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BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox) 

Q = 9Y ('  (Y))

knowledge base

8X8Y ('  (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q
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Query Rewriting

D

ΣQ

evaluation

8D  :  D ^ Σ ² Q , D ² QΣ

compilation

First-order query
Union of CQs

SQL query
Datalog query

…

QΣ

evaluated and optimized by 

exploiting existing technology
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Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

BCQ-Answering under L is Q -rewritable if, for every Σ 2 L and BCQ Q, 

we can construct a query QΣ 2 Q such that, 

for every database D, D ^ Σ ² Q iff D ² QΣ

NOTE: The construction of QΣ is database-independent  –  the pure approach

to query rewriting 
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Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL O O O P

ACYCLIC O P P P

LINEAR O P P P
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UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive 

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where 

only one atom appears in the head

(any ruleset can be normalized while preserving the query answers;

normalization also does not destroy acyclicity/linearity)
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Rewriting Step

Σ = {8X8Y (project(X) ^ inArea(X,Y) ® 9Z hasCollaborator(Z,Y,X))}

Q =  9A9B hasCollaborator(A,db,B)

hasCollaborator(A,db,B)

g = {X! B, Υ! db, Z! A}

Thus, we can simulate a “backward chase step” by a resolution step

QΣ = 9A9B hasCollaborator(A,db,B)   

    _

9B (project(B) ^ inArea(B,db))   
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Applicability Condition

Consider a BCQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold: 

1. head(σ) and α unify via h : terms(head(σ)) ® terms(α)

2. For every variable X in head(σ), if h(X) is a constant, then X is a 8-
variable

3. For every variable X in head(σ), if h(X) = h(Y), where Y is a shared 
variable of α, then X is a 8-variable

4. If X is an 9-variable of head(σ), and Y is a variable in head(σ) such 
that X ≠ Y, then h(X) ≠ h(Y)

...but, although this is crucial for soundness, it may destroy completeness
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The Rewriting Algorithm
QΣ := Q;
repeat

Qaux := QΣ;
foreach disjunct q of Qaux do
//Rewriting Step

foreach atom α in q do
foreach rule σ in Σ do

if σ is applicable to α then
qrew := rewrite(q,α,σ);   // resolve α using σ 
if qrew does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qrew;
//Minimization Step

foreach pair of atoms α,β in q that unify do
qmin := minimize(q,α,β);   // apply most general unifier of α and β on q
if qmin does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ _ qmin;
until Qaux = QΣ;
return QΣ;
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Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (ACYCLIC):

• Key observation: after arranging the disjuncts of the rewriting in a tree T, the 

branching of T is finite, and the depth of T is at most the number of predicates 

occurring in the rule set

• Therefore, only finitely many partial rewritings can be constructed - in general, 

exponentially many
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Termination

Theorem: The rewriting algorithm terminates under ACYCLIC and LINEAR

Proof (LINEAR):

• Key observation: the size of each partial rewriting is at most the size of the 

given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that 

contains at most |Q| · maxarity variables

• The number of queries that can be constructed using a finite number of 

predicates and a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general, 

exponentially many
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Complexity of BCQ-Answering
Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC
in LOGSPACE UCQ-rewriting

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM
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Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewriting algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {8X (Rk(X) ® Pk(X))}k 2 {1,...,n} Q =  9X (P1(X) ^ … ^ Pn(X)) 

9X (P1(X) ^ … ^ Pn(X))

P1(X) _ R1(X) Pn(X) _ Rn(X)

thus, we need to consider 2n disjuncts
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Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewriting algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can 

be significantly improved

• Optimization techniques can be applied in order to compute efficiently 
small rewritings  -  field of intense research
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Limitations of UCQ-Rewritability

• What about the size of QΣ?  -  very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ?  -  below PTIME

8D  :  D ^ Σ ² Q , D ² QΣ
evaluated and optimized by 

exploiting existing technology
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Last Words: The Bigger Picture

Dresden, 23.09.2011 

glut-frontier-guarded

jointly frontier-guarded

weakly frontier-guarded

frontier-guarded

frontier-one

glut-guarded

jointly guarded

weakly guarded

guarded

Horn-ALCHOI

jointly acyclic

weakly acyclic

datalog

faithful-acyclic

model

acyclic

GRD

weakly sticky-join

sticky-join

weakly sticky

sticky

linear

DL-Lite

disconnected

domain-restricted

shy
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