoupled because l1 and l2 are
zero for each t. It is therefore necessary, to evaluate f1 and f2 in Ω(s1, s2) for
two independent parameters instead of one. p1 and p2 are stopped, where
both, f1(Ω) and f2(Ω), run through a minimum.

The detector selects parallelogram regions at corners and the adjacent
edges. Ideally, these parallelograms are covariant to rotation, shear and
anisotropic scale. Scale covariance is limited by the restriction of the search

1The authors of the method, Tuytelaars and Van Gool (2004), give an overview and
detailed description of the used photometric functions.
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space for s1 and s2 and local photometric properties in the parallelogram.
The detector is invariant to changing intensity offset.

For further details, see Tuytelaars and Van Gool (2004, Section 5).

3.4 Repeatability

The repeatability score rij is the ratio of the number of re-detected points or
regions (correspondences) to the minimal number of detections in image Ii

or image Ij , being visible in both images. That is, the repeatability score
is in the range 0 ≤ rij ≤ 1. A repeatability score rij = 0 means, that there
where no repeatable detections, rij = 1 means, that all possible detections
were detected repeatably. The comparison to the minimal number of com-
mon visible detections is necessary, because coarser scaled images can not
represent the fine local structures of finer scaled images.

For interest point detectors, a correspondence is determined by the lo-
cations of the points. An interest point xi in image Ii is considered to be
re-detected in image Ij if there is exactly one interest point xj detected
in image Ij within a distance |xj − xj

i |< ε from the transferred location
xj

i = xi → Ij .

rij(ε) =
|Cij(ε)|

min (|Pi|, |Pj |)
(3.23)

with Cij(ε) being the set of correspondences with respect to localisation
error ε and Pi and Pj being the sets of interest point detections in the
commonly visible parts of images Ii and Ij .

For region detectors, the area covered by a region has to be taken into
account. A region ri in image Ii is considered to be re-detected in image
Ij if there is exactly one region rj detected in image Ij that overlaps more
than a minimal overlapping rate 1− εO with the transferred region ri → Ij .
Then εO itself is the overlap error.

rij(εO) =
|Cij(εO)|

min (|Ri|, |Rj |)
(3.24)

with Cij(εO) being the set of correspondences with respect to overlap er-
ror εO and Ri and Rj being the sets of interest point detections in the
commonly visible parts of images Ii and Ij .

A high repeatability score is a necessary criterion for a detectors appli-
cability in recognition tasks.
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Chapter 4

Method

This work is focused on the evaluation of low level region of interest de-
tectors for changing viewpoint in non-planar scenes. Mikolajczyk et al.
(2005) estimated the repeatability score of affine-covariant region detectors
for viewpoint changes on images of planar scenes. Fraundorfer and Bischof
(2005) extended this analysis to non-planar scenes, implicitly assuming that
there is no occlusion. We extend their evaluation method with regard to
the influence of occlusion. We expect our results to be more accurately cor-
responding to what the implication of the repeatability evaluation is—the
applicability of a detector for extracting region descriptors, which are in-
variant to a set of transformations albeit distinctive. We expect an inverse
correlation of a detector’s tendency to detect regions covering discontinuous
edges and its repeatability score. Taking occlusion into account will decrease
the potential overlapping of transferred regions. Compared to the results
of Fraundorfer and Bischof (2005), we expect to estimate lower repeatabil-
ity scores for detectors covering more discontinuous edges. We substantiate
the correlation by estimating the discontinuity ratio as a measure for this
tendency for each detector. We discuss this in Section 4.2.

Mikolajczyk et al. (2005) argue that larger region sizes increase the over-
lapping and thus the repeatability. They showed that this holds in planar
scenes. We expect a contrary effect in non planar scenes due to the rising
influence of occlusion and displacement alongside discontinuous edges with
increasing region size. We discuss this in Section 4.5.

Like Fraundorfer and Bischof (2005), we use the implementations of the
Harris-Affine, Hessian-Affine, IBR, EBR and MSER detectors provided by
Mikolajczyk et al. (2005). As mentioned in Chapter 2, Fraundorfer and
Bischof also evaluated a set of interest point detectors including the Differ-
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ence of Gaussian (DoG) detector by Lowe (2004). Beeing a similar-covariant
detector, the DoG provides scale invariance, and scale can not be expressed
by a point. Thus—to deal with it as a point detector using a fixed maximal
localisation error ε, violates the correlation of the evaluated property and
the potentially extracted description vector for detected locations. While
accepting two detections of completely different sizes at nearly the same lo-
cation, good correspondences at larger scales, located very close with respect
to its scale but too far with respect to pixel size, are rejected. Furthermore,
adjacent locations in image Ii are not necessarily adjacent in image Ij in
non-planar scenes due to the influence of depth discontinuities (see Sec-
tion 4.2). Therefore, we handle the detector as a region detector similar to
the affine-covariant detectors, testing the region overlap.

