

International Center for Computational Logic

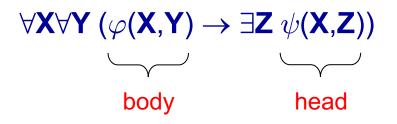
Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 3

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

Syntax of Existential Rules

An existential rule is an expression



- X,Y and Z are tuples of variables of V
- $\varphi(X,Y)$ and $\psi(X,Z)$ are (constant-free) conjunctions of atoms

 \dots a.k.a. tuple-generating dependencies, and Datalog[±] rules

Semantics of Existential Rules

• An instance *J* is a model of the rule

```
\sigma = \forall \mathbf{X} \forall \mathbf{Y} (\varphi(\mathbf{X}, \mathbf{Y}) \to \exists \mathbf{Z} \psi(\mathbf{X}, \mathbf{Z}))
```

written as $J \vDash \sigma$, if the following holds:

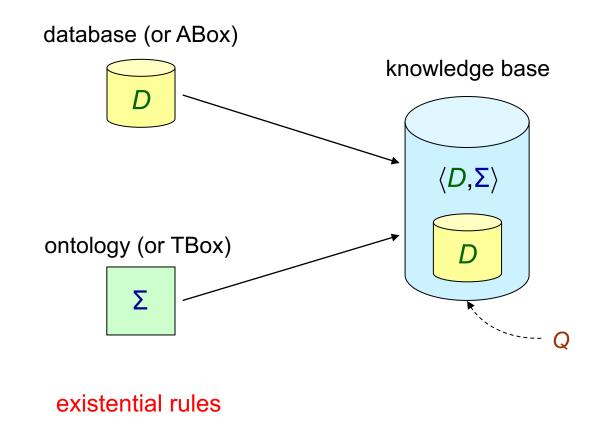
whenever there exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$,

then there exists $g \supseteq h_{|X}$ such that $g(\psi(X,Z)) \subseteq J$

 $\{t \mapsto h(t) \mid t \in \textbf{X}\}$ – the restriction of h to X

- Given a set Σ of existential rules, J is a model of Σ, written as J ⊨ Σ, if the following holds: for each σ ∈ Σ, J ⊨ σ
- It can be shown that $J \models \Sigma$ iff J is a model of the first-order theory $\bigwedge_{\sigma \in \Sigma} \sigma$

Ontology-Based Query Answering (OBQA)



 $\forall \mathbf{X} \forall \mathbf{Y} \ (\varphi(\mathbf{X}, \mathbf{Y}) \to \exists \mathbf{Z} \ \psi(\mathbf{X}, \mathbf{Z}))$

Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

 $\exists \mathbf{Y} (\varphi(\mathbf{X}, \mathbf{Y}))$

- X and Y are tuples of variables of V
- $\varphi(X,Y)$ is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Semantics of Conjunctive Queries

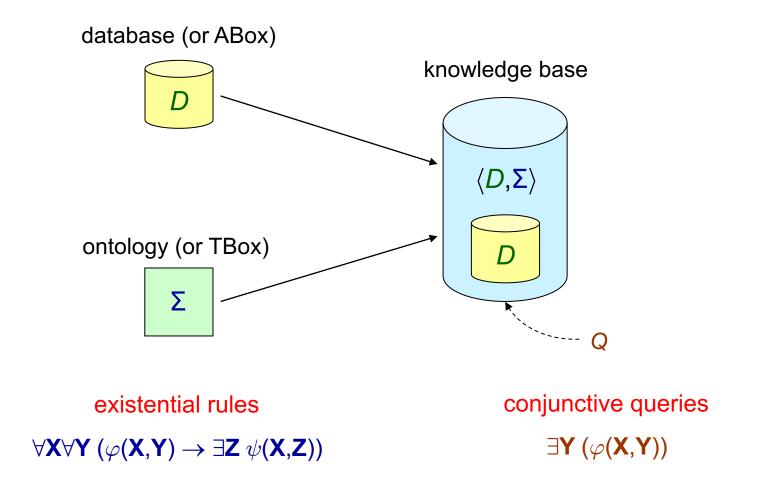
 A match of a CQ ∃Y (φ(X,Y)) in an instance J is a homomorphism h such that h(φ(X,Y)) ⊆ J i.e., all the atoms of the query are satisfied

