

International Center for Computational Logic

Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 9

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

BCQ-Answering: Our Main Decision Problem

decide whether $D \land \Sigma \vDash Q$

Query Rewriting

 $\forall D : D \land \Sigma \vDash \mathbf{Q} \iff \mathbf{D} \vDash \mathbf{Q}_{\Sigma}$

evaluated and optimized by exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules *L*, and a query language *Q*.

BCQ-Answering under \mathcal{L} is *Q*-rewritable if, for every $\Sigma \in \mathcal{L}$ and BCQ *Q*,

we can construct a query $Q_{\Sigma} \in Q$ such that,

for every database D, $D \land \Sigma \vDash Q$ iff $D \vDash Q_{\Sigma}$

NOTE: The construction of Q_{Σ} is database-independent – the pure approach to query rewriting

Target Query Language

we target the weakest query language

	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:
 - 1. Rewriting
 - 2. Minimization

 The standard algorithm is designed for normalized existential rules, where only one atom appears in the head (any ruleset can be normalized while preserving the query answers; normalization also does not destroy acyclicity/linearity)

Rewriting Step

 $\Sigma = \{ \forall X \forall Y (project(X) \land inArea(X,Y) \rightarrow \exists Z hasCollaborator(Z,Y,X)) \}$

Thus, we can simulate a "backward chase step" by a resolution step

Q_Σ = ∃A∃B hasCollaborator(A,db,B) ∨ ∃B (project(B) ∧ inArea(B,db))

Applicability Condition

Consider a BCQ Q, an atom α in Q, and a (normalized) rule σ .

We say that σ is applicable to α if the following conditions hold:

- 1. head(σ) and α unify via h : terms(head(σ)) \rightarrow terms(α)
- For every variable X in head(o), if h(X) is a constant, then X is a ∀variable
- For every variable X in head(σ), if h(X) = h(Y), where Y is a shared variable of α, then X is a ∀-variable
- If X is an ∃-variable of head(σ), and Y is a variable in head(σ) such that X ≠ Y, then h(X) ≠ h(Y)

...but, although this is crucial for soundness, it may destroy completeness

The Rewriting Algorithm

 $Q_{\Sigma} := Q;$ repeat $Q_{aux} := Q_{\Sigma};$ foreach disjunct q of Q_{aux} do //Rewriting Step foreach atom α in q do foreach rule σ in Σ do if σ is applicable to α then $q_{rew} := rewrite(q, \alpha, \sigma);$ // resolve α using σ if q_{rew} does not appear in Q_{Σ} (modulo variable renaming) then $Q_{\Sigma} := Q_{\Sigma} \vee q_{row}$

//Minimization Step

foreach pair of atoms α,β in q that <u>unify</u> do

 $q_{min} := minimize(q, \alpha, \beta);$ // apply most general unifier of α and β on q if q_{min} does not appear in Q_{Σ} (modulo variable renaming) then

 $Q_{\Sigma} := Q_{\Sigma} \vee q_{min};$

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

- Key observation: after arranging the disjuncts of the rewriting in a tree T, the branching of T is finite, and the depth of T is at most the number of predicates occurring in the rule set
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

- Key observation: the size of each partial rewriting is at most the size of the given CQ Q
- Thus, each partial rewriting can be transformed into an equivalent query that contains at most |Q| · maxarity variables
- The number of queries that can be constructed using a finite number of predicates and a finite number of variables is finite
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

Complexity of BCQ-Answering

	Data Complexity		
FULL	PTIME-c	Naïve algorithm	
		Reduction from Monotone Circuit Value problem	
ACYCLIC		UCQ-rewriting	
LINEAR			

	Combined Complexity		
FULL	EXPTIME-c	Naïve algorithm	
		Simulation of a deterministic exponential time TM	
ACYCLIC	NEXPTIME-c	Small witness property	
		Reduction from Tiling problem	
	PSPACE-c	Level-by-level non-deterministic algorithm	
		Simulation of a deterministic polynomial space TM	
Existential Rules – Lecture 9 – Sebastian Rudolph			

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

 $\Sigma = \{ \forall X (R_k(X) \to P_k(X)) \}_{k \in \{1, \dots, n\}} \qquad Q = \exists X (P_1(X) \land \dots \land P_n(X))$

$$\exists X (P_1(X) \land \dots \land P_n(X))$$

$$P_1(X) \lor R_1(X) \qquad P_n(X) \lor R_n(X)$$

thus, we need to consider 2ⁿ disjuncts

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

- Although the standard rewriting algorithm is worst-case optimal, it can be significantly improved
- Optimization techniques can be applied in order to compute efficiently small rewritings - field of intense research

Limitations of UCQ-Rewritability

$$\forall D : D \land \Sigma \vDash \mathsf{Q} \iff D \vDash \mathsf{Q}_{\Sigma}$$

evaluated and optimized by exploiting existing technology

- What about the size of Q_{Σ} ? very large, no rewritings of polynomial size
- What kind of ontology languages can be used for $\Sigma ?$ below PTIME