In their test framework, Fraundorfer and Bischof (2005) used sequences
of photographs from known camera positions and acquire ground truth for
pixel locations in the first image from stereo matching the first two images of
a sequence. While stereo matching provides very good results for continuous
textured surfaces, it introduces errors through mismatching at discontinu-
ities and significant large areas without matches at homogeneous regions. In
their evaluation, the authors reject those regions which cover such ‘empty’
areas by more than 50% of their size. Regions covering these areas by less
than 50% are marked for manual inspection.

Instead of photos and disparity maps from stereo matching, we use arti-
ficially generated image sequences of three detailed POV-Ray scenes by the
artists Tran and Piqueres1. Per pixel ground truth is acquired by ray-casting
from the camera’s origin through each pixel, thus acquiring the 3d-location
and surface normal at the rays point of intersection with the closest object
surface. The rendered results appear ‘photo-realistic’ to human observers,
including direct and indirect illumination, shadows, planar and non-planar
surfaces and textures, reflection and refraction. All three scenes show com-
plex non-planar scenes of every day environments. The images are obtained
using the pinhole camera model, such performing only linear transformations
throughout the projection. Therefore, the rendered images are perfectly rec-
tified without any geometrical distortions (like barrel, pincushion or wave
distortion) and static photometric disturbance (like shading and chromatic
aberration). In practice, a vision system can remove such disturbances from
an image prior to the application of the feature detector. It is straightfor-

1The scene files are publicly available in the Internet at http://www.oyonale.com/

ressources/english/sources16.htm and http://www.ignorancia.org/en/index.php?

page=Sources_map
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ward to rectify the images sufficiently through appropriate static calibration.
Using a homography (see Schmid et al., 2000; Mikolajczyk et al., 2005) or the
trifocal tensor (see Fraundorfer and Bischof, 2005) also implies the pinhole
camera model by preserving linearity.

In fact, in the same way as the authors of all three evaluation frame-
works do, we assume that the captured pixel intensity directly results from
the closest rigid surface and, that all surfaces are Lambertian, such having
constant radiance for all directions. This assumption does, of course, not
hold for transparent, glossy or mirroring surfaces. So, the introduction of
such materials, like in photographs of every day environments as well as in
the used artificial scenes, will degrade the quality of intensity based low level
feature detectors, like the examined.

4.1 Data Set

The test framework consists of a sequence of 10 images per scene, each
representing a progressive viewpoint change from 0◦ up to 90◦. The camera
is moved alongside a circle around an axis through the point the camera looks
at in 10◦-steps. In the Mini and Office scene this axis is parallel to (0, 1, 0)T,
in the Town street scene it is a skew vector parallel to (−1, 0.5, 0)T in world
coordinates. The sky vectors in the Mini and Office scene are static and equal
to the y-axis of the world coordinate frame. So the cameras orientation is
changed only by panning and tilting. In the Town street scene, the sky
vector progressively rotates about the worlds z-axis for 45◦, such adding
rolling to the orientation change.

For each image, there is a ground truth map file, that contains the unique
camera definition and 3d-location and surface normal in world coordinates
for each pixel of the image. Our images—and so the ground truth maps as
well—have a size of 640× 480px.

4.2 Discontinuities in non-planar scenes

The camera’s location and orientation define a plane through the camera
centre, containing the x- and y-axis of the camera coordinate frame and
being perpendicular to the cameras principal axis—the camera’s infinity
plane. This plane divides the world 3-space into three parts, the part in
front of the camera (positive z), the part behind the camera (negative z)
and the plane itself (z = 0). Disregarding the finite window and resolution
at the viewing plane, defined by the inner parameters of the camera, 3d-
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0◦ 30◦ 60◦ 90◦

Mini scene by Tran

Office scene by Piqueres

Town street scene by Piqueres

Figure 4.1: Data set. Images and ground truth maps. Each scene is rendered
from a rotating camera changing the viewing direction from 0◦ up to 90◦. All
three sequences consist of 10 images. For each image, a ray-casted 3d-map
provides ground truth per pixel.
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locations in front of the camera are potentially visible—locations behind
the camera or at the infinity plane are not.