• The answer to $Q = \exists Y (\varphi(X, Y))$ over J is the set of tuples

 $Q(J) = \{h(\mathbf{X}) \mid h \text{ is a match of } Q \text{ in } J\}$

• The answer consists of the witnesses for the free variables of the query

Ontology-Based Query Answering (OBQA)



OBQA: Formal Definition

active domain – constants occurring in D

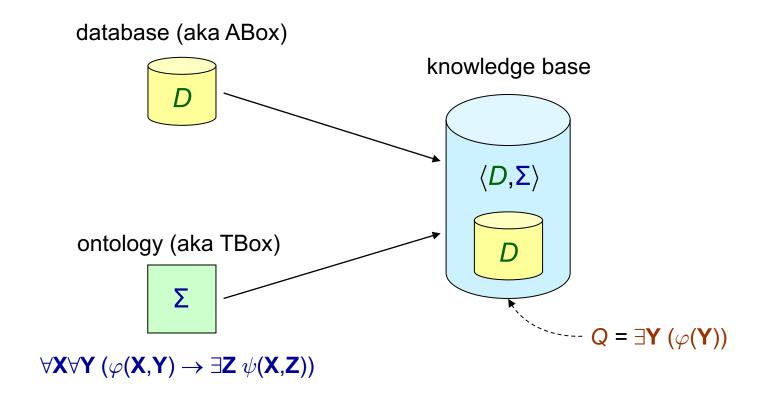
CQ-Answering:

Input: database D, existential rules Σ , CQ Q = $\exists Y (\varphi(X,Y))$, tuple t \in adom $(D)^{|X|}$

Question: decide whether $\mathbf{t} \in \text{certain}(\mathbf{Q}, \langle D, \mathbf{\Sigma} \rangle) = \bigcap_{J \in \text{models}(D \land \mathbf{\Sigma})} \mathbf{Q}(J)_{\downarrow}$

t ∈ certain(Q, ⟨D Σ⟩) iff t ∈ ∩_{J∈ models(D ∧ Σ)} Q(J)_↓ iff ∀J ∈ models(D ∧ Σ), J ⊨ ∃Y (φ(t,Y)) iff D ∧ Σ ⊨ ∃Y (φ(t,Y)) Boolean CQ (BCQ) – no free variables

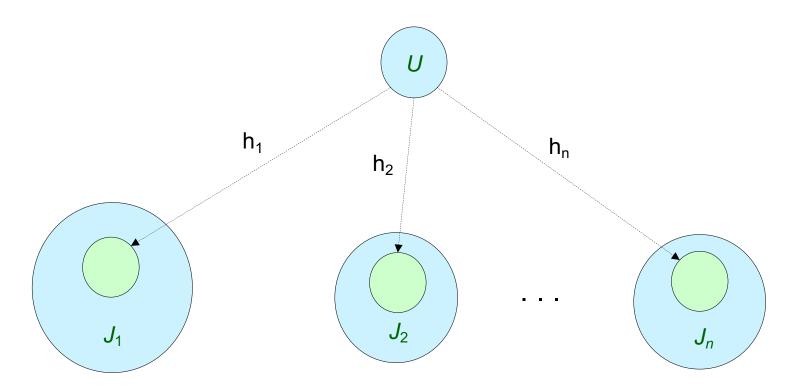
BCQ-Answering: Our Main Decision Problem



decide whether $D \land \Sigma \vDash Q$

Existential Rules – Lecture 2 – Sebastian Rudolph

Universal Models (a.k.a. Canonical Models)



An instance U is a universal model of $D \wedge \Sigma$ if the following holds:

1. *U* is a model of $D \wedge \Sigma$

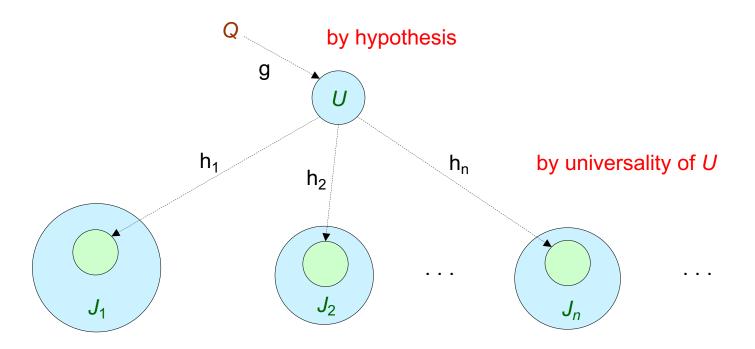
2. $\forall J \in \text{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $h_J(U) \subseteq J$

