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Syntax of Existential Rules

• X,Y and Z are tuples of variables of V

• ' (X,Y) and Ã(X,Z) are (constant-free) conjunctions of atoms

An existential rule is an expression

body head

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

…a.k.a. tuple-generating dependencies, and Datalog± rules
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Semantics of Existential Rules

• An instance J is a model of the rule

written as J ² σ, if the following holds: 

whenever there exists a homomorphism h such that h(' (X,Y)) µ J, 

then there exists g ¶ h|X such that g(Ã(X,Z)) µ J

• Given a set Σ of existential rules, J is a model of Σ, written as J ² Σ,  if the 

following holds: for each σ 2 Σ, J ² σ

• It can be shown that J ² Σ iff J is a model of the first-order theory^σ 2 Σ σ

σ = 8X8Y (' (X,Y) ® 9Z Ã(X,Z))

{t ↦ h(t) | t 2 X}  – the restriction of h to X
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Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database (or ABox)

ontology (or TBox) 

Q

knowledge base

existential rules

8X8Y (' (X,Y) ® 9Z Ã(X,Z))
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Syntax of Conjunctive Queries

• X and Y are tuples of variables of V

• ' (X,Y) is a conjunction of atoms (possibly with constants)

A conjunctive query (CQ) is an expression

9Y (' (X,Y))

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL
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Semantics of Conjunctive Queries

• A match of a CQ 9Y (' (X,Y)) in an instance J is a homomorphism h such that 

h(' (X,Y)) µ J i.e., all the atoms of the query are satisfied

• The answer to Q = 9Y (' (X,Y)) over J is the set of tuples

Q(J)  =  {h(X) | h is a match of Q in J}

• The answer consists of the witnesses for the free variables of the query
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Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database (or ABox)

ontology (or TBox) 

Q

knowledge base

existential rules

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

conjunctive queries

9Y (' (X,Y))
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OBQA: Formal Definition

CQ-Answering:

Input: database D, existential rules Σ, CQ Q = 9Y ('(X,Y)), tuple t 2 adom(D)|X|

Question: decide whether t 2 certain(Q,hD,Σi) = \J 2 models(D ^ Σ) Q(J)#

active domain – constants occurring in D

t 2 certain(Q,hD,Σi) iff t 2\J 2 models(D ^ Σ) Q(J)#

iff 8J 2 models(D ^ Σ), J ² 9Y ('(t,Y))

iff D ^ Σ ² 9Y ('(t,Y))

Boolean CQ (BCQ) – no free variables
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BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox) 

Q = 9Y ('  (Y))

knowledge base

8X8Y ('  (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q
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Universal Models (a.k.a. Canonical Models)

U

J1 J2

. . . 
Jn

. . . 

h1
h2

hn

An instance U  is a universal model of D ^ Σ if the following holds:

1. U is a model of D ^ Σ

2. 8J 2 models(D ^ Σ), there exists a homomorphism hJ such that hJ(U) µ J
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Query Answering via Universal Models
Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

Proof: ()) Trivial since, for every J 2 models(D ^ Σ), J ² Q

(() By exploiting the universality of U

U

J1 J2

. . . 

Jn

. . . 

h1 h2
hn

Q by hypothesis

by universality of U

g

8J 2 models(D ^ Σ), 9hJ such that hJ(g(Q)) µ J ) 8J 2 models(D ^ Σ), J ² Q

) D ^ Σ ² Q
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The Chase Procedure

• Fundamental algorithmic tool used in databases

• It has been applied to a wide range of problems:

o Checking containment of queries under constraints

o Computing data exchange solutions

o Computing certain answers in data integration settings

o …

… what’s the reason for the ubiquity of the chase in databases?

it constructs universal models
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The Chase Procedure

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ 
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The Chase Procedure

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1) 
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The Chase Procedure

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2)
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The Chase Procedure

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3)
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The Chase Procedure

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

infinite instance
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The Chase Procedure: Formal Definition

J = {R(a), P(a,b)}

8X (R(X) ® 9Y P(X,Y))

h = {X! a} g = {X! a, Υ! b}

O

J = {R(a), P(b,a)}

8X (R(X) ® 9Y P(X,Y))

h = {X! a}

P

£

• Chase rule - the building block of the chase procedure

• A rule σ = 8X8Y ('(X,Y) ® 9Z Ã(X,Z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(X,Y)) µ J

2. There is no g ¶ h|X such that g(Ã(X,Z)) µ J
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The Chase Procedure: Formal Definition

• Chase rule - the building block of the chase procedure

• A rule σ = 8X8Y ('(X,Y) ® 9Z Ã(X,Z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(X,Y)) µ J

2. There is no g ¶ h|X such that g(Ã(X,Z)) µ J

• Let J+ = J [ {g(Ã(X,Z))}, where g ¶ h|X and g(Z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted Jhσ,hiJ+  - single chase step
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The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn

where no rule from Σ is applicable in Jn . 