As mentioned above, we consider continuous surfaces of rigid objects
with Lambertian reflectance only and assume any other effects to be noise.
Ideally, the intensity value of each surface-location is independent from the
cameras location and orientation.

Each infinitesimal area of an object’s surface in front of the camera is
potentially visible, if the angle of its normal vector and the line connecting
it with the cameras centre is smaller than 90◦. Such a surface area is facing
the camera.

Extracting locations or regions of interest from intensity patterns implies
the assumption, that at least the topology of the pattern is preserved during
projection. The intensity pattern on the viewing plane is therefore assumed
to be the mapping of a 2d-manifold—a continuous surface—in the 3d-world,
steadily facing the camera.

If the normal vectors of all infinitesimal areas of a surface are equal, the
surface itself is planar. Then this projective mapping preserves lines to be
lines and therefore the topology as well. The latter also holds for non planar
surfaces, if—and only if—each of its infinitesimal areas faces the camera. If
the surface partially does not face the camera, the continuity of the mapped
intensity pattern is broken and therefore no longer topologically equivalent
to the surface.

A general 3d-scene consists of a set of objects of arbitrary shape. This
introduces another class of discontinuities—the transition from one object
to another. Because each objects surface represents a 2d-manifold itself,
the presence of more than one on the 2d-viewing plane necessarily requires
discontinuities. Closer objects occlude distant ones.

The perspective mapping induces parallaxes when changing the view-
point through shifting the camera. The relative movement of the mapped
3d-location directly depends on the inverse of its distance to the camera’s
infinity plane, the z-component in camera coordinates. Moving a camera C
on its (x, y)-plane for (a, b)T and assuming µ = 90◦ and rv/u = 1, which
only removes an additional constant scale factor, the homogeneous image-
coordinates of a 3d-location in the cameras former coordinate frame are

x̃I′ =

1 −a
1 −b

1 0

 x̃C =

x− a
y − b

z

 (4.1)

Two adjacent pixels p and q at a discontinuous edge, p representing the
foreground and q the background, are thus shifted for different distances
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Figure 4.2: Parallaxes in non-planar scenes. The relative speed of the 3d-
locations xW

1 and xW
2 mapped to a moving camera’s image frame I depends

on their distance to the camera. xW
1 is occluded for camera location C1 while

being visible for C2.

and can not preserve their neighbourhood. Possibly q disappears due to
occlusion, like depicted in Figure 4.2 and Figure 4.4.

Discontinuities represent the outline of objects and/or break the map-
ping of the intensity pattern of an object’s surface. Therefore they tend to
be significant edges or corners in the image intensity pattern as well. A low
level region detector based on intensities can not distinguish between edges
or corners coming from surface patterns and those coming from discontinu-
ities. Especially the detection of 2d-intensity-changing-speed extrema, like
in the DoG, Harris-Affine and Hessian-Affine detectors, will lead to a signifi-
cant amount of detections at discontinuities. The extraction of a description
vector from an intensity pattern around these locations, possibly normalized
to the expressed transformation (similarity or affinity), can not be invari-
ant to viewpoint changes due to displacement of the pattern as a result of
parallaxes.

In the pixel coordinate frame P, the transferred z-component—and so
its inverse as well—is represented as a function of the pixel coordinates
1
z = f(u, v). For each pixel, a discontinuity score d(u,v)T is defined by the
magnitude of the second gradient of f in u and v.

d(u,v)T =

√(
∂2f

∂u2

)2

+
(

∂2f

∂v2

)2

(4.2)

The discontinuity score of a pixel correlates with the potential displace-
ment of the intensity pattern in the pixel’s neighbourhood when shifting the
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Mini scene Office scene Town street scene

Figure 4.3: Second gradients of 1
z = f(u, v) represent the strength of dis-

continuities. Each in the 3rd image of the sequence, the magnitude of f
is represented by grey-values, normalised to the images average, scaled by
i = 5 and dilated for visualisation purposes. White represents f = 0, black
f ≥ 1

5 .

camera. That is, a region containing pixels with lower discontinuity scores
is expected to be less influenced by potential displacement through camera
movement than a region containing pixels with higher scores. A descriptor
extracted from a region less influenced by displacement is expected to be
more robust to viewpoint changes. Therefore we estimate a region’s discon-
tinuity score dPi being the average of the discontinuity scores of all pixels
inside the region Pi. A detector’s tendency to extract regions on discon-
tinuous edges is expressed by the average of the discontinuity score of all
detected regions {P1, . . . , Pn} relative to the discontinuity score of the whole
image, denoted as discontinuity ratio rd.