Query Answering via Universal Models

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

Proof: (\Rightarrow) Trivial since, for every $J \in \text{models}(D \land \Sigma)$, $J \vDash Q$

(\Leftarrow) By exploiting the universality of U



 $D \land \Sigma \models Q$

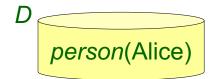
 $\forall J \in \mathsf{models}(D \land \Sigma), \exists h_J \text{ such that } h_J(g(\mathbb{Q})) \subseteq J \quad \Rightarrow \quad \forall J \in \mathsf{models}(D \land \Sigma), J \vDash \mathbb{Q}$

- Fundamental algorithmic tool used in databases
- It has been applied to a wide range of problems:
 - Checking containment of queries under constraints
 - Computing data exchange solutions
 - Computing certain answers in data integration settings

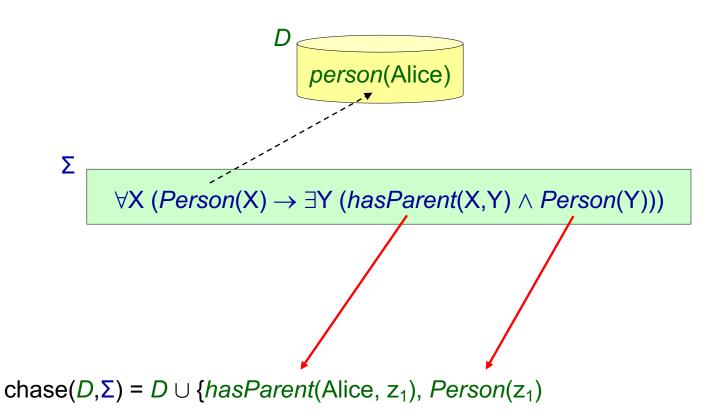
o ...

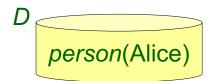
... what's the reason for the ubiquity of the chase in databases?

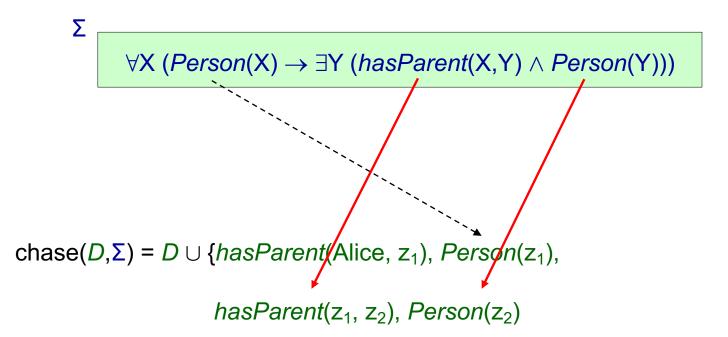
it constructs universal models

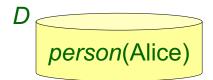


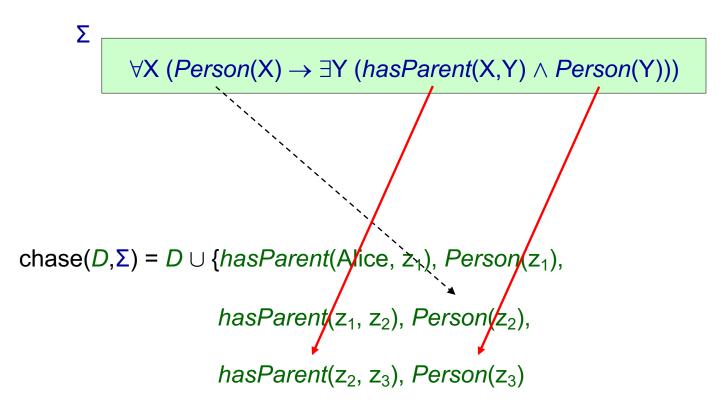
 $chase(D, \Sigma) = D \cup$

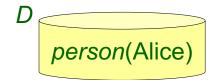












chase(D, Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1)$

 $hasParent(z_1, z_2), Person(z_2),$

 $hasParent(z_2, z_3), Person(z_3), \dots$

infinite instance

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no g \supseteq h_{|X} such that g(ψ (X,Z)) \subseteq J