Then, chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn ...  

and chase(D,Σ) is defined as the instance [k ¸ 0 Jk (with J0 = D)

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step
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Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of D ^ Σ

Proof:

• By construction, chase(D,Σ) 2 models(D ^ Σ) 

• It remains to show that chase(D, Σ) can be homomorphically embedded into 

every other model of D ^ Σ

• Fix an arbitrary instance J 2 models(D ^ Σ). We need to show that there exists 

h such that h(chase(D,Σ)) µ J

• By induction on the number of applications of the chase step, we show that for 

every k ¸ 0, there exists hk such that hk(chase[k](D,Σ)) µ J, and hk is 

compatible with hk-1

• Clearly, [k ¸ 0 hk is a well-defined homomorphism that maps chase(D,Σ) to J

• The claim follows with h = [k ¸ 0 hk

the result of the chase after k applications of the chase step 
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Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

• But, it is unique up to homomorphic equivalence

• Thus, it is unique for query answering purposes

D = {P(a)} σ1 = 8X (P(X) ® 9Y R(Y))

Result1 = {P(a), R(z), R(a)}

Result2 = {P(a), R(a)}

σ1 then σ2 

σ2 then σ1 

σ2 = 8X (P(X) ® R(X))

Result1

h12

h21

h23

h32

Result2 Result3
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Query Answering via the Chase

Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q   iff chase(D,Σ) ² Q

• We can tame the first dimension of infinity by exploiting the chase procedure

• But, what about the second dimension of infinity? - the chase may be infinite
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Rest of the Lectrure

• Undecidability of BCQ-Answering

• Gaining decidability - terminating chase

• Full Existential Rules

• Acyclic Existential Rules
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape
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Deterministic Turing Machine (DTM)

M =   (S, Λ, t, δ, s0, sacc)

states tape 
symbols

blank
symbol

S\{sacc} £ Λ ! S £ Λ £ {-1,0,+1}

initial state

accepting state

δ(s1, α) = (s2, β, +1)

IF at some time instant τ the machine is in sate s1, the cursor 

points to cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β, 

and the cursor points to cell κ+1
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Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM M with an empty tape 

using a database D, a set Σ of existential rules, and a BCQ Q such that 

D ^ Σ ² Q iff M accepts
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Build an Infinite Grid

k-th horizontal line represents the 

k-th configuration of the machine

8X (Start(X) ® Node(X) ^ Initial(X))

8X (Node(X) ® 9Y (H(X,Y) ^ Node(Y)))

8X (Node(X) ® 9Y (V(X,Y) ^ Node(Y)))

8X8Y8Z8W (H(X,Y) H(Z,W) V(X,Z) ® V(Y,W))

D = {Start(c)}

fixes the origin of the grid

X Y

Z W

H

V

c

…

…

…

… … …
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…

…

…

… … …

Initialization Rules

s0
t t t

8X8Y (Initial(X) ^ H(X,Y) ® Initial(Y))

8X (Start(X) ® Cursor[s0](X))

8X (Initial(X) ® Symbol[t](X))
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Transition Rules

δ(s1,α)   =   (s2,β,+1)
s1

α

s2
β

8X8Υ8Ζ (Cursor[s1](X) ^ Symbol[α](X) ^ V(X,Y) ^ H(Y,Z) ®

Cursor[s2](Z) ^ Symbol[β](Y) ^ Mark(X))
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Inertia Rules

…we have similar rules for the cells before the cursor

α β γ ε
BeforeCursor AfterCursor

α β γ ε

…

…

…

…

8X8Y (Mark(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ Symbol[α](X) ^ V(X,Y) ® Symbol[α](Υ))
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Accepting Rule

Once we reach the accepting state we accept

8X (Cursor[sacc](X) ® Accept(X))

D ^ Σ ² 9X Accept(X) iff the DTM M accepts



Existential Rules – Lecture 2 – Sebastian Rudolph Slide 33

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!