rd =

1
n

n∑
i=1

dPi

1
umaxvmax

umax−1∑
v=0

vmax−1∑
v=0

d(u,v)T

(4.3)

If rd > 1, the regions are predominantly located on discontinuous edges,
if rd < 1, predominantly on continuous surfaces. We estimate rd for each
detector from all available images per scene for scale factors from s = 0.25
up to s = 2 applied to all region sizes. We assume rd of region detec-
tors preferring continuous surfaces to decrease for lower scale factors, while
increasing for detectors preferring discontinuous edges. There exists a max-
imum value for each detector’s curve at a detector specific scale. Beyond
this scale value, rd converges to 1 due to the correlation of the scaled region
size to the image’s size.
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4.3 Visibility of 3d-locations

For the repeatability evaluation, it is necessary to check, if a 3d-location,
corresponding to a detection in image Ii, is potentially visible in image Ij .
Using a homography in case of planar scenes or the trifocal tensor for stereo
pairs, one can find out, if the location is inside or outside the finite pixel
frame of image Ij . In a planar scene, a location inside the image is necessarily
visible. In a non planar scene it can be visible as well or invisible due to
occlusion. If ground truth is available for image Ii only, it is not possible
to reliably state about occlusion in image Ij . In our data set, there is
ground truth for each pixel of each image, and such the detection of per
pixel occlusion is possible, as follows.

1. Transfer the 3d-location xW corresponding to the pixel xPi in image Ii

to the pixel reference frame Pj of image Ij , thus getting the homoge-
neous 3-vector xPj = (uj , vj , zj)T = PPjWxW.

2. If zj ≤ 0 or uj

zj
< 0 or vj

zj
< 0 or uj

zj
≥ umax or uj

zj
≥ vmax, the location

is outside the image or behind the camera and therefore not visible.

3. If xPj is inside the image, estimate the minimal and maximal z-value
zmin and zmax of the four pixels next to it in image Ij . If zj ≥ 2zmax−
zmin, the location is occluded.

Inaccuracies from ray-casting the scene and coordinate transfer lead to
false occluded-positives, especially at aslant surfaces, when checking the lo-
cation for beeing behind zmax only. Therefore the slope-dependent tolerance
is introduced.

4.4 Region overlap

Consistent with the work of Mikolajczyk et al. (2005), each detected region
in an image’s pixel frame is implicitly defined by an ellipse (u0, v0, a, b, c, s).
A pixel coordinate (u, v) is inside the ellipse, iff

a(u− u0)2 + 2ab(u− u0)(v − v0) + c(v − v0)2 ≤ s2 (4.4)

The 2d-pixel-location (u0, v0)T is the center of the ellipse, a, b and c
define its shape and size and s is an optional scaling factor. The regions
detected by the DoG are exported as circular ellipses. We decided the circle’s
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10◦ 40◦ 70◦

Mini scene

Office scene

Town street scene

Figure 4.4: Visibility of transferred 3d-locations of the 3rd to the 4th, 7th
and 10th camera of a sequence, such achieving a viewpoint change of 10◦, 40◦

and 70◦. Blue marks locations transferred to outside the camera’s viewing
frustrum, red marks locations occluded for the camera.
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Hessian-Affine DoG

Figure 4.5: Region transfer for arbitrary surfaces. Correspondence pairs
for 40◦ viewpoint change. Cyan marks the ellipse present in this image,
magenta the corresponding ellipse transferred from the other image.

radius to be rσ=1 = 32√
π
px for the original scale. This corresponds to the

area of the potentially extracted SIFT-descriptor window.
All regions, detected in image Ii are tested to be visible in image Ij and

vice versa, thus getting the sets Ri and Rj , containing only the possible
canditates for re-detection. This is done numerically by transferring each
pixel’s 3d-location covered by the region to the other image and checking its
visibility. If more than 50% of the region’s pixel coordinates are visible, the
region is counted to be visible in both images.

For each pair of potentially corresponding regions, the overlap error εO is
estimated from the finite set of pixel coordinates covering the regions, both
seen in image Ii.