$$J = \{R(a), P(a,b)\}$$

$$h = \{X \rightarrow a\}$$

$$g = \{X \rightarrow a, Y \rightarrow b\}$$

$$\forall X (R(X) \rightarrow \exists Y P(X,Y))$$

$$J = \{R(a), P(b,a)\}$$

$$h = \{X \rightarrow a\}$$

$$X \rightarrow \exists Y P(X,Y)$$

$$\forall X (R(X) \rightarrow \exists Y P(X,Y))$$

X

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no $g \supseteq h_{|\mathbf{X}}$ such that $g(\psi(\mathbf{X},\mathbf{Z})) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(X,Z))\}$, where $g \supseteq h_{|X}$ and g(Z) are "fresh" nulls not in J
- The result of applying σ to J is J_+ , denoted $J(\sigma,h)J_+$ single chase step

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

```
D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n
```

where no rule from Σ is applicable in J_n .

Then, chase(D, Σ) is defined as the instance J_n

all applicable rules will eventually be applied

• An infinite chase of D w.r.t. Σ is a fair finite sequence

 $D\langle \sigma_1, \mathbf{h}_1 \rangle J_1 \langle \sigma_2, \mathbf{h}_2 \rangle J_2 \langle \sigma_3, \mathbf{h}_3 \rangle J_3 \dots \langle \sigma_n, \mathbf{h}_n \rangle J_n \dots$

and chase(D, Σ) is defined as the instance $\bigcup_{k>0} J_k$ (with $J_0 = D$)

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

the result of the chase after *k* applications of the chase step

Proof:

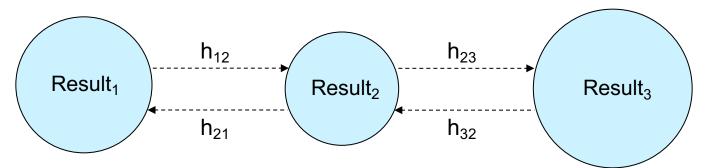
- By construction, $chase(D, \Sigma) \in models(D \land \Sigma)$
- It remains to show that chase(D, Σ) can be homomorphically embedded into every other model of D ∧ Σ
- Fix an arbitrary instance J ∈ models(D ∧ Σ). We need to show that there exists h such that h(chase(D,Σ)) ⊆ J
- By induction on the number of applications of the chase step, we show that for every k ≥ 0, there exists h_k such that h_k(chase^[k](D,Σ)) ⊆ J, and h_k is compatible with h_{k-1}
- Clearly, $\bigcup_{k \ge 0} h_k$ is a well-defined homomorphism that maps chase(D, Σ) to J
- The claim follows with $h = \bigcup_{k \ge 0} h_k$

Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

$$\begin{split} D &= \{P(a)\} \qquad \sigma_1 = \forall X \ (P(X) \to \exists Y \ R(Y)) \qquad \sigma_2 = \forall X \ (P(X) \to R(X)) \\ &\text{Result}_1 = \{P(a), \ R(z), \ R(a)\} \qquad \sigma_1 \ \text{then} \ \sigma_2 \\ &\text{Result}_2 = \{P(a), \ R(a)\} \qquad \sigma_2 \ \text{then} \ \sigma_1 \end{split}$$

• But, it is unique up to homomorphic equivalence



• Thus, it is unique for query answering purposes

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

Corollary: $D \land \Sigma \vDash Q$ iff $chase(D,\Sigma) \vDash Q$

=

- We can tame the first dimension of infinity by exploiting the chase procedure
- But, what about the second dimension of infinity? the chase may be infinite