εO = 1−
|Pi ∩ P ′

j |
|Pi ∪ P ′

j |
(4.5)

where Pi is the set of all pixel locations inside the region detected in image Ii.
P ′

j is the set of all pixel locations inside the transferred shape corresponding
to the region detected in image Ij . Transferring a visible elliptical region
from image Ii to image Ij leads to arbitrary shapes, possibly wide spread
small subregions all over the image (see Figure 4.5). Therefore all pixel
locations in image Ii have to be tested. A location belongs to the region
in image Ij , if it is visible—inside the pixel frame and not occluded—and
inside the ellipse. Like Fraundorfer and Bischof, we count a pair of regions
to be a true correspondence, if their overlap error is smaller than 50% and if
there is no other region overlapping one of both candidates more than 50%.
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MSER DoG

Harris-Affine Hessian-Affine

IBR EBR

Figure 4.6: Region correspondences in the Mini scene for 40◦ viewpoint
change, detected by the different detectors. Cyan marks the ellipses present
in this image, magenta the corresponding ellipses transferred from the other
image. MSER provides very accurate re-detections. DoG detects a very
large number of regions up to very large scales spread all over the image.
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s = 20 s = 21 s = 22

Figure 4.7: In a planar scene, the overlap error for each region to each other
decreases with increasing scale factor s. The grid visualises the correspond-
ing reference frame.

4.5 The effect of region size

Covariance to scale requires the detection of regions of arbitrary size. The
projected size of a local structure changes continuously, depending on the
angle of view of the camera or its distance to the structure. The output of a
scale covariant detector should therefore show a continuous histogram over
a wide range of region sizes, theoretically bounded by the images inner and
outer scale. The inner scale of an image is its pixel size, its outer scale the
image’s finite dimensions (see Lindeberg, 1994, Section 4.2).

Mikolajczyk et al. (2005) discuss the correlation of the size of regions
and their tendency to overlap each other in planar scenes. They argue larger
regions to overlap better than smaller ones, due to the decreasing relative
localisation error for increasing region size. Increasing the size of the regions
increases the overlapping rate of all regions to each other by decreasing the
influence of localisation errors (see Figure 4.7). Towards infinitely large size,
the relative localisation error tends to zero and the overlapping test would
only compare the shapes of the ellipses. The estimated repeatabillity score,
plotted as a function of region scale will therefore ascend up to a maximum
and then drop due to getting more than one correspondence per region. In
the ascending part, a detector would benefit from detecting larger regions.

The authors avoid this by normalizing the region detected in image Ii to
a fixed radius and scaling the transferred region detected in image Ij with
the same scale factor. Such the size of both regions relative to each other is
preserved while balancing the influence of localisation.

In non planar scenes the situation is slightly different. As a result of dis-
continuities, larger regions do not necessarily overlap better than smaller.
Quite contrary, larger areas tend to contain more discontinuous edges than
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smaller ones, thus introducing more displacement (see Section 4.2 and Fig-
ure 4.5 ). We therefore expect, that increasing the region size will lead to
lower repeatability scores.

Non planarity breaks the direct correlation of overlapping rate and scale
of two candidates. Therefore a normalization to a fixed radius would violate
the regions correspondence to the underlying scene and thus adulterate the
results in a not intended manner. That is, we check the overlapping of two
regions using the original dimensions. We verify our assumption through
performing the experiments with all regions scaled by a factor si = 2i

with i ∈ {−2,−1, 0, 1}.

4.6 Evaluation procedure

4.6.1 Region size

We plot the sizes of the regions detected by a detector in a 197-bin-histogram
with logarithmic scale. Like Mikolajczyk et al. (2005), we estimate the size
of a region being the geometric mean of the ellipse’s both half-axes. This
corresponds to the radius of a circle with the same area. For each histogram,
the detected regions in all 30 images of the data set are used.

4.6.2 Repeatability

We estimate each detector’s repeatability score as a function of viewpoint
change by comparing the set of detected regions in each image to that in
each other image of a sequence. The repeatability score for viewpoint change
of a specific angle is then estimated by arithmetically averaging the scores
of all image pairs expressing the same viewpoint change. Having more than
one image pairs for a viewpoint change, besides averaging, we estimate the
standard deviation of the population. Each scene is evaluated separately.
The repeatability score is plotted as a function of viewpoint change.

To investigate the influence of scaling the region size (see Section 4.5), we
perform the repeatability evaluation for all regions scaled by a factor si = 2i

with i ∈ {−2,−1, 0, 1}. The repeatability score for representative viewpoint
changes is plotted as a function of region scale.

4.6.3 Discontinuity ratio

We estimate each detector’s discontinuity ratio rd as a measure for potential
displacement of detected regions under viewpoint change being its discon-
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tinuity score dP in all images of the sequence normalised relative to the
images discontinuity score dI (see Section 4.2). We arithmetically average
the discontinuity ratios from all images and estimate the standard deviation.
Each scene is evaluated separately.

We verify our assumption regarding the influence of scaling all regions by
repeating the discontinuity evaluation for all regions scaled by a factor si =
2i with i ∈ {−2,−3

2 ,−1,−1
2 , 0, 1

2 , 1}. The discontinuity ratio is plotted as a
function of region scale.
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Chapter 5

Results

5.1 Region size

All detectors detect regions of arbitrary sizes. This is a necessary criterion
for scale covariance. The range of detected sizes and its distribution differs
due to the design of the detectors. The estimated histograms of detected
region sizes are depicted in Figure 5.1.

The MSER detector shows a continuous distribution over a wide range
of region sizes, from very small up to very large regions. There are more
small regions detected than larger ones. This is a necessary consequence of
the property, that the maximally stable extremal regions can not intersect.
A finite image contains more small than large regions in general.

The DoG detector shows a wide range of detected region sizes as well.
The frequency of the discrete scale space is clearly visible, showing a lo-
cal maximum at the scale samples. Due to interpolation of the detections
over image space and scale, the sizes are not limited to the discrete scale
samples. A detected region’s size depends on the initial scale of detection
and consecutive interpolation only, the affine shape of the structure is not
considered. Downscaling an image or its derivatives reduces the absolute
number of extrema, therefore less large regions are detected than smaller
ones.

The Harris- and Hessian-Affine detectors also rely on initial extrema
detection over discrete scales, therefore more small than large regions are
detected. For both detectors, the scale frequency is visible as well. In
contrast to the DoG detector, the size of a detection is not interpolated
over scale, but searched over discrete scale samples. The plot is thus not
continuous.
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Figure 5.1: Histograms of the region sizes detected by the inspected detec-
tors, averaged from all images of all scenes. The MSER and DoG detectors
detect regions over a wide range of sizes. The Harris- and Hessian-Affine
detectors prefer smaller regions while the IBR and EBR detectors detect
regions of medium size within a limited range. Note the visible sampling
frequency of the discrete scale space used by the scale space related detectors
(DoG, Harris-Affine and Hessian-Affine).
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The IBR detector relies on initial intensity extrema detection at a fixed
scale. That is, the presence of finer structures is decreased, while coarser
structures might not be found due to clutter. Furthermore, the boundaries
of each detection are detected within a limited range of possible sizes. Never-
theless, the approach is robust and shows a continuous range of region sizes,
thus providing scale covariance within this range. Note, that the range cov-
ers regions with a radius of 5px ≤ r ≤ 64px, which implies a maximal scale
factor s ≈ 12 being quite sufficient for recognition tasks in camera images.

The EBR detector relies on the initial detection of corner points and
edges detected at a fixed scale. Like for the IBR detector, the possible size
of a region is limited by a fixed restriction of the search space. The plot is
continuous within a range including a scale factor s ≤ 4.

5.2 Repeatability

We evaluate the repeatability score of each detector for viewpoint change in
the interval of 0◦ up to 90◦. We repeat the evaluation with scaled region
sizes up to a factor si = 2i with i ∈ {−2,−1, 0, 1}.

5.2.1 Repeatability under viewpoint change

The number of correspondences decreases with increasing viewpoint change
for all detectors. This is a consequence of two factors, firstly the decreasing
absolute number of valid detections due to the smaller commonly visible
area, and secondly the decreasing repeatability due to the increasing geo-
metric and photometric influence of projective transformation.

On planar Lambertian scenes, the repeatability score is expected to de-
crease continuously with increasing viewpoint change through insufficient co-
variance to the applied geometric transformations (Mikolajczyk and Schmid,
2003; Mikolajczyk et al., 2005). Non-planarity (Fraundorfer and Bischof,
2005) and non-Lambertian reflectance decrease the repeatability as well.
The influence of non-planarity and non-Lambertian reflectance is expected
to be different for changing viewpoint and different scenes, thus affecting
the results non-continuously.

We see, that the repeatability score of all detectors decreases like ex-
pected for increasing viewpoint change. However, it does not necessarily
decrease continuously (see Figure 5.2, the plot of the MSER-detector in the
Mini scene).

Consent with Mikolajczyk et al. (2005) and contrary to the results of
Fraundorfer and Bischof (2005), the MSER detector shows outstanding re-
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Figure 5.2: Repeatability score and absolute number of correspondences,
both as a function of viewpoint change.
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peatability scores compared to the other detectors for all scenes and for all
viewpoint changes. It provides more than 150 correspondences for small
viewpoint changes and still more than 30 correspondences for viewpoint
changes of more than 50◦ in all scenes.