Rest of the Lectrure

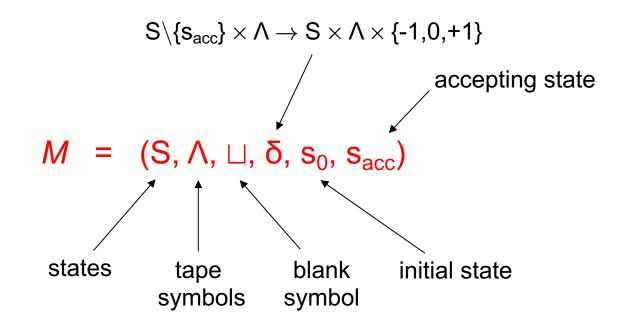
- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

Deterministic Turing Machine (DTM)



 $\delta(s_1, \alpha) = (s_2, \beta, +1)$

IF at some time instant τ the machine is in sate s₁, the cursor points to cell κ , and this cell contains α THEN at instant τ +1 the machine is in state s₂, cell κ contains β , and the cursor points to cell κ +1

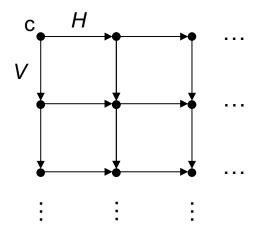
Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM *M* with an empty tape

using a database D, a set Σ of existential rules, and a BCQ Q such that

 $D \wedge \Sigma \vDash Q$ iff *M* accepts

Build an Infinite Grid



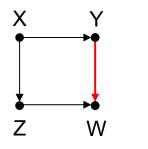
k-th horizontal line represents the *k*-th configuration of the machine

 $\forall X (Start(X) \rightarrow Node(X) \land Initial(X))$

 $D = {Start(c)}$

fixes the origin of the grid

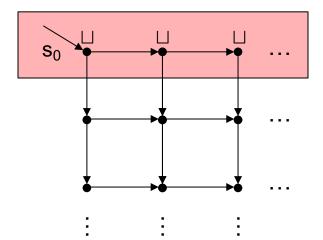
 $\forall X (Node(X) \rightarrow \exists Y (H(X,Y) \land Node(Y)))$



 $\forall X (Node(X) \rightarrow \exists Y (V(X,Y) \land Node(Y)))$

 $\forall X \forall Y \forall Z \forall W (H(X,Y) H(Z,W) V(X,Z) \rightarrow V(Y,W))$

Initialization Rules



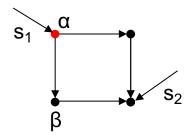
 $\forall X \forall Y (Initial(X) \land H(X,Y) \rightarrow Initial(Y))$

 $\forall X (Start(X) \rightarrow Cursor[s_0](X))$

 $\forall X (Initial(X) \rightarrow Symbol[\sqcup](X))$

Existential Rules – Lecture 2 – Sebastian Rudolph

Transition Rules

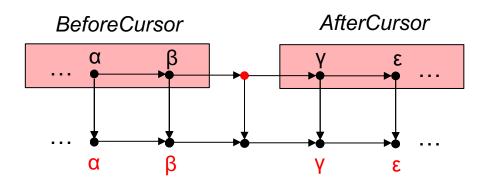


$\forall X \forall Y \forall Z \ (\textit{Cursor}[s_1](X) \land \textit{Symbol}[\alpha](X) \land \textit{V}(X,Y) \land \textit{H}(Y,Z) \rightarrow$

 $\textit{Cursor}[s_2](Z) \land \textit{Symbol}[\beta](Y) \land \textit{Mark}(X))$

Existential Rules – Lecture 2 – Sebastian Rudolph

Inertia Rules



 $\forall X \forall Y (Mark(X) \land H(X,Y) \rightarrow AfterCursor(Y))$

 $\forall X \forall Y (AfterCursor(X) \land H(X,Y) \rightarrow AfterCursor(Y))$

 $\forall X \forall Y (AfterCursor(X) \land Symbol[\alpha](X) \land V(X,Y) \rightarrow Symbol[\alpha](Y))$

...we have similar rules for the cells before the cursor

Accepting Rule

Once we reach the accepting state we accept

 $\forall X (\textit{Cursor}[s_{acc}](X) \rightarrow \textit{Accept}(X))$

 $D \land \Sigma \vDash \exists X Accept(X)$ iff the DTM *M* accepts

Existential Rules – Lecture 2 – Sebastian Rudolph

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Existential Rules – Lecture 2 – Sebastian Rudolph