The repeatability score of the DoG detector evaluated from region over-
lapping instead of localisation error is significantly lower than in the evalu-
ation of Fraundorfer and Bischof (2005), but still comparable to the affine
covariant detectors. The DoG detector performs in most cases comparable
to the IBR detector, which showed better results than the EBR, Hessian-
and Harris-Affine detectors. It provides the highest absolute number of cor-
respondences, from more than 300 for small viewpoint changes to more than
50 for viewpoint changes larger than 50◦ in all scenes. Only in the Office
scene, it was slightly outperformed by the MSER detector for viewpoint
changes of more than 70◦.

The absolute number of correspondences detected by the EBR and IBR
detectors drops below 20 for viewpoint changes larger than 50◦ in all scenes.

The Harris- and Hessian-Affine detectors show different results in differ-
ent scenes. While both detectors perform bad in the Mini scene, the results
for the Town street scene are better than for the EBR detector. Especially
the absolute number of correspondences detected by the Hessian-Affine de-
tector in this scene is comparable to the MSER detector. This is all the
more surprising, because both scenes show a comparable environment and
indeed the same car.

Our experiments show significantly lower repeatability scores than those
of Fraundorfer and Bischof (2005) for the IBR and the Harris- and Hessian-
Affine detectors. Due to the reliable ground truth, consideration of occlu-
sion, reverse pixel-location transfer and inclusion of all image pairs represent-
ing the same viewpoint change, our results are more accurate. However—for
the MSER detector, we estimated comparable results. We assume three
drawbacks of their framework being liable for this discrepancy. Firstly,
stereo matching implies discontinuous edges to be continuous while rejecting
continuous homogeneous regions. Secondly, the transfer of pixel-locations
from one image to the other leads to spotted shapes by integer approxi-
mation. Thirdly, the influence of occlusion is negated. All three points
compromise the accuracy of the estimated overlapping rate.

5.2.2 The effect of region size

Especially for large viewpoint changes, all affine covariant detectors perform
best for the originally detected size. Downscaling the region size increases
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Figure 5.3: Repeatability score as a function of region scale, averaged from
all image pairs with a viewpoint change of 10◦and 60◦.
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the influence of potential localisation errors, while upscaling the size in-
creases the potential influence of discontinuities and ambiguous correspon-
dences. The intensity based detectors, MSER and IBR, show similar results
for small viewpoint changes, while the corner based Harris-Affine detector
seems to benefit from increasing the region size, but on a very low perfor-
mance level.

The EBR detector shows better results for lower region scales and small
viewpoint changes. The detected regions are in the neighbourhood of cor-
ners, that can result from discontinuities. Thus downscaling the size de-
creases the probability to cover these discontinuities at least partially.

The DoG detector shows a maximum at lower sizes, this is due to the
relatively large initial size, we fixed for our experiments. Also the larger
number of detections will lead to ambiguous overlapping for larger sizes.
However, below the half of the original size the repeatability score decreases
due to the influence of localisation errors comparable to the affine covariant
detectors.

These results confirm our expectations. Decreasing the region size in-
creases the influence of localisation error and decreases the repeatability
score. In contrast to planar scenes, increasing the region size does not im-
prove the repeatability automatically. The originally detected regions size
shows the best results for most detectors, especially the intensity based de-
tectors.

5.3 Discontinuity ratio

The discontinuity ratio highly depends on scene content. All detectors ben-
efit from presence of continuous textured or structured surfaces with Lam-
bertian reflectance.

The corner based Harris-Affine detector shows a significantly higher ten-
dency to detect regions covering discontinuous edges than the other detec-
tors. Downscaling the region size increases its discontinuity ratio, that is, a
significant number of detections are centered on discontinuous edges. This
observation matches well with the low repeatability scores of the Harris-
Affine detector from our prior experiments.

Not surprisingly, the EBR detector shows very low rates. Tuytelaars
and Van Gool (2004) designed it to address the problem of detections over
discontinuities by selecting a region adjacent to a corner and two edges
instead of the corner itself. Their approach seems to accomplish the task
very well. Increasing the region size includes the corners and edges and
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Figure 5.4: Discontinuity ratio as a function of region scale.

thus increases the discontinuity ratio as well. That is, the low repeatability
score must be originated by unreliable initial detection or inaccurate shape
estimation. We assume the latter, because the initial detection relies on the
Harris corner point detector (Harris and Stephens, 1988), which was rated
to be very reliable by Schmid et al. (2000).

The IBR detector shows lower rates than the MSER detector, which
shows lower rates than the Hessian-Affine detector. All three detectors show
comparable results in case of region scaling. Decreasing the size significantly
decreases their discontinuity ratio, that is, Hessian blobs as well as intensity
extrema are more probably located at continuous surfaces than on disconti-
nuities.
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The DoG detector benefits from providing a very large number of detec-
tions spread all over the image. It is due to the relatively large number and
the relatively large size of the detected regions, that the plot shows only the
descending part of the predicted progression (see Section 4.2).

All these observations clearly fulfill our expectations. Detections over
discontinuities degrade the overlapping rate and thus the repeatability of a
region detector. This matches well to the probability of extracting invariant
region descriptors from the intensity pattern inside a region. The corner
based Harris-Affine detector tends by design to detections on discontinuities.
Scale space blobs (Dog and Hessian-Affine detector) and intensity extrema
(IBR and MSER detector) might be originated by discontinuous corners,
although these phenomena are much more probably located on continuous
surfaces or at a specific distance to the discontinuity. The EBR detector is
succesfully designed to avoid detections on discontinuities.
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Chapter 6

Conclusion

We presented a revised evaluation framework for state of the art low level
affine covariant region detectors under viewpoint change in non-planar scenes.
By using artificially generated scenes and reliable ground truth, we addressed
the drawbacks of the framework by Fraundorfer and Bischof (2005), namely
the non-observance of depth-discontinuities and occlusion as well as inaccu-
rate region overlapping estimation. Furthermore, we evaluated the similar-
ity covariant DoG detector as a circular region detector, thus considering its
scale invariance and the adjacency-dissolving influence of depth discontinu-
ities in non-planar scenes.

All evaluated region detectors, except the MSER detector, showed sig-
nificantly lower repeatability scores in our experiments, especially for large
viewpoint changes. The MSER detector shows by far the best results, the
IBR and DoG detectors performed better than the Harris- and Hessian-
Affine and the EBR detector.

We showed, that the correlation of region size and repeatability score in
planar scenes does not hold in non-planar scenes.

Confirming the observation of Fraundorfer and Bischof (2005), we were
able to show experimentally, that the number of detections covering depth
discontinuities differs for different detectors. We introduced the discontinu-
ity ratio, being a measure for the tendency to detect regions covering depth
continuities. A high discontinuity ratio decreases a detectors repeatability
score by compromising the overlapping rate of the detections.
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Appendix A

Typical Transformations

Each linear transformation in Euclidean 3-space R3 can be expressed using
homogeneous coordinates. The following matrices perform the basic trans-
formations in a left-handed coordinate frame:

1. Scale:

S =

sx

sy

sz

 (A.1)

2. Translate:

T̃ =

1 tx
1 ty

1 tz

 (A.2)

3. Rotate around axis x (tilt) by α:

Rx =

1 0 0
0 cos α − sinα
0 sinα cos α

 (A.3)

4. Rotate around axis y (pan) by β:

Ry =

 cos β 0 sinβ
0 1 0

− sin β 0 cos β

 (A.4)
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5. Rotate around axis z (roll) by γ:

Rz =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (A.5)

6. Perspective transformation from the coordinate frames origin with
(0, 0, 1)T being the principal axis and f beeing the focal length:

P̃ =

f 0
f 0

1 0

 (A.6)

7. Perspective transformation from the coordinate frames origin with
(0, 0, 1)T being the principal axis and µ and ν beeing the horizontal
and vertical angle of view :

R̃ =


1

tan µ
2

0
1

tan ν
2

0
1

 (A.7)
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Appendix B

File formats

Using the vector-to-string and vice versa conversion of the lexical cast-
library (see Dawes et al., 1999–2006), the ground truth maps are thus pre-
sented in the following ASCII-file format:

[3](16,1,-6) location of the camera tWC

[3](8.7,1.8,0) look at lW

1.0

0.75 vertical over horizontal frame size ratio rv/u

[3](0,1,0) sky vector sW

55 horizontal angle of view µ
640 horizontal pixel resolution umax

480 vertical pixel resolution vmax

[3](12.39,0.024,-5.19) pixel 3d-location pW
(0,0)

[3](-0.15,0.97,-0.20) pixel surface normal nW
(0,0)

. . . from the lower left (0, 0) to the upper
right (umax − 1, vmax − 1) pixel of the image

The implementations of the affine region detectors provided by Mikola-
jczyk et al. (2005), and so our implementation of the DoG detector as well,
generate a file containing the ellipse parameters in the following format:

1.0 scale factor s
723 number of detected regions |R|
22.7 313.6 0.001 0.0004 0.014 u0, v0, a, b, c
. . .

Note, that these parameters imply a right handed pixel reference frame,
having its origin in the upper left corner. We therefore have to flip the
coordinates during import.

vP
0 = vP

max − vPr b = −br (B.1)
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